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Set Matching Measures
for External Cluster Validity

Mohammad Rezaei and Pasi Franti, Senior Member, IEEE

Abstract—Comparing two clustering results of a data set is a challenging task in cluster analysis. Many external validity measures
have been proposed in the literature. A good measure should be invariant to the changes of data size, cluster size, and number of
clusters. We give an overview of existing set matching indexes and analyze their properties. Set matching measures are based on
matching clusters from two clusterings. We analyze the measures in three parts: 1) cluster similarity, 2) matching, and 3) overall
measurement. Correction for chance is also investigated and we prove that normalized mutual information and variation of information
are intrinsically corrected. We propose a new scheme of experiments based on synthetic data for evaluation of an external validity
index. Accordingly, popular external indexes are evaluated and compared when applied to clusterings of different data size, cluster size,
and number of clusters. The experiments show that set matching measures are clearly better than the other tested. Based on the
analytical comparisons, we introduce a new index called Pair Sets Index (PSlI).

Index Terms—Clustering, external validity index, cluster validation, comparing clusterings, normalization, correction for chance, adjustment

for chance

1 INTRODUCTION

A S a basic tool, clustering or cluster analysis partitions a set
of unlabeled data objects into meaningful groups. A
huge number of clustering techniques have been developed
in different application fields [1]. Different algorithms or even
one algorithm with different parameters can result in differ-
ent partitions for the same data set. A question therefore arises
that which partition best fits with the data set. Cluster validity
indexes have been commonly used to address this problem
[2], [3], [4], [5], [6], [7], [8], [9]. They are classified into internal
and external indexes of which the former are based on informa-
tion intrinsic to data while the latter measure the similarity
between two clustering results of one data set. We focus on
external validity indexes in this paper.

External validity indexes are used actively in searching
for good clustering solutions, for example in ensemble clus-
tering [10], [11], [12], [13], where the goal is to aggregate a
set of clustering partitions. They have been used in genetic
algorithms [14] to measure genetic diversity in a population.
In [11], external indexes are used for comparing the results
of multiple runs to study the stability of k-means. To evalu-
ate internal validity indexes, a framework is introduced in
[15] by using external indexes on ground-truth partition.
Using these indexes we can identify those algorithms that
generate similar partitions irrespective of data [1]. The
indexes can also be used for determining the number of
clusters for a data set [16], [17], [18].

External validity indexes measure how well the results of
a clustering match the ground truth (if available) or another
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clustering [19], [20]. Several external validation measures
have been studied in [7], [8], [9], [19], [20], [21], [22]. They
can be categorized into pair-counting, information theoretic
and set matching measures.

Pair-counting measures include rand index, adjusted rand
index, Jaccard coefficient, Fowlkes-Mallows index and several others
[9], [23]. They are based on counting the pairs of objects in the
data set on which two different partitions agree or disagree.
For instance, if two objects in one cluster in the first partition
place also in the same cluster in the second partition, it is con-
sidered as an agreement. Most of the existing external validity
indexes are classified in this group.

Information theoretic indexes such as entropy, Mutual Infor-
mation and variation of information have also been used in
comparing clusterings [9], [24], [25]. Mutual information
measures the information that two clusterings share. Since
there is no upper bound for mutual information, normaliza-
tion is needed for easier interpretation and comparison [10].
A systematic study of this group of indexes, including sev-
eral existing popular measures and recently proposed ones
has been performed in [9].

Set matching indexes such as F measure [26], criterion H
[27] and Van Dongen [28] are based on pairing similar clus-
ters in two partitions. According to [24], existing indexes in
this group suffer from the problem that clusters having no
pair are not involved in comparison. The unmatched part of
two paired clusters is also not taken into account. Taking
use of the tight connection between partitions and centroids,
cluster-level similarity indexes such as Centroid Index [20]
and Centroid Ratio [29] employ the representatives of the
clusters instead of point-level partitions. However, cluster-
level indexes lack point-level information.

Comparison of different external validity indexes regard-
ing to their properties have been reported in [7], [8], [9], [21],
[24], [26]. Normalization and correction for chance, as desir-
able properties, keep the range of an index fixed in [-1, 1]
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or [0, 1] and make the index values comparable across dif-
ferent data sets. More specifically, correction for chance
adjusts the index for randomness by transforming its
expected value to zero. The importance of index normaliza-
tion on data with imbalanced cluster distribution is dis-
cussed in [7], [26]. It is shown that the values of normalized
measures are more spread in [0, 1], and have a wider range
than unnormalized ones. According to [9] and [21], correc-
tion for chance is preferable when the number of data points
is relatively small compared with the number of clusters.
Other properties include sensitivity of an index to data size,
cluster size imbalance and number of clusters. The effect of
cluster size imbalance on a range of external validity
indexes is analyzed in [26] and it is shown that normaliza-
tion should be applied. Otherwise, an index is mostly
affected by big clusters and does not detect changes in small
clusters. Metric properties have been also discussed for
external validity indexes and several researchers prefer met-
ric because of the theoretical properties that exist on metric
spaces [9], [21], [22], [24].

In this paper, we study set matching validity indexes by
introducing and analyzing three components of the indexes:
cluster similarity, matching and overall measurement. We
also investigate correction for chance and show that normal-
ized mutual information, variation of information and their
adjusted forms are equivalent. We propose a new similarity
index called Pair Sets Index (PSI) according to careful analy-
sis and comparisons. Simplified form of PSI is also shown to
be metric. Another contribution of the paper is to propose a
new way of experiments for evaluating external indexes.
The behavior of an index in comparison of clusterings with
cluster size imbalance, different data size and number of
clusters is extracted and analyzed systematically. We show
by these experiments that set matching indexes clearly out-
perform other popular indexes.

2 PROBLEM DEFINITION

Given a data set X € R? with N objects in a d-dimensional
space, the problem of clustering is to group the data set into
K clusters [14]. Given two sets of partitions P = {P;, P», ...,
Px}of Kclustersand G = {G1, G, ..., Gy } of K clusters, an
external validity index measures the similarity between P
and G. A contingency table of P and G is a matrix where n;; is
the number of objects that are both in clusters P and
G, : nijj =|P;N G|, see Table 1. The sizes of clusters P, and
G aren; and mj, respectively.

An external validity index needs to satisfy several prop-
erties to be consistent and comparable for different data sets
and clusterings structures.
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Normalization transforms the index within a fixed range,
for example [0, 1], which makes the comparison easier for
data sets with different size and structure. Normalization is
the most commonly agreed property in the clustering com-
munity [9]. To transform a dissimilarity index I; to the
range of [0, 1], normalization is performed as:

Id — mm([d)
max(ly) — min(ly)’

I'(P,G) = N
where min(7;) and max(I;) are the minimum and maximum
values of 1.

The index values are expected to be constant when differ-
ent random clusterings are compared with a ground truth
[30]. A random partition is created by selecting random
number of clusters of random size. The similarity between
the random partition and the ground truth originates
merely by chance. Take an example of rand index: the value
of the index for two random partitions is not a constant, and
is in a narrow range of [0.5, 1] instead of [0, 1]. By correction
for chance or adjustment, the expected value of a similarity
index is transformed to zero [21], [30]. Adjustment and nor-
malization can be performed jointly as follows:

PR adi _ Ig—min(],
Dissimilarity I1"(P,G) = Wmlf}d) @

19(P.G) = syt

Similarity TTTIAEIAT

where the minimum of a similarity index (maximum of a
dissimilarity index) is estimated by expected value E(I;).

Metric property has been also considered. Although a sim-
ilarity /dissimilarity measure can be effective without being
a metric [31], it is sometimes preferred. Considering dissim-
ilarity index I and partitions P, P» and P, the metric prop-
erties require [22], [32]:

Non-negativity: I;(P;, P;) > 0

Reflexivity: I;( Py, P,) = 0if and only if P, = P,
Symmetry: [;( Py, Py) = 14(Ps, P1)

Triangular inequality: I;( Py, P) + I;(Ps, P3) >
I4(Py, Ps)

A similarity metric satisfies the following [32]:

LNy

Limited Range: I;(P1,P5) <Ip < oo.

Reflexivity: I(Py,P,) = Ij if and only if P = P5,
Symmetry: Is(Pl,Pz) = Is(Pz,P]).

Triangular inequality: I;( Py, P») X I;(Ps, P3) <
I(P1, P3) x (L(Pr, P2) + I(P, P3))

The triangular inequality for a similarity index I is
derived according to the corresponding inequality for a dis-
similarity index which is defined as ¢/I;(c > 0). However,
other forms of the inequality are possible by defining other
dissimilarities such as max(I;) — I;. It is trivial to show that
if ¢/I; (or max([) — I) is a dissimilarity metric, I, is a simi-
larity metric as well [32]. Hence, the metric properties for a
similarity index can be checked for its corresponding
dissimilarity.

Cluster size imbalance signifies that a data set can include
clusters with big difference in their sizes. Some researchers
argue that clusters with bigger sizes have more importance
than smaller ones but in this paper we assume that each
cluster has the same importance independent of its size.
Invariance on the size of clusters is therefore another

Ll e
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Fig. 1. The principle of pair-counting measures.

desired property of an index. Size of the data set should not
affect on the index either.

An index should be independent on the number of clus-
ters. Some indexes such as Rand Index give higher similar-
ity for partitions with more clusters [22]. The index should
also be applicable for comparing two clusterings with dif-
ferent number of clusters.

Monotonicity is another needed property. It states that the
similarity of two clusterings monotonically decreases as
their difference increases.

Once the above desired properties are met, then it ensures
that the index values for different data sets are on the same
scale and comparable. For instance, if an index gives 90 and
70 percent similarities, 90 percetn should represent higher
similarity. However, this is true only if the index is indepen-
dent on data set and its clustering structure.

3 PAIR-COUNTING AND INFORMATION THEORETIC
INDEXES

Pair-counting measures count the pairs of points on which
the two clusterings agree or disagree. Four values are
defined: a represents the number of pairs that are in the
same cluster both in P and G; b represents the number of
pairs that are in the same cluster in P but in different clus-
ters in G; ¢ represents the number of pairs that are in differ-
ent clusters in P but in the same cluster in G; d represents
the number of pairs that are in different clusters both in P
and G. Values a and d count the agreements while b and ¢
the disagreements. Examples of each case are illustrated in
Fig. 1. The values of 4, b, c and d can be calculated from the
contingency table [30] as follows:

- -
1 K K

3)

Some of the popular indexes are listed in Table 2. Rand
index (RI) is a well-known pair-counting measure. For ran-
dom partitions, the similarity between two clusterings is
desired to be close to zero. However, the expected value of
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TABLE 2
External Validity Indexes

Pair-counting measures

Rand index RI = N(ﬁﬂ(ﬁ)/z
[30]
Adjusted rand ARI — RI—E({%I)
index [30] 1=E(RD)
Information theoretic measures

Mutual MI = ZK ZK’ i 10 N1

- 1= j= g n;m;
information [25] =l o=l N 1iMm
Normalized Mutual NMI — %
Information type 1 [25] HP+HE)/2
Normalized Mutual NMI = _MI(PG)

H(P)xH(G)

Information type 2 [25]
Normalized Variation
of Information [7]

_ H(P)+H(G)-2MI(PG)
NVI ==y

Set matching measures

[ =15 K o haxs 2t
FM = 5371, ny max; ——

ni+m;

_ Liax: SSE g
H=1-gmax;3 ;" n;

F measure [26]

Criterion H [27]

Normalized

Van Dongen [28]
NVD =

oy K K K K
2}\‘—2,:1 [I‘“771"'772J:1 max;® | n;
2N

Purity [33] Purity = %Z,]‘:l maxy (1)
CI120] CI,(P,G) = Zfil orphan(G;)
CI(P,G) = max(CI, (P, G),CIL (G, P))
K K
CSI[20] O8I = 2"
i, j: indexes of matched clusters
CR=1-%%,v/K
CR[29] | 1 unstable pair
Yi= 0 stable pair
m S > E(S), max(K,K') > 1
0 S < E(S
Psl 1 K=K (:)1

min(K, K') n
i
S = —
<~ max(n;, m;)

i, j: indexes of paired clusters

rand index for random partitions is 0.5 and the index is
within a narrow range of [0.5, 1] according to [11], [12], [30].
Hence, a corrected-for-chance version called adjusted rand
index (ARI) was introduced in [30] which is upper bounded
by one and lower bounded by zero. The expected value of
the rand index is estimated using hyper-geometric distribu-
tion assumption in which the size and number of clusters
are fixed [30].

Existing information theoretic measures employ the con-
cept of entropy [25] to compare two partitions. Entropy is
measured by the average number of bits needed to store or
communicate data. The entropy of clustering P with K clus-
ters is defined as:

K
H(P) == p(P)log p(P), )
=1
where p(P;) =n;/N is the estimated probability of the
cluster P,.
Having clustering G and the joint distribution p(P,G), the
average number of bits for P is derived by conditional
entropy [19] as follows:
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H(G) H(P)

VI

Fig. 2. Mutual information (M) and variation of information (VI).

K K

H(P|G) = p(P,G)log p(P|G)), (5)

=1 j=1

where the probability p(P;, G;) can be estimated from the
contingency table as n;;/N.

Mutual information (MI) [9], [10] is derived from condi-
tional entropy and represents the similarity of two cluster-
ings [22]. If we choose a random object in the data set,
knowing its cluster in G, mutual information measures the
reduction in uncertainty of the object’s cluster in P [22], [24].
Mutual information is defined formally as follows:

MI(P,G) = H(P)— H(P|G) = H(P)+ H(G) — H(P,G).
(6)
In terms of probabilities, it is:
K K
p(P, Gj)
MI(P,G) p(P;, Gj)log P ) @)
=2 2 p(P)p(G))

Variation of Information (VI) [24] is complement of the
mutual information, see Fig. 2, and is calculated by sum-
ming up the conditional entropies H(P | G) and H(G | P), see
(8). Normalization of MI and VI is discussed in section 5.

VI(P,G) = H(P|G) + H(G|P) =
H(P)+ H(G) — 2MI(P,G) =  (8)
2H(P,G) — H(P) — H(G).

4 SET MATCHING INDEXES

Set matching indexes are based on matching entire clusters.
Similar clusters are first found either by pairing or match-
ing, and their similarity is then measured using set match-
ing methods. We classify the set matching indexes into two
types: point-level and cluster-level.

Point-level indexes consider the intersection of paired
clusters in two clusterings. Purity is an example of this
group and it assumes one of the clusterings as ground truth
[33]. Accuracy defined in [34] is equivalent (exactly the
same) to Purity. Some authors use terms such as classifica-
tion accuracy [35] or classification error [9] with refereeing
to accuracy in [34] but this is not correct because they have
other definitions in classification problem. F measure (FM)
[26], Criterion H (CH) [27] and normalized Van Dongen
(NVD) [28] are other set matching measures.

Cluster-level indexes include Centroid Index (CI) [20]
and Centroid Ratio (CR) [29]. They use only cluster proto-
types in contrast to point-level indexes which employ the
labels of all objects in resulting partitions. Cluster level
indexes are fast to calculate [20], and they provide clear
interpretation about the differences in cluster-level
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Ps
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| BB | 080 | 0.25 |

Fig. 3. The effect of cluster size on cluster comparison.

structure. For example, CI = 1, demonstrates one difference
in the global allocation of the two clusterings. However,
they do not measure partial cluster differences. Centroid
Similarity Index (CSI) was introduced in [20] to extend CI to
a point-level measure.

Set matching measures involve three design questions:

1.  How to match the clusters.

2. How to measure the similarity of two clusters.

3.  How to calculate overall similarity.

Normalization and correction for chance (if applied) are
also essential parts of the overall similarity derivation. We
next give a detailed analysis of all these questions including
the normalization.

4.1 Similarity of Two Clusters

Let P, and G be two clusters in P and G respectively. Most
of the set matching measures use |P; N G| to calculate the
similarity of the two sets. For example, in Fig. 5, clusters
G and P, are more similar than G5 and P, since the num-
ber of shared objects is 6 and 4, respectively. CH, NVD,
CSI and Purity use this measure. Many other ways to mea-
sure similarity of two sets exist in literature and any of
them can be employed for calculating the similarity of two
clusters. Among the 76 methods listed in [36], we mention
three popular ones: Jaccard [37], Sorensen-Dice [38] and
Braun-Banquet [36].

_ P NG|
T=rua) ©
2\P, NGl
sp =& (10)
|P| + |G,
PN G|
B=—— "1 . (11)
max(| P, |G}|)

These measures are in the range of [0, 1]. Distance forms
of J and SD are defined as (1-]) and (1-SD) where the former
is a true metric but the latter does not satisfy triangular
inequality. In order to make the measure independent on
cluster size, these measures normalize the number of shared
objects | P, N G| according to the size of clusters in three dif-
ferent ways.

For example, consider the three clusters in Fig. 3
where we want to find out the more similar cluster to P;
from P or P3. Similarity of P, and % should be much
higher than the similarity of P, and P even though P,
and P; share more objects. ], SD and BB give more intui-
tive similarity values than intersection. When comparing
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TABLE 3
Criteria for Similarity of Two Clusters

Similarity criteria

FM |P;| x SD

H 1PN G|

NVD |P, NG|

Purity |P; NGl

PsI BB

CI 0/1 (mapped or unmapped)
CslI |P, NG

CR 0/1 (stable or unstable)

Py and P, the similarity 0.25 of J and BB is better than
the 0.4 of SD. It is trivial to show that ] < BB < SD for
any two sets.

FM [22] uses precision and recall concepts by measuring
n;;/n; and n;;/m; respectively. The criterion 2 x precision x
recall/(precision+recall) would be equivalent to SD but it
avoids the normalization by cluster size using n; x SD
instead of SD.

Cluster-level indexes provide binary result (0 or 1), indi-
cating whether the clusters have 1:1 match (CI), or the pair
of clusters is unstable (CR). Table 3 lists the criteria for set
matching indexes.

4.2 Matching

For every cluster, we need to find the pair to which the simi-
larity is measured. Three cases are considered: 1. optimal
pairing 2. greedy pairing 3. matching. Matching is per-
formed based on nearest neighbor mapping so that any
cluster in P is matched to a cluster in G with maximal simi-
larity. Several clusters can be matched with the same cluster
in the other clustering. Pairing is a special case of matching
in which clusters are only allowed to be matched once. FM,
NVD, Purity, CI and CSI employ matching whereas CH and
CR use greedy pairing. We will use optimal pairing.

Matching results, in general, is not symmetric when find-
ing pairs for clusters of P from G and vice versa. To make
the index symmetric, the similarity results in both directions
are usually combined, see NVD, CI and CSI equations in
Table 2. FM and Purity assume that we compare a clustering
against ground truth and they therefore consider matching
in one direction only. Matching criterion in NVD and Purity
is the number of shared objects; CI and CSI are based on
similarity of prototypes.

Pairing problem, however, is not trivial to solve and differ-
ent algorithms have been proposed to find approximate or
optimal solution. The pairing can be seen as a matching prob-
lem in weighted bipartite graph where the nodes represent

GQ Q O O O

P

Fig. 4. Pairing clusters to maximize overall similarity. The thick lines show
the optimal pairing where overall similarity according to number of
shared objects would be (25+20+16) = 61.
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Fig. 5. Matching clusters based on maximum shared objects. Cluster P,
remains unmatched. In pairing process of CH, G, is paired with P, after
excluding G; and P; as the first pair.

the clusters, see Fig. 4. Greedy pairing is mostly used with
time complexity of O(N?). Two most similar clusters are itera-
tively matched and excluded. Instead of greedy pairing, we
apply here Hungarian algorithm which finds the optimal
solution with time complexity O(N?) where N is the maxi-
mum number of clusters in P and G.

Fig. 5 demonstrates the matching from G to P based on
the number of shared objects where P remains unmatched.
The matching from P to G will be different and the same as
greedy pairing based on number of shared objects, resulting
to (Pl, Gl), (]327 Gz) and (1337 Gg)

Fig. 6 shows matching in CI when there is different
number of clusters. We assume that the objects are in 2-D
Euclidean space; the centroids have been shown with
crosses signs. In matching P to G, one orphan centroid is
produced that indicates one difference in global alloca-
tion. NVD results the same matching as CI in this exam-
ple. In general, if a cluster P, has more shared objects
with G; than G}, the probability that its centroid is also
closer to Gj is higher. Although, this is not always true as
it depends on the distribution of data among clusters. It
anyway implies that the matching using intersection crite-
rion and centroid distance are expected to produce the
same result.

Fig. 7 demonstrates the results with too few (above) and
too many clusters (below) compared to another with the same
clustering problem or to the correct clustering. In this exam-
ple, both matching and pairing are performed based on num-
ber of shared objects. Matching results always higher values
than pairing because in pairing some centroids remain
unpaired. Pairing is more sensitive to differences in clustering
structure. The result is also lower with 3-vs-3 than when com-
paring to the correct number of clusters (3-vs-4 and 3-vs-2). In
comparing two clustering with different number of clusters,

Fig. 6. Matching centroids from P to G based on nearest neighbor map-
ping used in Cl and CSI; One orphan centroids shows one difference in
global allocation.
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3-vs-3 clusters 3-vs-4 clusters

.

Matching=75%, Pairing=50%

Matching=87%, Pairing=75%

3-vs-2 clusters

%

Matching=87%, Pairing=75%

3-vs-3 clusters

Matching=75%, Pairing=50%

Fig. 7. Matching and pairing when too few (above) and too many (below)
clusters exist. Arrows show matching from red to blue centroids. Pairing
would use only part of those arrows because each cluster can be
matched only once.

unpaired clusters indicate a disagreement on the number of
clusters, which is an advantage of pairing. Table 4 summa-
rizes the matching methods for several indexes.

4.3 Overall Similarity

Overall similarity is obtained by summing up the similari-
ties of all the matched clusters. The upper bound of overall
similarity for CH is N (total number of objects) which is
used for normalization, see Table 2. To remove the asymme-
try effect of matching, NVD and CSI use 2N because of two-
way matching, see Table 2. If we define the distance form of
CSI and Purity as (1-CSI) and (1-Purity), NVD, CH, Purity
and CSI are all equivalent if their matching results are the
same. In fact, if matching in NVD and CSI is symmetric
(K = K'), they would equal to CH and we can write:

K K’ K
NVD =1 — Dim1 Mg D Wi -1 2350,
2N 2N (12)
Zz‘K:1 i ;
:1—T:CH:1—Pumty:1—CSI

The overall dissimilarity of CI equals the number of zero
mapped centroids of G. Since CI is not symmetric, CI; is
defined as max(CI(P,G), CI(G,P)) [20]. Centroid index repre-
sents the number of differences in global allocations and it
is in the range of [0, K—1] where K is the maximum number
of clusters in the two clusterings. At least one non-zero
mapped centroid exists and the upper bound therefore
becomes K—1.

Centroid ratio (CR) defines the concept of (un)stable cent-
roids. Consider a paired centroid C; and C} with distance D;;
from clusterings P and G, respectively. Assume that the dis-
tances of C; to the nearest centroid in P and CJ’ to the nearest
centroid in G are D; and D;. Then, if D;/(D; x D;) > 1, the
pair is considered unstable. The overall similarity is defined
based on the number of unstable pairs [29], see Table 2.
Table 5 summarizes the overall similarity derivation for the
above mentioned indexes.
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TABLE 4
Summarization of Matching Methods of Indexes

Pairing/Matching  Matching criterion  Algorithm
M Matching SD One-way
CH Pairing |P, NGl Greedy
NVD Matching |P; N Gjl Two-way
Purity Matching |P; N Gjl One-way
PSI Pairing BB Optimal
CI Matching Centroid distance =~ Two-way
CSI Matching Centroid distance =~ Two-way
CR Pairing Centroid distance Greedy

5 CORRECTION FOR CHANCE

Normalization makes comparisons easier for different data
sets. Correction for chance removes the similarity of two
clusterings which merely originates by chance [21].

An index is normalized using its lower and upper bounds
as in (1). Correction for chance can be jointly performed with
normalization according to (2). Some indexes do not have
fixed lower or upper bounds. For example, several upper
bounds have been proposed to normalize MI [9], [25].

In comparison of two clusterings P and G, the number
and size of clusters are known. To consider the effect of ran-
dom partitioning, the objects of clustering P are distributed
randomly in clusters of G and the expected similarity value
is calculated. This is called hyper-geometric distribution
assumption and was first used for deriving ARI [30].

The measures in the pair-counting class as listed in [23]
are in the ranges of [0,1], [-1, 1], [0.5, 1] or [-0.25, 0.25] that
further clarifies the necessity of normalization. Since all the
indexes are defined based on values a, b, ¢, and d in (3), the
upper and lower bounds are simple to derive. Many of
them become equivalent after applying correction for
chance [21]. ARI is the most well-known and widely used
index of this group [9].

In set matching measures, the overall similarity is derived
either by summing up the number of shared objects or the
similarities of the matched clusters. For example, NVD, CH,
Purity and CSI sum up the number of shared objects and use
the total number of objects for normalization. The similarity
index proposed by Larsen and Aone [39] is calculated by sum-
ming up the normalized similarities (in the range of [0, 1]) of

TABLE 5
Overall Similarity Derivation
Total summation Range Normalization
M similarity of [0, 1] N
matched clusters
CH Shared objects [0,1] N
NVD Shared objects in [0, 1] 2N
both directions
Purity Shared objects in [0, 1] N
one direction
PSI Normalized similarity [0, 1] K
of paired clusters
CI Orphan clusters [0, K-1] -
CSI Shared objects in [0, 1] 2N
both directions
CR Unstable clusters [0, 1] K
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the matched clusters. In this case, the overall similarity is nor-
malized for each cluster individually.

Both MI and VI are metric but they are not bounded to a
fixed range [22]. Mutual information of clusterings P and G is
lower bounded by zero. Geometric or arithmetic mean of
entropies as an upper bound can be an option for normaliza-
tion (type 1 and 2 in Table 2) [10], [22], [25]. In [25] min(H(P),
H(G)) and max(H(P), H(G)) are also used for normalization.
Anupper bound for VIis H(P) + H(G), which means that clus-
terings P and G do not share any information [7]. The upper
bound can therefore be used for normalization of VI. To
derive adjusted mutual information according to (2), obtain-
ing the expected value E(MI) is the key issue. An analytical
formula for the expected value of mutual information is
derived in [21] under the assumptions of hyper-geometric
model of randomness. In [9], upper bounds for the expected
value are given, and shown that, under certain assumptions,
the adjusted MI measures derived based on different upper
bounds become equivalent to the normalized MI measures.

We prove next that the adjusted forms of mutual informa-
tion (AMI) and variation of information (AVIL) are equivalent
to their normalized forms (NMI, NVI;) when the summation
of the entropies H(P) + H(G) is used for normalization.

Theorem 1. Under hyper-geometric distribution assumption:

AVI, = NVI; = AMI = NMI (13)

where NVI; and AVI, denote the similarity form of NVI and
AVI (1-NVI and 1-AVI) respectively.

Proof. See Appendix A, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/ TKDE.2016.2551240.

a

6 PAIR SETS INDEX

In this section, we present a new set matching based mea-
sure called Pair Sets Index (PSI), which is designed so that
the properties discussed in Section 2 are all satisfied. The
components of the proposed index are known but some of
them are new in this context, and the overall combination is
novel. In specific, PSI contains optimal pairing of the clus-
ters (new), set matching measure using BB (new), the over-
all similarity measure in (14) (used also by CR), and the
correction for chance (used by pair-counting and informa-
tion theoretic methods only).

6.1 Similarity Measure

Given clusterings P and G, the first step is to find the pairs
of clusters in two partitions. Pairing clusters in P and G is
done by maximizing total similarity which is defined as:

S(P,G) = ZSU (14)

where S;; denotes the similarity between clusters P and G,
and is calculated as from Braun-Banquet formula [36] as
follows:

Mg

50 = (LG

(15)

where n;; is the number of shared objects in the two clusters
and | P;| and |G| denote their sizes.
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The corresponding distance variant is defined as
D;; =1 —S;;. Pairing clusters is solved as an assignment
problem in a bipartite graph, see Fig. 4, by minimizing the
total distance. We use Hungarian algorithm to find the per-
fect matching in this assignment problem [40].

6.2 Correction for Chance

In this section, we describe the process of correction for
chance for the proposed similarity measure in (14) and
derivation of the final formula for the Pair Sets Index
(PSD).

Obtaining the expected value is the key point to derive
the adjusted version of the index. To derive the expected
value, consider a random shuffling of P as P’ under hyper-
geometric distribution assumption where the number and
size of the clusters in P’ and P are the same. The objects of
cluster G; are distributed randomly in the clusters in P’. A
larger cluster in P’ gets more objects from G;. Therefore, the
number of shared objects of clusters G; and P/ is propor-
tional to the size of P/. The number of objects of G; (m;) that
places in P! (n;) is m; x (n;/N), which is the number of
shared objects between these two clusters when random
partition P’ is assumed.

Theorem 2. . The maximum total similarity in (14) is achieved
when the largest cluster in P’ is paired with the largest one in
G, and recursively the same applies to the rest of the clusters.
Applying this greedy pairing, the expected value is:

min(K,K")

m; X (n;/N)
E= L Z A 16
; max(m;,n;) (16)
where the size of clusters in P' is ny > ny > -+ > ng and

inGismy; > mg > -+ > myt.

Proof. See Appendix B, available in the online supplemental
material. 0

Next, we show that E <1. Assuming m,; = n;,Vi, the
summation in (16) is (ng +ne + -+ + ngwn) /N < 1. Sup-
pose that n; > m;, 3i, the summation then becomes:

EZ(n1+n2+"'+mi+"'+nKmin)/N

S (nl + ny +- 1+ 7fLKmin)/]V S 1. (17)

Therefore, it is always true that I/ < 1. Applying the
results to (2), the adjusted index becomes:

W SZE,ID&X(K,K,) > 1
PSI=4¢0 S<FE (18)
1 K=K =1

where S is the total similarity from (14). In random parti-
tioning S = E, PSI = 0 and in a perfect match S = K, PSI
= 1. If there is a disagreement on the number of clusters,
K # K, max(K, K') is taken in (18) to achieve a lower
similarity that reflects the disagreement. The expected
value is not necessarily the minimum value of the
similarity. If S < E, we consider PSI = 0 because this
case corresponds to a very low agreement of the two
partitions.
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Distance variant of PSI is defined as 1-PSI:

max(K,K')—S

m:xéKJ(’))—E S 2 E’ maX(K, K,) > 1
PSIi=41 S<E L)

0 K=K =1

Value of E depends on the similarity between the struc-
tures of two clusterings in terms of number and size of clus-
ters. If the structures are close to each other, F ~ 1.
Accordingly, simplified variant of PSI is defined by assum-
ing £ =1:

T S > 1 max(K,K) > 1
PSI = 0 S<1 (20)
1 K=K =1

6.3 Metric Properties of PSI

The proposed index is normalized in the range of [0, 1] and
corrected for chance. In this section, we prove metric prop-
erty of the distance form of PSI in (19).

Nonnegative: In (19), where S >1, maz(K,K') > 1,
since £ <1, maz(K,K')— E is always larger than or
equal to 1. The total similarity S equals to maz(K, K')
only in a perfect match. In all other situations it is less
than mazx(K, K’), hence maz(K, K') — S > 0 holds. There-
fore, it is true that:

PSI; >0 2D

Symmetric: The similarity of two clusters according to
(15) is symmetric. The pairs of clusters are found accord-
ing to the maximum matching which does not depend
on whether we compare P to G or vice versa. Therefore,
the total similarity in (14) is symmetric. To derive the
expected value of the similarity in (16), we take two
largest clusters in P and G as the best match. This action
is also independent on the direction of the comparison.
According to (18), when the similarity S and its expected
value E are symmetric, the whole index is also
symmetric:

PS14(P,G) = PSI4(G, P). (22)

Reflexivity: If P = G, the total similarity according to (14)
and (15) is maz(K, K') = K, and therefore PSI; = 0. On the
other hand, if PSI; = 0, it follows that S = max (K, K'). This
may happen only if the number of clusters is the same and
the similarity of every two paired clusters according to (15)
is 1. The similarity of two clusters is 1 if and only if they are
exactly the same. Therefore, all clusters in P and G must be
equal, and accordingly, P = G:

PSI,(P,G) =0ifandonlyif P = G. (23)

Triangular inequality: In Appendix C, available in the
online supplemental material, we prove the triangular
inequality for the simplified form of PSI in (20). The simpli-
fied form is therefore proven to be metric. Experiments for
clustering with different structures indicate that the triangu-
lar inequality in most cases holds for the original form of PSI
as well. However, the term E in the denumerator in (18)
makes it difficult to prove in general.
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Fig. 8. Two partitions with 3,000 objects.
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6.4 Other Properties

a) Normalized to the number of clusters
The proposed validity index has low dependency
on the number of clusters and this dependency
decreases as the number of clusters increases. In (18),
the similarity is normalized by max(K, K')-E. Because
of E, the index is not independent on the number of
clusters. However, since £ < 1 and when max(K, K')
increases, the impact of E decreases.
b)  Imbalanced clusters
One important advantage of the proposed index
is its independency on the size of clusters because
each cluster, either small or large, has equal impact
on the similarity value. For example, suppose that in
two clusterings, there are two perfect pairs where in
one pair the clusters are large and in the other one
they are small. Both of them increase the total simi-
larity by the same amount.

7 EXPERIMENTS

We next evaluate the external validity indexes based on
their performance on partitions. To investigate different
properties of an index, a variety of partitions should be con-
sidered. We provide comparisons with artificially generated
partitions to demonstrate whether an index meets the
required properties. We also study the effect of dimension-
ality and cluster overlap.

7.1 Selected Indexes and Artificial Partitions
We compare the proposed index to the state-of-art external
indexes. Since all adjusted indexes in the pair-counting
group behave similar [23], we use only ARI as the most pop-
ular one. Variation of information and mutual information
are two representing measures in the information theoretic
group. Since NVI; = AVI; = NMI = AMI, only NMI is used
in the experiments. The performance of arithmetic and geo-
metric mean for normalization of NMI is the same, we
therefore employ arithmetic mean only. The normalized
Van Dongen criterion, Criterion H and Purity are chosen in
the set matching group. The matching in Centroid similarity
index depends on the centroids, and therefore, we need real
datasets to calculate centroids. However, as we discussed in
Section 4.2, the results of matching is most likely similar to
NVD. We therefore use this assumption in the following,
and in these experiments NVD = CSL

In the test setup, we consider a ground-truth partition G,
for example with 3,000 objects, 1,000 objects in each cluster,
see Fig. 8, where light grey, grey and black represent the
three clusters. In practice, we make an array of the length
3,000 with values 1, 2 and 3 representing cluster labels of
data. In this case, the first 1,000 objects (light grey) have
value 1. The partition P to be compared with is varied in dif-
ferent ways. The order of the data objects in the two parti-
tions remains the same.
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Fig. 9. Clustering P represents a random partition with two clusters.
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Fig. 10. Random partitioning with different number of clusters in P from
K=11020.
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Fig. 11. Enlarging the first (light grey) cluster in steps of 50 objects by
moving the objects from the other two clusters.
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Fig. 12. Increasing the size of the first cluster.

The partitions in the experiment are considered in sev-
eral aspects: random partitions, the impact of cluster size
imbalance, number of clusters and consistency when the
error increases in the partitions.

7.2 Random Partitions

Consider partition P which consists of random labels as
shown in Fig. 9. We conduct experiments for different num-
ber of clusters from K = 1 to 20 in P. The indexes NMI, ARI
and PSI give values close to zero independent on the num-
ber of clusters. The values of the other three indexes are not
zero because they are not corrected for chance, see Fig. 10.
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Fig. 13. Enlarging the second (gray) cluster in steps of 50 objects as in
Fig. 11.
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Fig. 14. Increasing the size of the second cluster until it contains all data
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Fig. 15. Increasing the number of incorrectly labeled objects.
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Normalized mutual information gives zero in this case
which shows that NMI has the same performance as
adjusted mutual information. This result further verifies our
claim in (13).

7.3 Monotonicity
We change the partition P linearly in three ways and study
the response of the indexes.

First we enlarge the first (light grey) cluster in P in steps
of 50 objects until only one cluster remains, see Fig. 11. Sec-
ond, we enlarge the grey cluster in the same way, see
Fig. 13, and third, we change part of the labels in all clusters
of P and keep the cluster sizes unchanged, see Fig. 15. In
Fig. 12, NMI, ARI and NVD have very clear knee points
when the light grey cluster reaches 2,000 objects because at
this point the number of clusters decreases by 1. For NMI
and ARI, the index values increase when the cluster size
approaches to 2,000. In this situation, there are still three
clusters and the results indicate that NMI and ARI ignore
relatively small clusters and put more weights on large clus-
ters. When the light grey cluster size is 2,000, there is a local
maximum when the number of clusters changes from three
to two. NVD is constant between 1,500 to 2,000, and 2500 to
3000. The asymmetric matching of clusters in NVD causes
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Fig. 16. Increasing the error of each cluster in P.

the problem. Suppose that the size of the grey cluster (x) in
P is less than 500. After matching P to G, the number of
shared objects is 1000 + x + 1000 and G to P where both
light grey and grey clusters in G are matched with the light
grey one in P, the number of shared objects is 1000+(1000-
x)+1000. Summing up, the number of shared objects in two
directions is 5000 which is independent of x. Therefore,
when the size of the first cluster is between 1,500 and 2,000,
the similarity remains a constant 5000/6000 = 0.83.

The proposed PSI has near linear dependency on the size
of the light grey cluster. The indexes CH and Purity have
good linear behavior but including an offset by 33 percent
because they are not corrected for chance. If we made them
corrected, the same issues as with the other indexes would
appear. Note that Purity does not compare two clusterings
in both directions. If we compare G to P instead of P to G,
the results is different and without linear behavior.

We repeat the experiment by enlarging the size of the
second cluster. The difference to the previous case is that
the number of clusters remains three until the second clus-
ter contains all the objects. The results in Fig. 14 show better
performance for NMI and ARI compared to the previous
case. The reason is that this time there is no change in the
number of clusters in P. The same arguments for NVD, CH
and CA are valid as for the previous case. The knee point
for NVD is where the size of the biggest cluster becomes
more than 2,000 (compare /% and G in Fig. 13) and all three
clusters of G are matched to the grey cluster of P. Interesting
observation is that PSI results the same curves in both of the
cases, which indicates that it depends less on the number
and size of clusters than the other indexes.

Next, we change part of the labels in all clusters of P. At
each step, 50 more objects will be wrongly labeled in each
cluster until all objects in G are equally distributed among
the three clusters in P, see Fig. 15.

The similarity values of PSI and NVD, CH and Purity
decrease linearly but NVD has higher similarity values than
PSI, see Fig. 16. Since NVD, CH and Purity are not corrected
for chance and are biased to random partitions, they have a
higher lower bound. If we made them corrected, they would
lose the linearity. The results of NVD, CH and Purity are
exactly the same because the matching for all cases in this
experiment is the same, which further verifies our claim in
(12). Both NMI and ARI have decreasing curves and their
values are always lower than those of the set matching
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Fig. 17. The effect of cluster size imbalance; same error in the first two
clusters and no error in the third clusters.

indexes. One reason is that NMI and ARI consider also the
unmatched parts of clusters.

7.4 Cluster Size Imbalance

In this experiment, we study the impact of cluster size. In
Fig. 17, we consider sets of partitions where P, and P, have
200 objects (20 percent) wrongly labeled in the first two clus-
ters. The size of the third cluster is decreased from 2,000 to
50 in steps of 50.

Since the labels of the first two clusters remain exactly the
same, the only difference originates from the size of the
third cluster. We assumed that the clusters with different
sizes have the same importance, and therefore, the results
should be independent of the size of the third cluster. As
shown in Fig. 18, all indexes except PSI are affected by the
cluster size imbalance. For example, the similarity value of
ARI is much lower (66 percent) when the size becomes 50
than when it is 2,000 (91 percent). The results indicate that
most indexes are affected more by the larger clusters. NVD,
CSI, CH and Purity values are higher and in a narrower
range, which indicates better performance of set matching
indexes. Since matching results for NVD, CH and Purity are
the same, their results are also the same, see (12). The pro-
posed PSI is the one that copes best with the cluster size
imbalance.

7.5 Number of Clusters
We study the effect of the number of clusters by wrongly
labeling 200 objects in each cluster and then varying the
number of clusters as shown in Fig. 19. The size of clusters
is fixed.

The indexes have similar trend on increasing the number
of clusters except non-adjusted set matching indexes (NVD,
CSI, CH and Purity), see Fig. 20. When increasing the
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Fig. 18. The effect of cluster size imbalance on the indexes; the parti-
tions contain two clusters with the fixed size and error and the size of the
third cluster decreases in steps of 50.
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Fig. 19. There are 200 objects wrongly labeled in each cluster and the
number of clusters varies.

number of clusters, the similarity values rise from as low as
25 percent up to 80 percent. However, the impact is much
more significant for the small number of clusters from two
to four. PSI has better performance than NMI and ARI, but
only NVD, CSI, CH and Purity are completely independent
on the number of clusters. Considering NVD equation in
Table 2 and the same percentage of error across clusters in
this experiment, it is trivial to show that NVD is indepen-
dent on the number of clusters. Since matching results for
NVD, CSI, CH and Purity are the same, their results are also
the same, see (12). In this experiment, we see that correction
for chance has bad effect as it makes the index dependent
on the number of clusters. Overall, set matching indexes
show better performance than the representatives from
pair-counting and information theoretic indexes.

7.6 Overlap of Clusters

We use a series of data sets (called M2), all containing two
clusters (1,000 points each) in eight-dimensional space but
with varying cluster overlap. The points were generated by
Gaussian distribution with the same (constant) variance. The
overlap was created by moving one of the clusters closer to
the other step by step. The amount of overlap is measured by
how many points in a cluster are closer to the centroid of the
other cluster than to the centroid of its own cluster.

We cluster these datasets by random swap algorithm [41]
and compare the result against ground truth partitions.
Fig. 21 shows that all NVD, CSI, CH, Purity, and PSI react as
expected. NVD approximately equals to the amount of the
overlap, but is lower limited by 0.50. For example, with 15 per-
cent overlap we expect to have 0.85 similarity. On the other
hand, PSI applies correction for chance. Expected similarity of
random partition into two clusters is 0.50, and corrected simi-
larity 1-(overlap/0.50), accordingly. With 15 percent overlap,
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Fig. 20. The effect of number of clusters (K = 2 to 20), while the size and
error of each cluster are fixed.
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Fig. 21. Effect of the overlap on the similarity measures.

the expected similarity would be 0.70. The results of PSI are
near optimal response (dashed black line).

7.7 Dimensionality of Data

We used the same M2 data sets but this time we fix the over-
lap to 15 percent and vary the dimensionality from 1 to 512.
The results in Fig. 22 show that all the methods are invariant
to the dimensionality up to a limit (about 256). Decrease of
the index values is caused by over-optimization of the clus-
tering algorithm: with high-dimensional data, it can opti-
mize MSE better than would be with the ground truth
partition. Otherwise, NVD, CSI, CH, Purity, and PSI again
perform as expected with this overlap: NVD gives 0.85
(without) and PSI gives 0.70 (with correction for chance).

7.8 Applications

We study next how the four indexes (ARI, NMI, 1-NVD,
PSI) perform with applications. We perform three experi-
ments with the following hypotheses.

In the first experiment, we cluster the dataset Unbalance,
see Fig. 23, to k =8 clusters by the following algorithms:
random swap (RS) with 5,000 iterations [41], agglomerative
clustering with ward criterion (AC), k-means (KM), and sin-
gle link (SL). All these methods aim at minimizing total
squared error except the single link.

The clusterings are then compared with the known
ground truth in Table 6. The result of PSI corresponds best
to the expectations: RS and AC are both good at optimizing
the structure of the data whereas AC tends to make more
point-wise errors at the partition borders. KM detects the
dense cluster (2,000 points) on the top, but it breaks the two
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Fig. 22. Effect of dimensionality on the similarity measures.
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Fig. 23. Clustering results of the data set Unbalance using k-means
(above), and single link (below).

TABLE 6
Clustering of Unbalance by Four Algorithms

External indexes

Algorith

GOMHIMS  ARI  NMI  NVD PSI
RS 1.00 1.00 1.00 1.00
AC 1.00 1.00 1.00 1.00
SL 1.00 0.99 0.99 0.78
KM 0.66 0.77 0.78 0.18
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Fig. 24. Removing small clusters one by one and distributing their
objects in the other clusters.

other dense clusters into six smaller subclusters, and merges
the five smaller ones (each 100 points) into one cluster, see
Fig. 23 (top). All indexes react to these errors but only PSI
recognizes that this clustering is off very low quality. SL
finds all clusters correctly except that it merges two small
ones leaving one orphan point as its tiny cluster, see Fig. 23
(below). Only PSI reacts strongly enough to this situation.

In the second experiment, we take ground truth clusters
of the well-known Yeast data set (UCI), and then remove the
smallest clusters one by one, see Fig. 24. The results in
Table 7 show that only PSI provides significant differences
due to the cluster removal, mainly because it treats all clus-
ters of equal importance independent of their size.

In the third experiment, we study how well the indexes
apply for the task of detecting the number of clusters for
Unbalance data set that contains eight clusters. We use the
stability-based approach in [42] as follows. Ten subsets are
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TABLE 7
Clustering of Yeast

External indexes

Clusters (K)

ARI NMI NVD PSI
9 1.00 0.99 1.00 0.88
8 0.99 0.97 0.98 0.74
7 0.97 0.93 0.97 0.60
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Fig. 25. Solving number of clusters based on stability of clusterings.

generated by random sampling (with the sampling rate 0.2)
from the data set. Each subset is then clustered by random
swap algorithm with different number of clusters in range
k € [2,20]. The similarity between the clustering of each sub-
set and the clustering of the fullest is calculated by an exter-
nal index. The stability is then measured as the average
index values for all the subsets. The hypothesis is that the
correct number of clusters is the one with highest stability
(highest index value).

The results in Fig. 25 show that all indexes are applicable
to this task, and the bigger problems originate from other
factors than the choice of the index. All the indexes show
maximum stability with k£ = 8, but the clustering results are
also stable with £ = 2 and k = 4. Overall, PSI performs most
consistent especially for values k> 5. In the range of
k =5..7, all the indexes except PSI fail to detect high insta-
bility in the five small-sized clusters.

8 CONCLUSION

We have conducted a systematic study on existing set
matching indexes by analyzing them in three different
aspects: similarity measure of two clusters, matching the
clusters, and the overall summation. We have shown that
the difference between NVD, CH, Purity and CSI is only
about their matching. If their matching result were the
same, all these indexes would provide equivalent result. We
have also pointed out that Purity and the measures cited as
classification error or classification accuracy are equivalent.
We defined concrete requirements that an external index
should meet, and introduced new arrangement of experi-
ments based on synthetic data that can be used for system-
atic evaluation of any index according to these criteria.
According to our experiments, set matching indexes per-
form better than the selected indexes of pair-counting and
information theoretic indexes in many aspects such as clus-
ter size imbalance, number of clusters and linear changes.
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None of the existing set matching measures use correc-
tion for chance, and they also normalize the index across all
data points. Based on these observations, we propose a new
index called PSI that applies correction for chance, and per-
forms normalization for each cluster separately. We show
that the simplified form of PSI is a metric.

For the information theoretic measures, we have also
shown that NMI = AMI = NVIs = AVIs under hyper-geo-
metric distribution assumption, which was also verified by
our experiments.
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