

Journal Pre-proof

Parallel Random Swap: An Efficient and Reliable Clustering
Algorithm in Java

Libero Nigro , Franco Cicirelli , Pasi Fränti

PII: S1569-190X(22)00181-2
DOI: https://doi.org/10.1016/j.simpat.2022.102712
Reference: SIMPAT 102712

To appear in: Simulation Modelling Practice and Theory

Received date: 30 September 2022
Revised date: 30 November 2022
Accepted date: 16 December 2022

Please cite this article as: Libero Nigro , Franco Cicirelli , Pasi Fränti , Parallel Random Swap: An
Efficient and Reliable Clustering Algorithm in Java, Simulation Modelling Practice and Theory (2022),
doi: https://doi.org/10.1016/j.simpat.2022.102712

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.simpat.2022.102712
https://doi.org/10.1016/j.simpat.2022.102712
http://creativecommons.org/licenses/by-nc-nd/4.0/

Parallel Random Swap:

An Efficient and Reliable Clustering Algorithm in Java

Libero Nigro
1
, Franco Cicirelli

2
, Pasi Fränti

3

1
DIMES - Department of Informatics Modelling Electronics and Systems Science

University of Calabria, 87036 Rende, Italy

Email: l.nigro@unical.it
2
CNR - National Research Council of Italy - Institute for High Performance Computing

and Networking (ICAR) - 87036 Rende, Italy

Email: f.cicirelli@icar.cnr.it
3
School of Computing, Machine Learning Group

University of Eastern Finland

P.O.Box 111, 80101 Joensuu, Finland

Email: franti@cs.uef.fi

 Highlights

• Original parallel support in Java of the random swap clustering algorithm.

• Applying the tool to 15 benchmark datasets, with two very challenging to solve.

• Demonstrating accurate clustering and significant execution speedups.

Abstract—Solving large-scale clustering problems requires an efficient algorithm that can

also be implemented in parallel. K-means would be suitable, but it can lead to an

inaccurate clustering result. To overcome this problem, we present a parallel version of the

random swap clustering algorithm. It combines the scalability of k-means with the high

clustering accuracy of random swap. The algorithm is implemented in Java in two ways.

The first implementation uses Java parallel streams and lambda expressions. The solution

exploits a built-in multi-threaded organization capable of offering competitive speedup.

The second implementation is achieved on top of the Theatre actor system which ensures

better scalability and high-performance computing through fine-grain resource control.

The two implementations are then applied to standard benchmark datasets, with a varying

population size and distribution of managed records, dimensionality of data points and the

number of clusters. The experimental results confirm that high-quality clustering can be

obtained together with a very good execution efficiency. Our Java code is publicly available

at: https://github.com/uef-machine-learning.

Keywords—Clustering problem, K-Means, Random swap, Parallelism, Java, Streams, Lambda

Expressions, Actors, Message-passing, Multi-core machines.

I. INTRODUCTION

The clustering problem occurs in many application areas such as physics, bioinformatics,

image segmentation, machine learning, medicine, and artificial intelligence. It can be stated as

follows. There are data points { } (records or data vectors), here assumed to have numerical

attributes, , which are to be partitioned into clusters, in a such a way that points

within the same cluster are similar and points in different clusters are dissimilar. Each cluster is

represented by its central point (centroid or prototype). It has been shown that finding the optimal

solution to the problem is NP-hard, and only relatively small problem sizes can be solved

optimally [1]. Heuristic algorithms are therefore necessary to generate sub-optimal solutions

efficiently.

K-means is a well-known clustering algorithm which partitions data points according to

Euclidean nearest centroid by minimizing the Sum of Squared Error () objective function (a

measure of internal variance in clusters). Although more sophisticated clustering algorithms have

been defined [2-5], K-means is often used due to its simplicity and efficiency.

The properties of K-means have been thoroughly investigated in [6]. It has been noted that its

behaviour is strongly influenced by the initialization method used to assign the initial values to

centroids [7-8]. Such methods can be random or deterministic, can favour density-based choices,

can avoid centroids which are too close to one another or which coincide with outliers, but the

space and time requirements of a specific method can prohibit its practical application to large

datasets. Nevertheless, regardless of the initialization method, the natural behaviour of K-means is

to get stuck around a local sub-optimal solution.

To overcome the limitations of K-means, the random swap technique was proposed in [4]

together with a formal characterization of its properties. Its design qualifies for independence

from any specific initialization method, for its volition to search for a clustering solution from a

global point of view, and then to refine the solution locally by K-means. It has been verified that

with a reasonable number of iterations, random swap is capable to find a solution very close to the

optimal one with high probability.

Most operations of random swap can be executed in parallel. Its scalability can therefore be

potentially improved while preserving clustering accuracy. The idea of a parallel implementation

using Java streams [9] was introduced in a conference paper [10]. In this paper, we extend these

preliminary results with the following new contributions:

1) We provide a more complete description of the random swap operation and the quality indexes

used to check the accuracy of a clustering solution.

2) We present two original reference implementations in Java. The first one is based on Java

streams and lambda expressions [9]. The second one depends on the efficient Theatre actor

system [11] which enables better exploitation of computing resources.

3) We perform a more extensive evaluation using 13 standard benchmark datasets and two more

challenging datasets.

4) We compare the time efficiency and clustering accuracy of the two realized Java

implementations on the chosen datasets.

The paper is structured as follows. Section II reviews some clustering algorithms that improve

K-means and motivates the recourse to parallel solutions to cope with increased running time. The

parallel support offered by Java streams and the Theatre actor system is also clarified. Section III

describes the modus operandi of random swap and its relationship with K-means. The applied

clustering quality indexes are also presented. Section IV describes the two proposed

implementations in Java. Section V illustrates the properties of 15 benchmark datasets chosen to

check the behaviour of Parallel Random Swap. Section VI reports the experimental results

gathered on the benchmark datasets, which confirm very good execution performance and

accurate clustering. The higher time efficiency provided by Theatre actors is demonstrated.

Section VII, finally, presents some conclusions and draws directions for on-going and future

work.

II. CLUSTERING ALGORITHMS

To improve K-means (KM) clustering, different algorithms have been defined in the

literature, among which: Repeated K-means, K-means++, Agglomerative Clustering, Global K-

means, Random Swap, Recombinator K-means, Genetic Algorithm, Density Peaks Clustering,

Swarm-Intelligence-based K-means.

Due to KM attitude to remain stuck around a local sub-optimal solution, Repeated KM

(RKM) runs the basic KM a number of times and selects the best solution among those. The

more it is repeated, the higher is the chance to find a good solution.

K-means++ (KM++) [12] initializes centroids probabilistically. The first centroid is randomly

chosen in the data space. Then, any other data point is selected as next centroid with

probability:

 ()

∑

(1)

where denotes the minimal distance of to existing centroids. The initialization strategy

distributes more evenly the centroids in the data space and tends to choose centroids far away

from each other. Since the stochastic behavior, also K-means++ must be repeated a certain

number of times.

Agglomerative clustering (AC) generates the solution by a sequence of cluster merge

operations (bottom-up approach) [13-14]. At each step, the pair of clusters is merged which

increases the objective function cost least.

Global K-means (GKM) [3] rests on a top-down approach. At each step, it considers every

data point as a potential location for a new cluster, applies some k-means iterations (e.g., 10) and

selects the candidate solution that decreases the objective function value most.

Random swap (RS) [4], which is the core algorithm in this paper, constructs a clustering

solution by a sequence of centroid swaps so as to decrease the objective function cost, and

locally fine-tuning the solution by a few KM iterations (e.g., 2).

Recombinator K-means (RecKM) [15] applies K-means multiple times to produce new

dataset of the obtained centroids. K-means is then run for this new set with the idea to capture

true cluster centroids often missed by standard K-means in low-density areas.

Genetic algorithm (GA) [2] maintains a set of solutions. It generates new candidate solutions

by AC-based crossover, which are fine-tuned by two iterations of KM.

Density Peaks Clustering (DPC) [5,16] goes beyond the hypothesis of spherical clusters

assumed by classical algorithms like K-Means. It detects cluster centers as points in dense areas,

surrounded by points with lower density. Two parameters are used: density and delta. First, the

density of points is calculated. Then the distance to the nearest point with a higher density is

evaluated (delta). Centroids are selected as points with high delta and density. After that, clusters

are formed by merging the remaining points to the nearest higher-density point.

In [4], RS clustering was compared to K-means and its variants. It emerged that KM, RKM,

KM++ fail to find the correct solution in more than 50% of the cases. Better algorithms are AC,

RS, GKM and GA that successfully detected the correct solution in all the experimented cases.
The most affecting factors are the cluster overlap, number of clusters, and cluster size balanced [4].

The downside of using better algorithms is their slower running time, which motivates the

need to develop parallel implementations. More efficient variants have also been proposed for

some methods like the one in [16] which improves density peaks clustering.

Swarm intelligence has also been applied for clustering [17]. Examples include particle

swarm optimization (PSO) [18], artificial bee colony (ABC) [19] and ant colony optimization

(ACO) [20]. Particle swarm optimization, exploited in [21] in combination with K-means for

image classification, would be particularly suitable for parallel processing [22].

Parallel solutions

Different parallel solutions have been reported in the literature, e.g. tailored to an efficient

support of KM, either on a distributed multi-computer context, or on a shared-memory

multiprocessor. Examples of the first case include message-passing solutions based on MPI [23],

with a master/slave organization [24], or based on the functional framework MapReduce [25-26].

Notable examples of the second case are the experiments conducted by using OpenMP [27] or

based on the GPU architecture [28].

Distributed solutions can manage very large datasets decomposed on the local memory of

various computing nodes. Shared memory solutions split the dataset into subblocks to be

operated in parallel by multiple computing units (cores).

A general framework for big data and parallel clustering algorithms is Apache Spark [29].

Spark characterizes by its Resilient Distributed Datasets (RDD) abstraction for storing data in

memory. RDD can be partitioned on a cluster of master/worker nodes, to enable fast and

efficient map/reduce operations. Both partition, hierarchical and density-based [30] clustering

algorithms have been experimented.

Solution 1: Java Streams

The first parallel solution in this paper will be based on Java data streams, lambda expressions

and functional programming style [9], which were introduced since the Java 8 version. We chose

this solution because it hides a ready-to-exploit lock-free multi-threaded programming layer

which (by some cautions) could also be used by not expert parallel programmers.

Streams are views (not copies) of collections (such as lists and arrays) of objects, which make

it possible to express a fluent style of operations. Each operation works on a stream, selects and

transforms every object according to a lambda expression related to functional interfaces such as

Predicate, Consumer and Function [9]. It typically returns a new stream, ready to be handled by

the next operation. In a fluent code segment, only the execution of the terminal operation triggers

the execution of the intermediate operations.

What makes the streaming approach very appealing is its apparent simplicity by which the

data streams can be processed in parallel. In this way one can benefit from the underlying multi-

core architecture with shared memory of a modern commodity machine, through the fork/join

mechanism and associated splitting of data into segments processed in parallel, extracting results

from segments and finally combining the results.

However, some subtle aspects can make the recourse to parallel streams risky or useless.

Lambda expressions should never refer to external shared data which can introduce race

conditions and data inconsistency. In addition, only properly sized streams can deliver good

performance.

We will exploit Java streams to provide an efficient support to the parallel execution of

random swap algorithm, so as to deliver good execution performance and careful clustering. The

development owes and generalizes preliminary work about parallel K-means described in [31].

Solution 2: Theatre actor system

The second implementation of parallel random swap is based on the Theatre actor system

[11]. It is a lock-free message-based software architecture capable of ensuring high-performance

computing on a multi-core machine, through explicit resource control. A Theatre system is a

federation of computing nodes (theatres) which are mapped onto threads and then cores.

One theatre (that with ID 0) hosts a time server which is responsible for managing a global

notion of time or it can be simply devoted to checking application termination. Within the same

theatre, light-weight threadless actors execute according to a cooperative concurrency: only one

message at a time.

Message interleaving is the source of logical concurrency and ensures shared data can be

safely accessed by local actors. An actor encapsulates an internal data status which can only be

modified by an exposed message interface. Responding to a message is encoded in a message

server method, that is a normal Java method equipped with the @Msgsrv annotation, which can

admit parameters but always returns void. A basic operation is the non-blocking send operation

which creates (and schedules) a message.

A theatre rests on a reflective control layer which, transparently, regulates message

scheduling and dispatching. The control layer can be purely concurrent, or it can manage a time

notion, real-time or simulated time, see [11] for more details. True parallelism occurs in message

processing in actors executing on distinct physical theatres. Sharing data among actors belonging

to separate theatres should be avoided or managed by application-tailored mechanisms, e.g., by

using a precedence constraint rule [11] to forbid data races without using locks or semaphores.

The concurrent control layer guarantees that messages sent by a source actor to a given

destination actor, either local or remote, are eventually received and processed in the sending

order. Non-determinism in the message order occurs when messages are sent simultaneously by

multiple source actors executing onto different theatres toward a given remote destination actor.

The time server of a concurrent Theatre system detects the termination condition when all the

control layers have an empty queue of messages, and no message is in transit across theatres.

A Theatre-based solution typically splits the dataset into subblocks (regions) which are

assigned to manager actors running on independent theatres/cores, possibly organized according

to a master/worker architecture (see later in this paper). This paper uses two versions of Theatre:

the parallel one and a standalone flat version, which implicitly uses one theatre and does not pay

for the use of parallel concerns such as transport layer and time server.

III. RANDOM SWAP

Random swap algorithm [4] was designed to solve the cluster structure by a sequence of

centroid swaps (global search), and by fine-tuning the result by K-means (local search). The

algorithm significantly improves K-means because it almost never gets stuck in a sub-optimal

local solution. The results in [6] showed that it reaches the correct global allocation of the

clusters with all benchmark datasets.

K-means operation

K-means aims at minimizing the Sum of Squared Error () objective function. Let

{ } be the clusters, and { } the corresponding representative centroid

points. The is defined as:

 ∑‖ ‖

(2)

where is the nearest centroid to according to Euclidean distance, that is:

 ‖ ‖

 (3)

It is sometimes preferable to use the normalized mean , indicated as , defined as:

 Starting from an initialization of centroids, K-means iterates the two

steps shown in Alg. 1 a maximum number of iterations or until convergence is sensed (the new

centroids are equal to the previous ones).

Algorithm 1. Basic steps of K-means.

1. Partition data points { } into clusters according to ;
2. Update centroids as the mean point of each cluster:

| |
∑

, []

Random swap operation

The steps of the Random Swap algorithm are shown in Alg. 2. The modus operandi of the

algorithm is the Swap step 3, which defines a new global configuration. The new centroids are

then locally fine-tuned, and corresponding cluster boundaries better defined by K-means at step

4. Steps from 3 to 5 are repeated for a fixed number of iterations () and these steps constitute

the most processing time.

Algorithm 2. Steps of random swap algorithm.

1. Centroids initialization. Define initial centroids as randomly selected
points.

2. Initial partition. Partition data points according to the initial centroids.

Repeat T times:

3. Swap. A centroid is randomly selected, and replaced by a randomly
chosen data point in the data space:

4. K-means. A few iterations of K-means (e.g.) are executed.

5. Test. Check if the new solution (new centroids and associated
partition) has a lower cost than the previous solution. If so,
it is accepted and made as the current solution. Otherwise,
previous centroids and the corresponding data partition are

restored.

6. Final tuning. The last defined solution is improved by a final execution
of K-means, which is iterated until convergence or after a maximum
number of iterations are executed.

Evaluation of clustering accuracy

Random swap iterations are controlled by the value, which monotonically decreases as

the swap iterations proceed. This quantity guides the search. The clustering accuracy can also be

evaluated by another internal index like the Silhouette index (see later in this section). External

quality indexes can be used for testing purposes if ground truth () centroids or ground truth

partitions () are known. Ground truth partitions are specified by furnishing the initial clusters,

that is the cluster label each point is partitioned to. Some of such indexes are described below.

Centroid Index ()
 was introduced in [32] to measure how well the centroid locations match the ground truth

centroids. It can be used with synthetic datasets constructed by some specific distribution of

points around pre-defined centroids (prototypes). The value of a solution can be understood

intuitively in Fig. 1, where the clustering solution admits 4 real clusters not having any centroid

and 3 with more than one centroid. The value is the greater of these numbers.

Formally, the value of two centroid solutions and can be computed by mapping

onto and vice versa and counting dissimilarities. In particular, first each centroid of is

mapped onto its nearest centroid in according to Euclidean distance. Then the number of

“orphans” in is counted as the elements of where no item of was mapped onto. In a

similar way, centroids of are subsequently mapped onto the centroids of and the resultant

number of “orphans” in is counted. Finally:

 (4)

In the case the bijection evaluates to 0, the solution has the same distribution of the centroids

globally as , and has therefore high probability to be correct with respect to .

Figure 1. An intuitive interpretation of the Centroid Index () [4].

Two cases of accepted swap iterations are shown in Fig. 2. The one that decreases both

and is considered successful even though the algorithm accepts both of them.

Figure 2. A successful swap iteration [4].

Generalized Centroid Index ()
The centroid index was generalized in [33] for it to be applied to set-based partitions. Two set-

based partitions and are compared. For example, a partition [] can be mapped onto

the partition of which shares most points with []. In another case, [] can be

mapped onto the partition of according to minimal Jaccard distance:

| |

| |

(5)

In the Jaccard distance, the number of shared points is normalized against the total number of

points in both the partitions. This work adopts the Jaccard distance as the criterion for comparing

two set-based partitions. Similarly to , the number of orphans in the two mapping directions is

established. The generalized centroid index () is defined as follows:

 , . (6)

Silhouette Index ()
It is a classic measure of clustering accuracy [34]. For each point two quantities are computed:

 and (see Fig. 3). The component is an intra-cluster measure, that is the average distance

of from all the other points in the same cluster. The component is the minimum average

distance of from all the points in other clusters. The Silhouette value associated with the point

 is calculated as:

(7)

The Silhouette index is the average of the values:

∑

(8)

Figure 3. Intuitive illustration of the Silhouette Index ().

The value is in the range [-1,1]. A value 1 indicates well-separated clusters (reduced overlap).

A value close to 0 mirrors high overlap of clusters. A value toward -1 indicates incorrect

clustering.

IV. ENABLING PARALLEL RANDOM SWAP IN JAVA

Different operations of the random swap algorithm shown in Alg. 2 can be executed in parallel.

The initial partition (step 2), the partition and update steps of K-means (steps 4 and 6) and the

restore partition of step 5, can purposely be carried out in parallel. Further operations that can

benefit of parallelism include the computation of clustering indexes like the Silhouette ()
which has a cost of because it requires the calculation of all pairwise distances. The

corresponding sequential wall-clock time can then be a problem for large datasets. All operations

mentioned above will be carried out in parallel.

Stream-based Parallel Random Swap

The following briefly outlines the developed Java classes supporting parallel/sequential random

swap. As in [31], all the parameters which drive simulations, data structures, basic algorithms for

I/O, for centroids initialization (implemented methods include [8]: Random, Kmeans++,

Maxmin, Kaufman, ROBIN and DKmeans++), and for computing clustering indexes, are

collected in a (global) class. Here the user can specify the dataset external name to load, the

value of (dataset size), (number of coordinates of points), (number of clusters),

(number of swap iterations), and so forth.

The dataset and centroids are mapped onto native arrays of objects, from which

streams are derived. exposes methods for point arithmetic (e.g., addition and mean)

and various kinds of distance notions (including Euclidean, Manhattan, and Hamming). A data

point also holds , which is the index of the centroid it was partitioned to.

Algorithm 3. Random swap program in Java based on streams.

public static void main(String[] args) throws IOException{
 initialize();
 start=System.currentTimeMillis();
 partition();
 previous_cost=nMSE();

 step=1;
 for(; step<=T; ++step) {
 if(accepted) save_prototypes();
 make_swap();
 k_means(5);
 current_cost=nMSE();
 if(current_cost<previous_cost) {
 accepted=true; previous_cost=current_cost;
 rec_accept(); //bookkeeping
 }
 else {
 accepted=false;
 restore_partition();
 restore_centroids();
 rec_refuse(); //bookkeeping
 }
 }//for(step...)
 k_means();
 end=System.currentTimeMillis();
 output();
}//main

Alg. 3 draws the stream-based random swap program, where helper methods hide basic and

bookkeeping (recording data gathered during a simulation) operations and contribute to keeping

the Java code closer to the pseudo-code in Alg. 2.

The method loads the dataset and ground truth centroids and partitions, if

available, from the file system. The method also initializes centroids by a random selection of

points in the dataset (random() method of the class). The real-time required by the swap

iterations is annotated at the end of each run.

Alg. 4 shows the partition operation which, depending on the value of the

parameter, can be executed in parallel or sequentially.

Algorithm 4. The partition operation.

Stream<DataPoint> p_stream=Stream.of(dataset);
if(PARALLEL) p_stream=p_stream.parallel();
p_stream
 .map(p -> {
 double md=Double.MAX_VALUE;
 for(int k=0; k<K; ++k) {
 double d=p.distance(centroids[k]);
 if(d<md) { md=d; p.setCID(k); }
 }
 return p; })
 .forEach(p->{});

A basic design issue emerges from Alg. 4. The operation receives a lambda expression

(Function value) whose parameter is a point, whose is set to the index of the nearest

centroid. No shared data gets modified: each individual point modifies itself. The terminal

 operation serves just to trigger the mapping operation which can proceed in parallel.

The partition operation is also used within the method which receives the

number of iterations to accomplish. However, in this case, at the first iteration, the of each

point gets preliminarily saved.

Alg. 5 depicts an excerpt of the update centroids phase of method. Individual

centroids can be updated in parallel. It is worth noting that traversing once the dataset points as

done in Alg. 4, was avoided because it would cause race conditions tied to multiple data points

that share the same centroid.

Algorithm 5. An excerpt of the update centroids step of K-means.

//update centroids
Stream<DataPoint> c_stream=Stream.of(centroids);
if(PARALLEL) c_stream=c_stream.parallel();
c_stream
 .map(c -> {
 for(int i=0; i<N; ++i) {
 if(dataset[i].getCID()==c.getCID()) c.add(dataset[i]) ;
 }
 c.mean();
 return c; })
 .forEach(c->{});

The invocation of at the end of a run (see Alg. 3), has no parameters because it gets

iterated at maximum times or as early as convergence is reached.

The method, similarly to the partition operation in Alg. 4, processes all

the points of the dataset so as to restore previously saved (partition). All of this can naturally

be accomplished in parallel.

It is worth noting that the adopted program organization purposely executes in parallel

specific macro-actions of a swap iteration, like partition and update steps of K-means or

restoring a previous partition. Consequently, a swap iteration path starts sequentially, making it

possible to execute a swap using a single Random object (the Java Random class is thread-safe)

without thread contention which would degrade the execution performance.

Theatre-based Parallel Random Swap

This second implementation exploits the Theatre actor system [11] developed for high-

performance computing. The solution rests on a Master/Worker organization (see also [31]) plus

the initial configurator (main program) which bootstraps the system and launches the execution.

The configurator creates theatres, where is the number of (physical+virtual) available cores.

Each Theatre instance has a unique in [] and it is provided of an instance of the

transport layer (used to receive externally generated messages directed to actors of this theatre)

and control layer (here parallel). By convention, theatre also receives an

instance of which controls the termination condition (complete message

exhaustion all over the system).

After that, the configurator continues by creating one instance of the Master and
 instances of the Worker actor class, which are moved respectively to theatre 0 and theatres

from to . Master and Worker classes are heirs of a basic class which defines

common messages. Each manager actor is initialized by sending to it an message which

carries the identity of the manager (0 for the Master, for the Workers), a subblock of

the dataset (region) and the identity of the Master for workers, and the array of all the manager

references for the Master. The configurator finishes its task by activating all the theatres.

 Alg. 6 reports the class Worker. Each worker manages a contiguous region (segment) of the

dataset transmitted through the message. The message server receives the

(absolute) current centroids and assigns each point of the local region to the nearest centroid.

Finally, the worker sends a message to the master. The message server

receives the reference centroids (accessed by copy semantics, that is, since the array is shared by

all workers, no one will update it) and realizes one iteration (assignment and update) of K-

means.

Obviously, a worker can only evaluate a partial view of new centroids, according to the local

region. The partial array is sent back to the Master which will assemble all the received partial

centroids to generate the effective new centroids. also receives a Boolean save

parameter which can ask to save previous partitioning (cluster ID or CID) of region points. Upon

such a saved information will operate the message which is requested by

Master following an unproductive swap iteration.

The master actor which embodies the random swap logic through a finite state machine, has

more complex behavior. In the following we will highlight only the major aspects.

First of all, the master includes the worker’s behavior. It therefore implements the

 , and messages, see Alg. 6.

The master enters the state at the end of the message, after having sent in

broadcast a message to all the workers and to itself. The message also

initializes the local variable to true. In the same way, following an unaccepted swap,

the master broadcasts a message to all the workers (and to itself), and

enters the state. In both cases, the master will wait for
messages.

Algorithm 6. The Worker actor class.

public class Worker extends Manager{
 private DataPoint[] region, partial;
 private int ID;
 private Master m;
 @Msgsrv
 public void init(Integer ID, DataPoint[] region, Master m) {
 this.ID=ID;
 this.region=region; //a sub-block of the whole dataset
 this.m=m;
 this.partial=new DataPoint[K];
 for(int i=0; i<K; ++i) this.partial[i]=new DataPoint();
 }//init
 @Msgsrv
 public void partition(Integer id, DataPoint[] centroids) {
 for(int i=0; i<region.length; ++i) {
 double minD=Double.MAX_VALUE,d=0;
 for(int j=0; j<K; ++j) {
 d=region[i].distance(centroids[j]);
 if(d<minD) { minD=d; region[i].setCID(j); }
 }
 }
 m.send("done");
 }//partition
 @Msgsrv
 public void kmeans(Boolean save, DataPoint[] centroids) {

 //partition local data points according to received centroids
 for(int i=0; i<region.length; ++i) {
 if(save) region[i].saveCID();
 double minD=Double.MAX_VALUE,d=0;
 for(int j=0; j<K; ++j) {
 d=region[i].distance(centroids[j]);
 if(d<minD) { minD=d; region[i].setCID(j); }
 }
 }
 for(int k=0; k<K; ++k) partial[k].reset();
 //updates partial centroids
 for(int i=0; i<region.length; ++i) {
 int cid=region[i].getCID();
 partial[cid].add(region[i]);
 }
 m.send("done", ID, partial);
 }//kmeans
 @Msgsrv
 public void restore_partition() {
 for(int i=0; i<region.length; ++i) region[i].restoreCID();
 m.send("done");
 }//restore_partition
}//Worker

In the state, the master will then initialize the previous cost and sends to itself a

 message thus starting the first swap iteration and entering the state. Following

a , first centroids are restored from a copied value, then either a new

swap iteration is started by a new message, or the algorithm terminates if the maximum

number of steps () was reached.

Responding to a message causes the master to make a new swap. If the last swap was

successful (i.e., the state variable is true) first a copy of the current centroids is

created, then the current cost is made as the new previous cost. After that a swap is accomplished

followed by a K-means execution. A local variable is used which indicates to the master

how many K-means iterations remain to execute. When reaches (or convergence is

sensed in the last iteration of K-means), current K-means is finished.

Two kinds of messages exist. The first one, without arguments, follows the

 or a state. The second type of , used in

state, carries as an argument a partial evaluation of centroids proposed by a worker (or by the

master itself). When of such messages are received, the master first determines the

new centroids, then sends to itself a message to decide what to do.

The message first checks the acceptable or not acceptable status of the just

concluded swap iteration. In the case of a successful swap, the termination condition of random

swap is sensed and if it was reached, an exhaustive step of K-means is launched by setting

to and broadcasting the message. For an unproductive swap, puts

 to false, moves to the state and broadcasts the

 message.

At the end of (messages arrived) the message

server checks termination and, in case it was reached, a last exhaustive K-means step is executed.

The message which follows K-means and recognizes termination, does not self-

send a new message thus causing the whole application to terminate.

 The above-outlined actor-based parallel random swap was also stripped down (only a

simplified version of the Master actor is kept) so as to use the standalone version of Theatre for

sequential execution comparisons.

V. EXPERIMENTAL SETUP

Correctness of the developed parallel random swap implementations was verified by applying

them to 15 benchmark datasets [6,35], of which two are very challenging to solve. For all the

datasets either the ground truth () centroids or ground true partitions are publicly available.

The datasets characterize for the number and shape of clusters and point distributions used to

construct the dataset.

The A1, A2 and A3 datasets (Fig. 4) contain equal size spherical clusters with an increasing

number of clusters. The sets A1 and A2 are merely subsets of A3 as follows: .

The S sets (Fig. 5) contain Gaussian clusters with varying degree of overlap.

Figure 4. The A1, A2 and A3 datasets [35].

Figure 5. The S1, S2, S3 and S4 datasets [35].

Figure 6. Examples of G2 datasets [35].

The G2 sets (Fig. 6) contain 2048 points distributed according to two Gaussian clusters at fixed

locations. Overlap was created by varying the standard deviation from 10 to 100. A particular

dataset is named accordingly. The dataset was selected for

the experiments.

The DIM sets (Fig. 7) contain well-separated clusters in high-dimensional space. For the

experiments was chosen: 32 dimensions for each one of the 1024 points. Points are

randomly distributed among clusters by Gaussian distribution.

The Unbalance dataset (Fig. 8) has eight clusters organized in two well-separated groups. The

first three clusters are dense with 2000 points each. The remaining five clusters contain 100

points each.

Figure 7. The DIM32 dataset [35]. Figure 8. The Unbalance dataset [35].

Figure 9. The Birch1 and Birch2 datasets [35]. Figure 10. The Birch3 dataset [35].

Figure 11. The Worms_2d dataset [35].

The Birch1 and Birch2 sets of Fig. 9 contain spherical clusters organized on a 10×10 grid

(Birch1), or on a sine curve (Birch2). Birch3 is more challenging because it is composed of

random-sized clusters located in random positions.

We also selected the two worms artificial datasets discussed in [16]. Worms_2D contains 35

worm-shaped clusters in 2-dimensional space, and Worms_64D contains 25 clusters in 64-

dimensional space. The worm shapes start from a random position and move to a random

direction. At each step, points are drawn from a Gaussian distribution whose variance increases

gradually with each step. The direction of movement is continually altered to an orthogonal

direction. In the 64D case, the orthogonal direction is randomly selected at each step.

Parameters of the datasets are collected in Table 1. They have been used in [6] for an in-depth

analysis of K-means properties, and in [4] for comparing the clustering accuracy of random swap

against K-means and its variants. We use the datasets for checking the computational efficiency

and verify that the results of the proposed parallel random swap are equal to the original

sequential algorithm.
Table 1. Parameters of the benchmark datasets [35].

dataset N D K

VI. RESULTS

The achieved Parallel random swap tools were applied to the benchmark datasets described in

Section V. Although only 2 iterations of K-means per swap were suggested in [4] to refine a

local solution at each swap iteration, we increased this to motivated by the parallel support. In

addition, not originally used in [4], we also refine the final solution after the swap iterations, by

executing K-means exhaustively until convergence (step 6 of Alg. 2). The maximum number of

swap iterations and the maximum number of steps of the final invocation of K-means were fixed,

by default, to . Only for the complex Birch3 and Worms_2d datasets, =10
6
 was used.

All the execution experiments were carried out on a Win10 Pro, Dell XPS 8940, Intel i7-

10700 (8 physical cores with the support of 16 threads via hyperthreading), CPU@2.90 GHz,

32GB Ram, Java 17.

Experimental setup

Preliminary runs were devoted to assess the correctness of the developed random swap

programs, in particular that the programs deliver the same result both in sequential and in parallel

mode on all the benchmark datasets.

Table 2 summarizes a snapshot of the output generated by one run of Birch1. Steps 2 and 3

are examples of successful steps. Unsuccessful steps (did not improve) are omitted in the

table. Sometimes improved but did not. Such changes are also accepted by the

algorithm although they are not considered successful steps like those that failed to improve

 .

 Table 2. Debugging example of Birch1.

 6.622308508119364E8 13

 6.05899752096259E8 9

 5.74568446939268E8 8

 5.73673847218781E8 8

 5.629913152219414E8 7

 5.385070562725195E8 6

 5.3324325081301624E8 5

 5.213528313807281E8 4

 5.052130404197854E8 3

 4.815435483122903E8 1

 4.7379832580636716E8 0

 4.664072159088196E8 0

 4.6386566539892936E8 0

 4.6386462201360106E8 0

 4.638641013410574E8 0

 4.638640964116055E8 0

 4.638640668751212E8 0

 4.638640333827571E8 0

 4.638640290995247E8 0

 4.638640290995247E8 0

The results in Table 2 confirm the monotonic decrease of . Starting from step 237,
stabilizes to value indicating that the centroids are roughly at their correct positions. Further

improvement in still happens until step after which all remaining swaps are

unproductive as did not improve further.

Computational efficiency

To check the computational efficiency, five runs of the stream-based random swap program were

executed on the Birch1 dataset (see Table 1), both in sequential and parallel mode. The overall

wall-clock time required for completing the swap iterations (see Alg. 3) was

measured. The two times are referred to as RS
S
 Sequential Elapsed Time (RS

S
-SET) and RS

S

Parallel Elapsed Time (RS
S
-PET). After that, the Average SET (aSET) and the Average PET

(aPET) were calculated. The speedup was evaluated as the ratio of aSET/aPET.

Similarly, the SI-SET and SI-PET were measured by computing the Silhouette index ()
both in the sequential and parallel mode. The average execution times, namely aSI-SET and aSI-

PET, were calculated, and the corresponding speedup evaluated as the ratio aSI-SET/aSI-PET.

The recorded execution times are summarized in Table 3.

Table 3. Birch1 execution times on the stream-based random swap (RS

S
) and Silhouette Index () (P=16 threads).

#run RS
S
-SET (ms) RS

S
-PET (ms) SI-SET (ms) SI-PET (ms)

From Table 3, we derive an average value aSET
S
=1244331 ms, and aPET

S
=190552 ms. This

results in a speedup of . The average times for emerged to be: aSI-SET
S
=89881 ms and

aSI-PET
S
=6506 ms, with a speedup of .

For completeness, Table 4 reports the measured execution times of Birch1 using the Theatre-

based implementation of random swap (RS
T
), in sequential (one single, standalone theatre is

used) and parallel mode (theatres are spawned).

From the results in Table 4 an average value aSET
T
=464035 ms, and an average value

aPET
T
=33612 ms were derived, with a speedup of . A detailed comparison between Tables

3 and 4 reveals that the Theatre actor-based version of RS outperforms the stream-based version

both in the sequential and the parallel mode. In particular, a relative speedup, that is the ratio

between aPET
S
 and aPET

T
 emerges to be .

Table 4. Birch1 execution times on the Theatre-based random swap (RS

T
) (P=16 threads).

#run RS
T
-SET (ms) RS

T
-PET (ms)

Better performance of the Theatre-based version mirrors better resource exploitation with respect

to the stream implementation. In the stream-based version, each time a parallel operation, like a

partition/assignment or a centroid update of K-means or restoring the previous partition as a

consequence of an unsuccessful swap iteration, requires to be carried on the dataset, a new

stream has to be created upon which the fork/join mechanism spawns new threads for processing

chunks of the data points. In the Theatre organization, theatres/threads are initially configured to

run on different cores. Each theatre is initialized with the region of the dataset to be managed,

which remains unchanged for the duration of the simulation. Actors Master and Workers can

process, in parallel, operations simply by accepting and executing messages. In this way, the

costs of dynamically creating and dismissing threads of the stream-based program, are

completely avoided.

Clustering accuracy

The quality of clustering solutions generated by parallel random swap was estimated by runs,

each of swap iterations, executed in parallel mode, for each dataset in Table 1. A

clustering solution consists of the final centroids and the index of the clusters in which the data

points were assigned. The accuracy of the solution is captured by , Silhouette index (),
and Centroid index () calculated between the found solution and the ground truth centroids.

Table 5 reports the resultant quality values for the 10 runs of Birch1.

Table 5. Resulting quality values for the 10 runs of Birch1.

#run nMSE SI CI

As seen from Table 5, every solution for Birch1 has value which guarantees the

correctness of the cluster-level structure of the found solution. The corresponding Silhouette

index is always 0.46. The values also reduce to a common result of 4.64E8 with only

minor variation.

The achieved results, and , comply exactly with the same results

documented in [32] and in [4].

Table 6 contains the recorded results for the 15 benchmark datasets discussed in Section V,

which were studied using swap iterations. The data of each row are the averages of 10

independent runs.

As a notable property, both the stream-based and Theatre actor-based variants were capable of

finding the correct solution for all datasets except for the Birch3 and Worms_2d cases (see Table

6). For Worms_64d they always obtained value () which is the same result as

reported in [16]. An average value of is reported for the Worms_2d in [16] by using

the fast and powerful density peaks clustering algorithm based on a graph construction.

The accuracy of parallel random swap tools was also compared to the Repeated K-Means [31]

under random (RKM
R
) and K-means++ (RKM

++
) centroids initialization (see Section II). K-

means was repeated 100 times. For simplicity, the minimum value, the average
value (), the average relative value , that is, the average

 divided by the number of clusters), the , i.e. the number of times

 was found equal to 0 divided by the number of runs, and the average number of

iterations () K-means executed until convergence, were monitored. Tables 7 and 8 report the

results separately for the two cases and . For simplicity, all the values in

the Tables from 6 to 8, are reported by dividing them by a scale factor: for to , for

 to , for and , for , for and

 , for and and .
Table 6. Clustering accuracy of the selected benchmark datasets.

 1.86 0.52 13.7

Table 7. Results of applying 100 repetitions of RKM

R
 to the 15 benchmark datasets.

Table 8. Results of applying 100 repetitions of RKM

++
 to the 15 benchmark datasets.

 .0

From the Tables 6, 7 and 8 it clearly emerges that Parallel Random Swap is superior to

and , and, as expected, also outperforms for the better initialization

technique which chooses centroids far away each other. Only the dataset was

correctly solved in all the repetitions of both and . This was anticipated in [6]

as a consequence of the positive impact of overlap (which is significant in the chosen dataset)

on the K-means behavior.

The unsatisfactory clustering results registered by using repeated K-Means algorithms to

Birch and Worms datasets should be noted.

Tables 9 and 10 report an observed execution trace respectively for Worms_2d and

Worms_64d datasets, when swap iterations was used. For simplicity, steps where the

 value repeats are omitted.

Table 9. An execution trace for Worms_2d Table 10. An execution trace for Worms_64d

1 31617.126664532883 12

2 25526.79312268663 10

3 23607.109779022692 10

4 23436.676790899786 9

5 21625.758079806976 7

6 20677.503100491762 8

8 20229.59512684583 7

9 19992.72890435367 8

15 19888.94688278889 9

16 19685.0593379738 8

28 19159.778478917495 7

29 19044.685310944787 6

48 18647.38655185947 9

76 18456.228546408256 8

121 18365.40531029041 7

211 18231.97969573148 8

266 18144.940517231156 7

1 2320435.5335298977 13

7 2258728.9430443444 11

12 2244208.0184919285 10

19 2231982.2069647466 9

26 2229550.809941683 9

29 2219612.544481429 8

47 2207176.936861572 7

49 2198411.3557836837 6

68 2181701.4026172264 5

74 2175031.860439957 4

113 2167974.855536757 3

225 2155946.7481358326 2

234 2144827.541439402 1

1105 2139296.362707094 1

1181 2138956.2773386287 0

4049 2132424.422130961 0

5000 2132208.9876207393 0

308 18061.5029279617 9

342 18056.11609784498 7

390 17971.577874260052 8

519 17824.253756818613 9

726 17702.16609296501 8

921 17690.568528220727 9

1710 17642.91790804943 8

1990 17561.070543492715 7

2262 17516.81140096279 8

5000 17494.584121060423 8

From the Table 9 it emerges that, for worms_2d, although the value monotonically

diminishes, the corresponding index fluctuates and sometimes increases even if

decreases. All of this indicates that Worms_2d is an example of a dataset where “good”

clustering does not follow the optimization of the cost.

A different situation occurs for Worms_64d (see Table 10). Here, a decrease in the

value never causes an increase in the value. In addition, the final value of is 0 as

expected (see also Table 5). What can explain the different behavior of Worms_2d and

Worms_64d are the consequence of multi-dimensionality. While higher dimensions are

seemingly more demanding, the clusters actually become more separated when more dimensions

are added.

The Birch3 dataset is another well-known complex case where, as for the Worms_2d, “good”

clustering does not follow the optimization.

Two further simulation experiments were executed using the parallel Theatre-based version of

random swap applied to the Worms_2d and Birch3 datasets with swap iterations. Table

11 collects the emerged results that confirm the clustering solutions generated by parallel random

swap are in the same line of accuracy of other powerful clustering algorithms [16,36].

Table 11. Clustering accuracy of Birch3 and Worms_2d datasets

using T=10
6
 with Theatre-based Parallel Random Swap.

 1.87E8 0.520 12 7340912

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes Parallel Random Swap [4], an efficient and reliable clustering algorithm on

multi-core machines. It leverages the lock-free concurrency support which Java natively offers

when dealing with parallel streams of non-trivial datasets. A second implementation of the

algorithm uses the Theatre actor-based framework [11,31,37] which can deliver higher

execution performance by exploiting better resource control. The two realizations were applied

to a set of benchmark datasets and the results confirmed that the original clustering accuracy

can be achieved but with significantly better time efficiency.

Our future work consists of the following.

First, to identify possible heuristics for early termination of the method to avoid an

overwhelming number of swap iterations (). Preliminary experiments suggest that when a

certain number of consecutive accepted iterations do not change the reported local CI-value

between the current and previous solution, followed by a few hundred unproductive iterations,

it serves as evidence that the search can be terminated and the last found solution is the correct

one with high probability. More investigation, though, is deemed necessary using both synthetic

and real-world datasets.

Second, to extend the Theatre-based approach proposed in this paper toward a better support

of big data, e.g., through an implementation based on Spark [29].

Third, to experiment with Java parallelism in other clustering algorithms, e.g., based on

density peaks [5]. Some preliminary work [38-39] has been directed to improving specifically

K-means with a centroids initialization which depends on the identification of density peaks. A

k-nearest neighbors () approach [16] is used to predict the hyperball radius in -

dimensional space, which is then used to estimate point densities. Density peaks are finally

exploited to select initial centroids using a technique derived from Density K-means++ [8,40].

REFERENCES

1 P. Fränti, O. Virmajoki. Optimal clustering by merge-based branch-and-bound. Applied

Computing and Intelligence, 2(1):63–82, 2022.

2 P. Fränti, Genetic algorithm with deterministic crossover for vector quantization. Pattern

Recognit Lett., 21(1):61–8, 2000.

3 A. Likas, N. Vlassis, JJ. Verbeek. The global k-means clustering algorithm. Pattern

Recognition, 36:451–461, 2003.

4 P. Fränti. Efficiency of random swap algorithm. J. Big Data, 5(1):1-29, 2018.

5 A. Rodriguez, A. Laio. Clustering by fast search and find of density peaks. Science,

344(6191):14.92–14.96, 2014.

6 P. Fränti, S. Sieranoja. K-means properties on six clustering benchmark datasets. Applied

Intelligence, 48(12):4743-4759, 2018.

7 P. Fränti, S. Sieranoja. How much can k-means be improved by using better initialization

and repeats? Pattern Recognition, 93:95-112, 2019.

8 A. Vouros, S. Langdell, M. Croucher, E. Vasilaki. An empirical comparison between

stochastic and deterministic centroid initialization for K-means variations. Machine

Learning, 110:1975–2003, 2021.

9 R.G. Urma, M. Fusco, A. Mycroft. Modern Java in Action. Manning, Shelter Island,

2019.
10 L. Nigro, F. Cicirelli, P. Fränti. Efficient and reliable clustering by parallel random swap

algorithm. In Proc. of IEEE/ACM 26
th

 Int. Symp. on Distributed Simulation and Real

Time Applications (DS-RT 2022). IEEE, 2022.

11 L. Nigro. Parallel Theatre: An actor framework in Java for high performance computing.

Simulation Modelling Practice and Theory, 106, 102189, 2021.

12 D. Arthur , S. Vassilvitskii. K-means++ : the advantages of careful seeding. ACM-SIAM

Symp. on Discrete Algorithms (SODA’07), January 2007.

13 T. Kurita. An efficient agglomerative clustering algorithm using a heap. Pattern

Recognition, 24:205–209, 1991.

14 P. Fränti. T. Kaukoranta, D-F. Shen, K-S. Chang. Fast and memory efficient

implementation of the exact PNN. IEEE Trans. Image Process., 9(5):773–7, 2000.

15 C. Baldassi. Recombinator K-means: An evolutionary algorithm that exploits K-means++

for recombination. IEEE Transactions on Evolutionary Computation, 20(1), 2022.

16 S. Sieranoja, P. Fränti. Fast and general density peaks clustering. Pattern Recognition

Letters, 128:551-558, 2019.

17 E. Figueiredo, M. Macedo, H.V. Siqueira, C.J. Santana Jr, A. Gokhale, & C.J. Bastos-

Filho. Swarm intelligence for clustering - A systematic review with new perspectives on

data mining. Engineering Applications of Artificial Intelligence, 82:313-329, 2019.

18 D.W. Van der Merwe, A.P. Engelbrecht. Data clustering using particle swarm

optimization. In The 2003 Congress on Evolutionary Computatio (CEC'03), 1:215-220,

IEEE, 2003.

19 E. Hancer, C. Ozturk, D. Karaboga. Artificial bee colony based image clustering method.

In 2012 IEEE Congress on Evolutionary Computation, pp. 1-5, IEEE, 2012.

20 S. Saatchi, C.C. Hung. Hybridization of the ant colony optimization with the k-means

algorithm for clustering. In Scandinavian Conference on Image Analysis, pp. 511-520.

Springer, 2005.

21 C.C. Hung, H. Purnawan. A hybrid rough k-means algorithm and particle swarm

optimization for image classification. In Mexican International Conference on Artificial

Intelligence, pp. 585-593. Springer, 2008.

22 I. Aljarah, S.A. Ludwig. Parallel particle swarm optimization clustering algorithm based

on MapReduce methodology, 2012 Fourh World Congress on Nature and Biologically

Inspired Computing (NaBIC), pp. 104-111, IEEE, 2012.

23 J. Zhang, G. Wu, X. Hu, S. Li, S. Hao. A parallel k-means clustering algorithm with MPI.

In IEEE Fourth International Symposium on Parallel Architectures, Algorithms and

Programming, pp. 60-64, 2011.

24 S. Kantabutra, A.L. Couch. Parallel K-means clustering algorithm on NOWs. NECTEC

Technical Journal. 1(6):243-247, 2000.

25 W. Zhao, H. Ma, Q. He. Parallel k-means clustering based on MapReduce. In IEEE

International Conference on Cloud Computing, pp. 674-679, Springer, 2009.

26 T.H. Sardar, A. Ansari. An analysis of MapReduce efficiency in document clustering

using parallel K-means algorithm. Future Computing and Informatics Journal, 3(2):200-

209, 2018.

27 D.S.B. Naik, S.D. Kumar, S.V. Ramakrishna. Parallel processing of enhanced K-Means

using OpenMP. In IEEE International Conference on Computational Intelligence and

Computing Research, pp. 1-4, 2013.

28 S. Cuomo, V. De Angelis, G. Farina, L. Marcellino, G. Toraldo. A GPU-accelerated

parallel K-means algorithm. Computers & Electrical Engineering, 75:262-274, 2019.

29 W. Xiao, J. Hu. A survey of parallel clustering algorithms based on spark. Scientific

Programming, 2020.

30 M. Ghaffari, S. Lattanzi, S. Mitrović. Improved parallel algorithms for density-based

network clustering. In International Conference on Machine Learning, PMLR, pp. 2201-

2210, 2019.

31 L. Nigro. Performance of parallel K-means algorithms in Java. Algorithms, 15(4), 117,

2022.

32 P. Fränti, M. Rezaei, Q. Zhao. Centroid index: cluster level similarity measure. Pattern

Recognition, 47(9):3034-3045, 2014.

33 P. Fränti and M. Rezaei. Generalized centroid index to different clustering models. Joint

Int. Workshop on Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR

2016), Merida, Mexico, LNCS 10029, 285-296, November 2016.

34 P.J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster

analysis. Journal of Computational and Applied Mathematics, 20:53-65, 1987.

35 Benchmark datasets, http://cs.uef.fi/sipu/datasets/, accessed on July 2022.

36 P. Fränti, R. Sane and J. Piironen. Nested K-means clustering. Unpublished manuscript.

37 F. Cicirelli, L. Nigro. Analyzing Stochastic Reward Nets by model checking and parallel

simulation. Simulation Modelling Practice and Theory, 116, 102467, 2022.

38 L. Nigro, F. Cicirelli. Improving K-means by an agglomerative method and density peaks.

3
rd

 Congress on Intelligent Systems (CIS 2022), Springer LNNS, 2022.

39 L. Nigro, F. Cicirelli. Fast and accurate K-means clustering based on density peaks. Int.

Conf. on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2022),

Springer LNNS, 2022.

40 N. Nidheesh, K.A. Nazeer, P.M. Ameer. An enhanced deterministic K-Means clustering

algorithm for cancer subtype prediction from gene expression data. Computers in biology

and medicine, 91:213-221, 2017.

