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ABSTRACT: K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances.
We show that, as a consequence, it also maximizes between-cluster variances. This means that the two measures do
not provide complementary information and that using only one is enough. Based on this property, we propose a
new objective function called cluster overlap, which is measured intuitively as the proportion of points shared between
the clusters. We adopt the new function within k-means and present an algorithm called overlap k-means. It is an
alternative way to design a k-means algorithm. A localized variant is also provided by limiting the overlap calculation
to the neighboring points.

KEYWORDS: Clustering; k-means; overlap measure; within-cluster distance; between-cluster distance; arbitrary-shape
clusters

1 Introduction

Clustering aims at grouping data points X = {x;, x,, ..., X, } into ¢ clusters by minimizing an objective
function that estimates the goodness of the clusters. We assume that there is a distance function dist(x;, x;)
between the data points. Clustering is given as the partition index p(i) of which cluster the object x; is
assigned to, and the clusters are represented by their centroids ¢;. The most common objective function is to
minimize the sum of squared error between the data points and their cluster centroid:

SSE = Z;dist(x,-,cp(i))z ¢))

K-means [1-3] and many other algorithms [4-9] use this objective function. It requires that we can
calculate the centroid (mean). It is trivial in Euclidean space but becomes more complex for distance
functions designed for strings, sets, time series, and GPS trajectories [10]. SSE can also be converted
to an analytical function that can be optimized by gradient descent [11], coordinate descent [12], or its
split-and-merge variant [13].

Another popular class of algorithms is agglomerative clustering. The idea is to build the clustering hier-
archically, starting with # clusters and then merging clusters until their number reduces to c. Agglomerative
clustering applies a local optimization strategy by considering all pairs of clusters and merging the pair that
increases the objective function the least. Its main advantages are better clustering accuracy than k-means
and the fact that it is not necessary to calculate the centroids.
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Regardless of the objective function, we can simply calculate the merge cost as the difference in objective
function value before and after the merge:

Afap = faso—fa—fo (2)

where f, and f;, are the objective function values of the clusters a and b before the merge, and f,.; after
their merge.

Many heuristics have been used to measure the merge cost. The most relevant to this paper is the classical
Ward’s method [14], which minimizes the same objective function as k-means (SSE). In the context of vector
quantization, it is known as Pairwise nearest neighbor (PNN) [15]. Notably, the merge cost can be calculated
only using the cluster sizes (n,, 1,) and their centroids (c,, ¢;) in O(1) time [15]:

Nng +ny

(ng-np)

A trivial implementation of the algorithm requires O(n’) time even if the distance matrix is stored. This
is due to the time-consuming search for the best pair [16].

MergeCost(a, b) = ~dist (carcp)’ (3)

A more efficient variant maintains only the pointer (and merge cost) of the best pair for every cluster.
It reduces the time complexity close to O(n*) with linear memory requirement [17]. A faster variant uses
k-nearest neighbor graph, which reduces the time complexity to O(n log n) at a minor increase in the SSE-
values: 0.0%, 0.2%, 2.6% (Birch datasets), and 1.0%, 2.6%, 4.3% (image datasets) [18].

Other objective functions have also been considered. Cut-based methods include Normalized cut [19]
and Cut ratio [20] based on between-cluster distances. Graph-based methods first create a neighborhood
graph and then use the links between the data points to define a cut. Conductance [21] calculates the ratio
of between-cluster links and all links. Modularity [22] calculates the ratio of between-cluster and within-
cluster distances. These objective functions have also been adopted into k-means when data is represented
by a graph [23]. Between-cluster distances of each merge were measured during the agglomerative clustering
process and then normalized by a generic function based on the cluster sizes [24].

Objective functions also exist in cases where the number of clusters is unknown. These are called internal
cluster validity indexes and are used to compare clustering results with different values of c. Examples of
indexes that work reasonably well according to our experiments include Calinski-Harabasz [25], Silhouette
coefficient [26], WB-index [27], and kCE-index [28]. They all measure the ratio of within-cluster and between-
cluster distances normalized by the number of clusters in a slightly different way.

The most striking observation is that almost all indices are based on the same two variables: within-
cluster and between-cluster distances [27]. In this paper, we show the properties and relationship of these
two variables. In particular, we show that the between-cluster distances can be calculated directly from the
within-cluster distances and vice versa. Thus, the two variables are not mutually exclusive. Instead, they
measure essentially the same property.

To demonstrate their relationship, we introduce a new overlap objective function based on the between-
cluster distances. To keep the computation reasonable, we simplify the function using an overlap measure.
We then apply the new objective function within k-means and compare the experimental results of the new
Overlap k-means against the standard k-means based on within-cluster distances. We design a k-means
based algorithm for the new objective function. A localized variant is also considered for clusters with
arbitrary shapes.

Our results are as follows. Between-cluster distances provide an alternative way to construct k-means
with similar results but higher computational complexity. The proposed overlap measure addresses this



Comput Mater Contin. 2025 3

problem by emphasizing the central points in the cluster. It has the advantage of providing more accurate
centroid locations.

However, there is a drawback. The border points are important for two reasons. First, they allow
centroids to travel from one cluster to another. Second, the far-away points play a significant role in pulling
the centroids, enhancing their movement. The overlap k-means without this pulling force loses the dynamics
of k-means and becomes too rigid.

The rest of the paper is organized as follows. We first discuss the properties of the SSE objective function
in Section 2 and show the connection between the within (inner) and between (outer) cluster distances.
We then form a k-means variant using the between-cluster distances in Section 3. It has mainly theoretical
interest, but we also show how it can be used to create a new localized objective function that can potentially
detect arbitrary shapes. The experimental setup is defined in Section 4, and results are given in Section 5.
Conclusions are drawn in Section 6.

2 Properties of the Objective Function

The intuitive goal of clustering is to minimize the distances within the clusters and maximize those
between the clusters. These can be measured by the following three quantities:

o  Sum of squared within-cluster distances (SSW)
o The sum of squared between-cluster distances (SSB)
o All pairwise (squared) distances (APD)

They can be calculated as follows:
SSW = > dist(x;,x;)*Vi, jlp (i) = p(j) (4)
i.j
. 2., . .
SSB = dist (xi, x;)" Vi, jlp (1) # p(j) (5)
i,
APD is the sum of the other two:

APD = SSW + SSB = " dist(x;, x;)* (6)
i)

SSW and SSB depend on the clustering result, whereas APD is constant and depends only on the data.
SSW can also be calculated for each cluster separately:

c
SSW =) SSW, (7)
a=1

where SSW, denotes the sum of squared distances within cluster a:

SSWa=Zdist(xi,xj)ZVi,ﬂp(i)=p(j) =a (8)
i,j

2.1 Use of SSW and SSB

SSW is widely used in agglomerative clustering by calculating the change (A) in SSW if any pair of
clusters a and b are merged:

ASSW, p, = SSWop,—=SSW, — SSW,, = §§B,4p 9)
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Here, it is important to notice that the change equals the sum of squared distances between the clusters,
SSB, ., defined as follows:

SSBuis :Zdist(x,»,xj)ZVi,ﬂp(i) =anp(j)=b (10)
i.f
In other words, while the algorithm aims to minimize SSW, it proceeds merely by evaluating the

between-cluster values (SSB). SSW can also be normalized by calculating the sum of distances divided by
the cluster size:

(11)

This version is used in Ward’s method and is shown to equal SSE [15]. The unnormalized version in (10)
has been shown to provide more balanced cluster sizes compared to SSE [29]. Average linkage clustering
eliminates the cluster sizes completely from the equation by dividing by n,-1,. Its behavior is opposite to (10)
by creating more biased cluster sizes and favoring outlier clusters.

Normalized cut [19], cut ratio [20], and conductance [21] are all based on SSB but normalized in different
ways. The ratio of SSW and SSB is used in [30], and their difference in [22]. Calinski and Harabasz [25]
and WB-index [27] also use the ratio of SSW and SSB, but they also include ¢ in the equation to allow
comparison with different numbers of clusters. This is a useful variation when the number of clusters also
needs to be solved.

2.2 Relationship between SSE and SSW

In the case of Euclidean distance, SSE is also directly related to SSW according to Huygens’s
theorem [29,31]:

SSW, = Z disz‘(x,-,xj)2 =n,SSE, (12)

x,‘,XjEtl

where SSW, and SSE, refer to the SSW and SSE values in cluster a, and 1, its size. The main consequence of
this relationship is that minimizing SSE and SSW within a cluster differs only by a scaling factor 7,. In other
words, SSE, sums up 1, squared distances, whereas SSW, sums up n,” distances. It is possible to normalize
them into the same scale simply as SSE, = SSW,/n,.

Using (12), we can reformulate Eq. (6) as:

c
SSB = APD - SSW = APD - > " n,SSE, (13)

a=1

Since APD is constant, regardless of the clustering, minimizing SSE (and SSW) is effectively the same
as maximizing SSB. This implies that the objective function does not need to contain SSE or SSW, but SSB
alone is sufficient.

If clusters are of equal sizes (n, = ny, for all a, b), then it simplifies even further to:

c
SSB=APD-n,-Y SSE, = APD - - - SSE (14)
C

a=1
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Fig. 1 shows an example of two clusters with their corresponding SSW and SSB values.

All pairwise distances Within cluster distances Between cluster distances
SSW,=3912

o SSB=5580

Figure 1: Example of APD (left), SSW (middle), and SSB (right). There are O(n*) links, but not all of them are drawn.
The links have the following relationship: {APD} = {SSW} u {SSB}

2.3 Number of SSB Calculations

Motivated by the observations, we reformulate the k-means algorithm using between-cluster distances
(SSB). However, this can be time-consuming because there are O(n*) pairwise distances to be calculated at
every iteration, which is too slow. An alternative solution is to store the O(n?) size distance matrix, but this
would reduce the practicality of the method due to quadratic memory consumption. Neither option looks
very promising for scalability.

Fortunately, most SSB distances are between points located far away from each other, so they will almost
never be assigned to the same cluster. In other words, they have no contribution to clustering. The distances
that matter are points near each other so that they can sometimes belong to the same cluster depending on
the operation of the algorithm. They contribute to the objective function most.

One possibility to make the method faster is to limit the distance calculations only between points
in neighboring clusters. However, if the number of clusters is small (¢ << n), almost all clusters are
neighbors. This can also happen when the dimension increases high because the distances tend to become
equidistant when using Euclidean (L) distance [32]. Minkowski distances (L,) with other values of p have
also been considered and L-norms with fractional values (0 < p < 1) have been shown to work better for
high-dimensional data [33].

To demonstrate the problem, assume that the points are equally divided so that all clusters have size n/c
points. In this case, there are (n/c)* distances between every pair of clusters. If we compute distances only
between the nearest cluster, there would still be ¢-(n/c)? = #*/c distance calculations. If ¢ =y/n, the number
of distance calculations becomes #'°, but when ¢ is a small constant, ¢ = O(1), the time complexity remains
O(n?). See Fig. 2 for an example. In other words, we cannot afford to calculate all between-cluster distances
if we want to keep the algorithm fast.

SSW links: SSB links: Only nearest cluster:

1010 ¥ 5.5 + 6.6 = 161 10-11 + 5:16 + 6.15 = 280 2610 + 5.10 = 170

Figure 2: Total number of SSB calculations (280) and the number of calculations if only considering the nearest cluster
(170)
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2.4 Euclidean Distances

When minimizing sum-of-squared Euclidean distances, the calculations can be done more efficiently.
From (12), we know that the sum of squared distances (SSE), multiplied by n, equals all pairwise distances
within the clusters (SSW):

SSW, =n,-SSE, (15)

This is already utilized in k-means by using the centroids to calculate the within-cluster distances (SSW).
However, the result also generalizes between-cluster distances as shown in [27,34].

c c APD C n c
SSB=APD - n,-SSE; =Y n,- (— - SSEa) = (—“ - APD - sswa) =APD- ) SSW,  (16)
a=1 n n

a=1 a=1 a=1

In other words, both SSW and SSB can be done in O(#) time via SSE. In the following, we do not utilize
this property as we are interested in overlap. This requires point-level information that would be lost if we
used centroids to represent the clusters. However, this property can be beneficial for others, and thus, it is
presented here.

3 Overlap k-Means (OK)

Among all the point pairs, the most meaningful ones are those that are near to each other but in different
clusters. In other words, border pixels. In the proposed method, we, therefore, calculate only one distance
per point to its nearest neighbor in another cluster. This distance is put into the context of its relative location
in its own cluster.

3.1 Overlap Value

We formulate a so-called overlap value for each data point based on the overlap measure proposed
in [35]. The overlap score for a point x; is calculated as follows:

dist (xi,cp(i))

0] Xi) = — 17
(%) dist(x,-,NN(xl-)) )

where NN (x;) is the nearest neighbor of x; in another cluster:

NN (x;) = argmin dist (x;, %)) , Vx;|p (i) # p (§) (18)

The lower the overlap value, the better the cluster assignment of the point. The new objective function
then minimizes the sum of all overlap values in the data:

Overlap =) Oy(x;) (19)
i=1

The overlap value includes two terms. The first term (numerator) represents a sample of the SSW
function, and the second term (divider) is a sample of the SSB function. The overlap is, therefore, a strongly
sampled version of the Calinski and Harabasz measure [25] and closely related to other sum-of-squared
based indexes [27]. The difference is that the overlap measure is not normalized by the cluster size.
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Example calculations are shown in Fig. 3, where the large cluster (gray points) has points near the small
dense cluster (red points). While all border points have high distances to the centroids, only those near the
red cluster have a high overlap value.

Distance to Distance to Overlap
nearest: centroid: values (0,):
3.7 P X 0.43
~"1.5 0.42 Q
HE©) O 0.50
0.4 a5 @
1.2 . 0.46 ‘ i
@ Q11 ., : i @o.4s
. - . 0.55
(@) . Lo
1.2 0.8 ® 0.59 % @130
1.8 16/ Lo
.O --------- 2 33.; ()
09 O
090 090

Figure 3: The proposed objective function calculates the distance from a point only to its nearest neighbor in another
cluster and to its own centroid

3.2 K-Means Using Overlap

K-means has two steps that should be updated according to the new objective function. Theoretically,
the nearest cluster should be calculated by minimizing (16). However, we face computational problems.
Finding the nearest neighbor point takes O(n) time for one point, and we have # points to process. The time
complexity of the partition would, therefore, grow to O(n?). To avoid this, we keep the original k-means
assignment and find the nearest centroid.

The second step is to calculate the centroid for the clusters. We calculate the weighted average so that
every point is inversely weighted by its overlap value. In this way, the border points with high overlap values
will have less impact on the centroid location, which will move closer to the non-border points. The exact
update rule is as follows:

Lp(i)=j Wi Xi
o= (20)
EDOEES
w; = exp [— (01 (x1) /y)z] (21)

where y is a (constant) bandwidth parameter. In other words, the calculation of the cluster centroid is an
overlap-weighted average of the points belonging to the same cluster. The only difference to traditional
k-means is the addition of the Step 2 (calculation of overlap). Pseudo code of the Overlap k-means is given
in Algorithm 1.

Algorithm 1: Overlap K-means (OK)

OK(X, C) — {Pl}

Input: X, ¢,y

Output: p;,1<i<n, pie{l,...,c}

- Select ¢ points randomly from X as centroids ¢j,1< j< ¢

—  While 3i: p; # pld
Step 1: For each x;, assign label p; as the index of its nearest centroid;
Step 2: For each x;, calculate the overlap value O; (x;) according to (17);

Step 3: For each cluster, calculate new centroid according to (20).
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3.3 Localized Variant

Despite the alternative formulation, Overlap k-means is merely another variant of k-means that
optimizes essentially the same variables: minimizing SSW and maximizing SSB. The overlap score itself is
localized regarding the SSB calculations by considering only the nearest neighbor in another cluster. The
motivation was merely to reduce the calculations.

Next, we extend the localization to the SSW part by removing the dependency on the centroid. We want
the overlap to be based only on local properties. To achieve this, we calculate a local neighborhood of a point
defined by its k-nearest neighbors (KNN). Localized overlap value is then defined as:

Meanshift (x;)
dist (xi,m(xi))

0 (xi) = (22)

where Meanshift (x;) denotes the distance of x; to the mean of its KNN neighbors in the same cluster. It is

calculated as follows:

Y yeKNN(x) dist (xi, y)
k

Meanshift (x;) = (23)

where KN N (x;) is the set of k nearest neighbors of x; in the same cluster.

The divider is the same in both O, and O,, i.e., the distance to the nearest neighbor in another cluster.
However, the numerator is different. In O,, it depends on the local neighborhood alone no longer requires
centroid. The overlap score O; minimizes SSW, which implies spherical clusters, whereas O, minimizes
Meanshift, which allows clusters with arbitrary non-convex shapes.

It is both an advantage and a disadvantage. The idea is that the higher the mean-shift distance, the more
points differ from their neighborhoods. In specific, border points have high mean-shift values. This idea was
originally developed for outlier detection in [36]. An example is shown in Fig. 4. Pseudo code of the local
variant is given in Algorithm 2.

To centroid = 3.5 To centroid = 3.5
Mean-shift = 0.5 Mean-shift = 3.0
To NN =4,5 To NN =4.0
0, =0.75 0, =0.75
02 = 0.11 02 =0.88

Figure 4: Two points (blue) having the same distance to their cluster centroid (3.5), almost the same distance to the
nearest point in another cluster (4.5 and 4.0), but with very different mean shift values (0.5 and 3.0)
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Algorithm 2: Localized variant (OK-local)
OK-local(X, k) - {pi}

Input: X, ¢,y

Output: p;,1<i<n, pie{l,...,c}

- Select ¢ points randomly from X as centroids ¢j,1< j<c¢
- While 3i: p; # pod

Step 1: For each x;, assign label p; as the index of its nearest centroid;
Step 2: For each x;, calculate the overlap value O, (x;) according to (17);

Step 3: For each cluster, calculate new centroid according to (20).

Note: A more detailed pseudo code is in Appendix A.

4 Experimental Setup

The datasets used in the experiments are listed in Table 1 and demonstrated in Fig. 5. We selected
datasets from the clustering basic benchmark [35] and from [37]. The datasets have varying cluster overlaps,
shapes, and densities.

We cluster the datasets with the following algorithms:

e K-means (KM)

e K-means++ (KM++)

« Random swap (RS)

» Density peaks (DensP)

« DBSCAN

«  Spectral clustering (Spectral)
o Overlap k-means (OK)

o Localized variant (OK-local)

Table 1: Datasets used in the experiments

Dataset Reference n d C
Flame [38] 240 2 2
Aggregation [39] 788 2 7
S1 [40] 5000 2 15
S2 [40] 5000 2 15
S3 [40] 5000 2 15
S4 [40] 5000 2 15
Al [34] 3000 2 20
A2 [34] 5250 2 35
A3 (34] 7500 2 50
Dim32 [18] 1024 32 16
Unbalance [41] 6500 2 8
Birchl [42] 100,000 2 100
Birch2 [42] 100,000 2 100
Birch3 [42] 100,000 2 100

(Continued)
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Table 1 (continued)

Dataset Reference n d C
Worms-2d [37] 105,600 2 35
Worms-64d [37] 105,600 64 25
Sivs ¥, |S2, v ||S3 &
/, * = / g

overlap increases

9% 22% 41%
Unbalance
.
2000 2000
Dense clusters Sparse clusters Points drawn from Gaussian
st.dev=2043 st.dev=6637 distribution along 25 shapes

moving to random direction.

Figure 5: Visualization of the selected datasets. Some datasets are seemingly simple with regular structure (Birch;_3),
whereas others have challenges like varying cluster overlap (S1-S4), density (Unbalance), or shapes (Worms-2D,
Worms-64D)

K-means is the main point of comparison to see whether Overlap k-means provides similar clustering
results to the standard k-means with the same seeding method. K-means itself can be improved by simple
tricks like repeats and better seeding [43]. We, therefore, also tested the most popular seeding called
K-means++ [44], which is based on a randomized further point heuristic.

We also include random swap [5], which is almost as simple as k-means and provides a state-of-the-art
reference to how good clustering accuracy one can expect by minimizing SSE. It is one of the few clustering
algorithms that find the correct cluster allocation for all the benchmark data. Other algorithms included are
density peaks [45], DBSCAN [46,47], and spectral clustering [48].

We run all algorithms 100 times and report the average results, with the exceptions of Birch and
Worms datasets, which are repeated only 10 times due to their higher processing times. Clustering results
are measured by clustering accuracy (ACC) [49] and centroid index (CI) [50].

We have two main hypotheses to test: (1) Does OK provide similar results to k-means, and (2) can
OK-local find clusters having non-uniform shapes and density?

5 Results

The main results are summarized in Tables 2 and 3. Good algorithms like Random swap and Density
peaks can find correct clustering (CI = 0) for most datasets. They only fail with the non-spherical datasets
Birch3, Worms, and Aggregation, which cannot be clustered correctly by the SSE objective function.
K-means++ manages to solve Dim32 and Unabalance, whereas K-means does not solve any of the datasets
(average CI = 5.8).
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Table 2: Clustering results measured by centroid index (CI)*

S1 82 83 S4 Al A2 A3 Dim32 Unb Bl B2 B3 W2 W64 Agg Av

KM 20 11 12 13 20 42 65 3.5 3.5 88 161 24 90 102 0.7 5.8
KM++ 02 05 06 04 06 07 17 0.0 0.0 33 15 21 82 95 0.7 3.1
RS 00 00 0.0 00 00 0.0 0.0 0.0 0.0 00 00 16 70 3.0 1.0 1.7
DensP 00 00 0.0 00 00 0.0 0.0 0.0 0.0 00 00 21 80 3.0 1.0 21
DBSCAN m 9 18 22 12 20 28 0.0 1.0 11 5 38 9 11 2 12.4
Spectral 00 00 04 11 00 0.0 03 1.2 2.1 1.0 0.0 18 6.0 0.0 2.0 2.1
OK 23 23 25 22 29 6.0 75 4.0 4.0 12 20 31 1 1.3 1.8 7.6
OK-local 21 12 13 09 25 47 56 3.7 4.0 83 16 24 80 99 1.0 5.8

Note: Perfect clustering result (CI = 0) is emphasized by boldface. Average results are shaded.

Table 3: Clustering results measured by clustering accuracy (ACC)" in %

§1 S2 S3 S4 Al A2 A3 Dim32 Unb Bl B2 B3* W2 W64 Agg Av

KM 8 9 80 74 90 87 86 82 60 87 84 - 51 52 82 74
KM++ 98 94 83 78 97 98 96 100 100 95 98 - 52 54 83 82
RS 99 97 8 80 100 100 100 100 100 97 100 - 52 76 83 85
DensP 9 97 8 79 98 99 99 95 100 100 100 - 55 74 86 85
DBSCAN 95 77 56 58 88 84 85 91 98 78 68 - 34 25 87 62
Spectral 9 9 86 77 98 99 99 94 58 95 100 - 52 85 74 81
OK 83 82 74 71 84 82 84 75 58 83 78 - 50 48 73 68
OK-local 86 8 79 76 87 86 88 77 60 88 84 - 52 53 83 73

Note: *Ground truth partitions are not available. Perfect clustering result (ACC = 100%) is emphasized by boldface.
Average results are shaded.

Beyond the clustering accuracy, the interest here is more on the comparison between k-means (KM)
and its overlap variant (OK). The results of these two are indeed similar, but there is a noticeable difference
favoring k-means. The localized variant provides results closer to k-means. The corresponding average CI
values are 5.8 (K-means), 7.6 (OK), and 5.8 (Local-OK).

Our first hypothesis was that Overlap k-means would provide similar results to k-means, but the results
do not support it. We analyze the reasons in Fig. 6 with the S1 dataset, which is easy for good algorithms
but troublesome for k-means due to small cluster overlap [35]. The results show that k-means can move all
centroids to their correct location except two. Overlap k-means, however, performs even worse with four
clusters unsolved.

Initial _ K-means Overlap k-means

Figure 6: K-means and Overlap k-means result with S1 for the same initial solution (left). Overlap k-means positions
the centroids better within the clusters but has problems locating them correctly globally. The CI-values of the solutions
are CI = 2 (k-means) and CI = 4 (Overlap k-means) accordingly

The reason is studied in Fig. 7, where the pulling effect of the faraway points attracts a centroid in just
three iterations with k-means. However, the same does not happen with Overlap k-means. The reason is due
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to the low weight of the faraway points in the centroid calculation. This leads to nicely balanced locations of
the centroids within the same cluster but leaving the one above empty.

Initial

K-means

Figure 7: Snapshots of the bottom left corner of S1 after the 1st iteration, 3rd iteration, and the final solution. The pulling
effect of the faraway points in k-means manages to move one of the centroids to the cluster missing a centroid. Overlap
k-means gives less weight to the border points, which stabilizes the centroids close to their original location and makes
the algorithm less dynamic

We conclude that it is possible to design k-means via the between-cluster distances, but the chosen
design using the overlap is not good. It makes the algorithm practical by avoiding the overwhelming
computations of the between-cluster distances, but it significantly reduces the pulling effect of the remote
points, which is vital for k-means. In other words, the algorithm becomes too rigid and tends to get stuck in
a local minimum. An effective algorithm should do the opposite: enhance the vital faraway boundary points
instead of restricting their use.

The second hypothesis was that the localized variant could also work for non-spherical datasets. This
does not happen either. The results of OK-local are closer to k-means than those of OK, but they do not
perform any better with the non-spherical datasets (Birch3, Worms, and Aggregation). We cannot conclude
whether the idea is not good enough or the potential is not fulfilled by the inferior local optimization.
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We did not carry out further tests other than this proof-of-concept. The main contribution is theoretical,
showing the connection between the within-cluster and between cluster distances. If one wants to achieve a
better algorithm based on the overlap concept, we outline two potential ways to do it here.

1. Design a stochastic variant starting with the opposite: give high weight for the high overlap points. This
would further enhance the dynamics of k-means, hopefully pushing the centroids even further than
the standard SSE function would do. Then, decrease the weights and gradually converge to the Overlap
k-means variant, which would focus on the central points.

2. Replace k-means with a better local optimizer: random swap. This would completely avoid the problem
of local minima. If there are any benefits of the OK or OK-local, their random swap counterparts have
a higher potential to exploit them.

6 Conclusions
We have the following conclusions:

First, within-cluster (SSW) and between-cluster distances (SSB) measure essentially the same quantity
and do not offer any complementary information. K-means uses the sum-of-squared (SSE) objective
function, which is essentially a scaled version of SSW. We have shown that the same objective can be
constructed using between-cluster distances.

Second, if we calculate the centroids for the data, both approaches can be calculated in O(n) time [27,34].
Otherwise, we need to calculate all pairwise distances. Within-cluster distances (SSW) take k-(n/k)* = O(n*/k)
time in case of balanced cluster sizes. Between-cluster distances, on the other hand, require the calculation
of all pairwise distances in the entire data, which leads to O(#?) time complexity.

Third, Calinski—-Harabasz, silhouette score, WB-index, and DBI and most other internal indexes assume
that both the within-cluster and between-cluster variances are needed. This paper demonstrates that this
is not the case. The consequence is that all these indexes are heuristics based on wrong assumption, which
implies that a better approach should be designed based on a different principle.

Fourth, we presented a new algorithm called overlap k-means (OK), which utilizes between-cluster
distances. Instead of minimizing all distances, it focuses on the distances near the cluster borders. However,
this construction lost the dynamics of the k-means algorithm, leading to a more rigid algorithm behavior.
The results of the localized variant were more consistent with that of k-means.

Fifth, the overlap idea has further potential. We outlined two possibilities. The first one would be a
stochastic variant, which would emphasize the border points more in the beginning and gradually reduce
their effect, leading to the Overlap k-means. The second possibility would be simply to replace the inferior
k-means with a more robust random swap algorithm. These two are points for future studies.
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Appendix A: Pseudo Code of the Overlap k-Means
X = dataset
K = Size of KNN
NN = Nearest neighbors
NC = number of clusters
PerformOK(X, NC, K)
{
/* initial solution */
NN: = FindKNN(X,K);
C: = SelectRandomRepresentatives(X,NC);
P: = OptimalPartition(C,X);
P_old: = zeros(size(P));
O: = Overlap-v1(P,X,NN,C);
gamma = Mean(O);
WHILE P <> P_old
{
P _old = P;
(P,C,0): = OK-means(P,C,X,0,NN,gamma);
¥
RETURN (P,C,0);

}

OK-means(P,C,X,0,NN,gamma)

{

/* performs one K-means iteration with KNN-overlap weighting */
C: = OptimalRepresentatives_w_Overlap(P,X,0,gamma);
P: = OptimalPartition(C,X);

O: = Overlap-v1(P,X,NN,C);

RETURN (P,C,0);

}

OptimalPartition(C,X)

{

FORi:=1TON DO

{

P[i]: = FindNearestRepresentative(C,X[i]);

}
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RETURN P;

}

FindNearestRepresentative(C,x)

{

ji=1

FORi:=2TO kDO

{

IF Dist(x,Cli]) < Dist(x,C[j]) THEN
{

ji=1;

}

¥

RETURN j;

}

Overlap-v1(PX,NN,C)

{

FORi:=1TON DO

{

B: = NN{[i];

Q: = Points in X with label P[i];

T: = B n (X \ Q) /*The nearest neighbors having a different label

D2: = SmallestDistance(T,X[i]); /*Smallest distance between X[i] and T*/
D1: = Dist(X[i],C[P[i]]); /*Dist. between X[i] and its centroid*/

Ol[i]: = D1/D2; /*Overlap cost*/

}

RETURN O;

}

OptimalRepresentatives_w_Overlap(P,X,0,gamma)

{

/* initialize Sum[1..k] and Count[1..k] by zero values! */
/* sum vector and count for each partition */
FORi:=1TONDO

{

j: = P[i];

Sum(j]: = Sum[j] + X[i]*exp(-(O[i]/gamma)**2);
Count[j]: = Count[j] + exp(-(O[i]/gamma)**2);

}

/* optimal representatives are average vectors */

15
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FORi:=1TOkDO

{

IF Count[i] <> 0 THEN
{
Cli]: = Sum[i]/Count[i];
¥
¥

RETURN G;

}

SmallestDistance(Data,Query)
{

Dmin: = some large positive value;
FORi:=1TONDO

{

D: = Dist(Data[i],Query);

IF D < Dmin THEN

{

Dmin: = D;

¥

}

RETURN Dmin;

}

AvgDistance(D)

{

Sum = 0;
FORi:=1TOK DO
{

Sum = Sum + DJi];
}

Davg: = Sum/K;
RETURN Davg;

}
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