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 Highlights  
 
•  Original parallel support in Java of the random swap clustering algorithm.  
 
•  Applying the tool to 15 benchmark datasets, with two very challenging to solve.  
 
•  Demonstrating accurate clustering and significant execution speedups.  
 

 

Abstract—Solving large-scale clustering problems requires an efficient algorithm that can 

also be implemented in parallel. K-means would be suitable, but it can lead to an 

inaccurate clustering result. To overcome this problem, we present a parallel version of the 

random swap clustering algorithm. It combines the scalability of k-means with the high 

clustering accuracy of random swap. The algorithm is implemented in Java in two ways. 

The first implementation uses Java parallel streams and lambda expressions. The solution 

exploits a built-in multi-threaded organization capable of offering competitive speedup. 

The second implementation is achieved on top of the Theatre actor system which ensures 

better scalability and high-performance computing through fine-grain resource control. 

The two implementations are then applied to standard benchmark datasets, with a varying 

population size and distribution of managed records, dimensionality of data points and the 

number of clusters. The experimental results confirm that high-quality clustering can be 

obtained together with a very good execution efficiency. Our Java code is publicly available 

at: https://github.com/uef-machine-learning. 

Keywords—Clustering problem, K-Means, Random swap, Parallelism, Java, Streams, Lambda 

Expressions, Actors, Message-passing, Multi-core machines. 

                  



I.  INTRODUCTION 

The clustering problem occurs in many application areas such as physics, bioinformatics, 

image segmentation, machine learning, medicine, and artificial intelligence. It can be stated as 

follows. There are   data points {  } (records or data vectors), here assumed to have numerical 

attributes,      , which are to be partitioned into     clusters, in a such a way that points 

within the same cluster are similar and points in different clusters are dissimilar. Each cluster is 

represented by its central point (centroid or prototype). It has been shown that finding the optimal 

solution to the problem is NP-hard, and only relatively small problem sizes can be solved 

optimally [1]. Heuristic algorithms are therefore necessary to generate sub-optimal solutions 

efficiently.  

K-means is a well-known clustering algorithm which partitions data points according to 

Euclidean nearest centroid by minimizing the Sum of Squared Error (   ) objective function (a 

measure of internal variance in clusters). Although more sophisticated clustering algorithms have 

been defined [2-5], K-means is often used due to its simplicity and efficiency. 

The properties of K-means have been thoroughly investigated in [6]. It has been noted that its 

behaviour is strongly influenced by the initialization method used to assign the initial values to 

centroids [7-8]. Such methods can be random or deterministic, can favour density-based choices, 

can avoid centroids which are too close to one another or which coincide with outliers, but the 

space and time requirements of a specific method can prohibit its practical application to large 

datasets. Nevertheless, regardless of the initialization method, the natural behaviour of K-means is 

to get stuck around a local sub-optimal solution. 

To overcome the limitations of K-means, the random swap technique was proposed in [4] 

together with a formal characterization of its properties. Its design qualifies for independence 

from any specific initialization method, for its volition to search for a clustering solution from a 

global point of view, and then to refine the solution locally by K-means. It has been verified that 

with a reasonable number of iterations, random swap is capable to find a solution very close to the 

optimal one with high probability.  

Most operations of random swap can be executed in parallel. Its scalability can therefore be 

potentially improved while preserving clustering accuracy. The idea of a parallel implementation 

using Java streams [9] was introduced in a conference paper [10]. In this paper, we extend these 

preliminary results with the following new contributions:  

1) We provide a more complete description of the random swap operation and the quality indexes 

used to check the accuracy of a clustering solution. 

2) We present two original reference implementations in Java. The first one is based on Java 

streams and lambda expressions [9]. The second one depends on the efficient Theatre actor 

system [11] which enables better exploitation of computing resources. 

3) We perform a more extensive evaluation using 13 standard benchmark datasets and two more 

challenging datasets. 

4) We compare the time efficiency and clustering accuracy of the two realized Java 

implementations on the chosen datasets. 

The paper is structured as follows. Section II reviews some clustering algorithms that improve 

K-means and motivates the recourse to parallel solutions to cope with increased running time. The 

parallel support offered by Java streams and the Theatre actor system is also clarified. Section III 

describes the modus operandi of random swap and its relationship with K-means. The applied 

clustering quality indexes are also presented. Section IV describes the two proposed 

implementations in Java. Section V illustrates the properties of 15 benchmark datasets chosen to 

                  



check the behaviour of Parallel Random Swap. Section VI reports the experimental results 

gathered on the benchmark datasets, which confirm very good execution performance and 

accurate clustering. The higher time efficiency provided by Theatre actors is demonstrated. 

Section VII, finally, presents some conclusions and draws directions for on-going and future 

work. 

 

II.  CLUSTERING ALGORITHMS 

To improve K-means (KM) clustering, different algorithms have been defined in the 

literature, among which: Repeated K-means, K-means++, Agglomerative Clustering, Global K-

means, Random Swap, Recombinator K-means, Genetic Algorithm, Density Peaks Clustering, 

Swarm-Intelligence-based K-means. 

Due to KM attitude to remain stuck around a local sub-optimal solution, Repeated KM 

(RKM) runs the basic KM a number of times and selects the best solution among those. The 

more it is repeated, the higher is the chance to find a good solution. 

K-means++ (KM++) [12] initializes centroids probabilistically. The first centroid is randomly 

chosen in the data space. Then, any other data point    is selected as next centroid with 

probability: 

 
 (  )  

     
 

∑       
 
   

 
(1) 

where       denotes the minimal distance of    to existing centroids. The initialization strategy 

distributes more evenly the centroids in the data space and tends to choose centroids far away 

from each other. Since the stochastic behavior, also K-means++ must be repeated a certain 

number of times. 

Agglomerative clustering (AC) generates the solution by a sequence of cluster merge 

operations (bottom-up approach) [13-14]. At each step, the pair of clusters is merged which 

increases the objective function cost least. 

Global K-means (GKM) [3] rests on a top-down approach. At each step, it considers every 

data point as a potential location for a new cluster, applies some k-means iterations (e.g., 10) and 

selects the candidate solution that decreases the objective function value most. 

Random swap (RS) [4], which is the core algorithm in this paper, constructs a clustering 

solution by a sequence of centroid swaps so as to decrease the objective function cost, and 

locally fine-tuning the solution by a few KM iterations (e.g., 2). 

Recombinator K-means (RecKM) [15] applies K-means multiple times to produce new 

dataset of the obtained centroids. K-means is then run for this new set with the idea to capture 

true cluster centroids often missed by standard K-means in low-density areas. 

Genetic algorithm (GA) [2] maintains a set of solutions. It generates new candidate solutions 

by AC-based crossover, which are fine-tuned by two iterations of KM. 

Density Peaks Clustering (DPC) [5,16] goes beyond the hypothesis of spherical clusters 

assumed by classical algorithms like K-Means. It detects cluster centers as points in dense areas, 

surrounded by points with lower density. Two parameters are used: density and delta. First, the 

density of points is calculated. Then the distance to the nearest point with a higher density is 

evaluated (delta). Centroids are selected as points with high delta and density. After that, clusters 

are formed by merging the remaining points to the nearest higher-density point. 

                  



In [4], RS clustering was compared to K-means and its variants. It emerged that KM, RKM, 

KM++ fail to find the correct solution in more than 50% of the cases. Better algorithms are AC, 

RS, GKM and GA that successfully detected the correct solution in all the experimented cases. 
The most affecting factors are the cluster overlap, number of clusters, and cluster size balanced [4].  

The downside of using better algorithms is their slower running time, which motivates the 

need to develop parallel implementations. More efficient variants have also been proposed for 

some methods like the one in [16] which improves density peaks clustering. 

Swarm intelligence has also been applied for clustering [17]. Examples include particle 

swarm optimization (PSO) [18], artificial bee colony (ABC) [19] and ant colony optimization 

(ACO) [20]. Particle swarm optimization, exploited in [21] in combination with K-means for 

image classification, would be particularly suitable for parallel processing [22]. 

 

 

 

Parallel solutions 

Different parallel solutions have been reported in the literature, e.g. tailored to an efficient 

support of KM, either on a distributed multi-computer context, or on a shared-memory 

multiprocessor. Examples of the first case include message-passing solutions based on MPI [23], 

with a master/slave organization [24], or based on the functional framework MapReduce [25-26]. 

Notable examples of the second case are the experiments conducted by using OpenMP [27] or 

based on the GPU architecture [28].  

Distributed solutions can manage very large datasets decomposed on the local memory of 

various computing nodes. Shared memory solutions split the dataset into subblocks to be 

operated in parallel by multiple computing units (cores). 

A general framework for big data and parallel clustering algorithms is Apache Spark [29]. 

Spark characterizes by its Resilient Distributed Datasets (RDD) abstraction for storing data in 

memory. RDD can be partitioned on a cluster of master/worker nodes, to enable fast and 

efficient map/reduce operations. Both partition, hierarchical and density-based [30] clustering 

algorithms have been experimented. 

 

Solution 1: Java Streams 

The first parallel solution in this paper will be based on Java data streams, lambda expressions 

and functional programming style [9], which were introduced since the Java 8 version. We chose 

this solution because it hides a ready-to-exploit lock-free multi-threaded programming layer 

which (by some cautions) could also be used by not expert parallel programmers. 

Streams are views (not copies) of collections (such as lists and arrays) of objects, which make 

it possible to express a fluent style of operations. Each operation works on a stream, selects and 

transforms every object according to a lambda expression related to functional interfaces such as 

Predicate, Consumer and Function [9]. It typically returns a new stream, ready to be handled by 

the next operation. In a fluent code segment, only the execution of the terminal operation triggers 

the execution of the intermediate operations.  

What makes the streaming approach very appealing is its apparent simplicity by which the 

data streams can be processed in parallel. In this way one can benefit from the underlying multi-

core architecture with shared memory of a modern commodity machine, through the fork/join 

mechanism and associated splitting of data into segments processed in parallel, extracting results 

from segments and finally combining the results.  

                  



However, some subtle aspects can make the recourse to parallel streams risky or useless. 

Lambda expressions should never refer to external shared data which can introduce race 

conditions and data inconsistency. In addition, only properly sized streams can deliver good 

performance.  

We will exploit Java streams to provide an efficient support to the parallel execution of 

random swap algorithm, so as to deliver good execution performance and careful clustering. The 

development owes and generalizes preliminary work about parallel K-means described in [31]. 

 

Solution 2: Theatre actor system 

The second implementation of parallel random swap is based on the Theatre actor system 

[11]. It is a lock-free message-based software architecture capable of ensuring high-performance 

computing on a multi-core machine, through explicit resource control. A Theatre system is a 

federation of computing nodes (theatres) which are mapped onto threads and then cores.  

One theatre (that with ID 0) hosts a time server which is responsible for managing a global 

notion of time or it can be simply devoted to checking application termination. Within the same 

theatre, light-weight threadless actors execute according to a cooperative concurrency: only one 

message at a time.  

Message interleaving is the source of logical concurrency and ensures shared data can be 

safely accessed by local actors. An actor encapsulates an internal data status which can only be 

modified by an exposed message interface. Responding to a message is encoded in a message 

server method, that is a normal Java method equipped with the @Msgsrv annotation, which can 

admit parameters but always returns void. A basic operation is the non-blocking send operation 

which creates (and schedules) a message.  

A theatre rests on a reflective control layer which, transparently, regulates message 

scheduling and dispatching. The control layer can be purely concurrent, or it can manage a time 

notion, real-time or simulated time, see [11] for more details. True parallelism occurs in message 

processing in actors executing on distinct physical theatres. Sharing data among actors belonging 

to separate theatres should be avoided or managed by application-tailored mechanisms, e.g., by 

using a precedence constraint rule [11] to forbid data races without using locks or semaphores.  

The concurrent control layer guarantees that messages sent by a source actor to a given 

destination actor, either local or remote, are eventually received and processed in the sending 

order. Non-determinism in the message order occurs when messages are sent simultaneously by 

multiple source actors executing onto different theatres toward a given remote destination actor. 

The time server of a concurrent Theatre system detects the termination condition when all the 

control layers have an empty queue of messages, and no message is in transit across theatres.  

A Theatre-based solution typically splits the dataset into subblocks (regions) which are 

assigned to manager actors running on independent theatres/cores, possibly organized according 

to a master/worker architecture (see later in this paper). This paper uses two versions of Theatre: 

the parallel one and a standalone flat version, which implicitly uses one theatre and does not pay 

for the use of parallel concerns such as transport layer and time server.  
 

III.  RANDOM SWAP 

Random swap algorithm [4] was designed to solve the cluster structure by a sequence of 

centroid swaps (global search), and by fine-tuning the result by K-means (local search). The 

algorithm significantly improves K-means because it almost never gets stuck in a sub-optimal 

                  



local solution. The results in [6] showed that it reaches the correct global allocation of the 

clusters with all benchmark datasets. 

K-means operation 

K-means aims at minimizing the Sum of Squared Error (   ) objective function. Let 

{          } be the   clusters, and {          } the corresponding representative centroid 

points. The     is defined as: 

 

    ∑‖         ‖
 

 

   

 

(2) 

where        is the nearest centroid    to    according to Euclidean distance, that is: 

                             
     

 ‖     ‖
 
 (3) 

It is sometimes preferable to use the normalized mean    , indicated as     , defined as: 

                Starting from an initialization of centroids, K-means iterates the two 

steps shown in Alg. 1 a maximum number of iterations or until convergence is sensed (the new 

centroids are equal to the previous ones). 

Algorithm 1. Basic steps of K-means. 

1. Partition data points {  } into clusters according to       ; 
2. Update centroids as the mean point of each cluster: 

   
 

|  |
∑        

,       [   ] 

Random swap operation 

The steps of the Random Swap algorithm are shown in Alg. 2. The modus operandi of the 

algorithm is the Swap step 3, which defines a new global configuration. The new centroids are 

then locally fine-tuned, and corresponding cluster boundaries better defined by K-means at step 

4. Steps from 3 to 5 are repeated for a fixed number of iterations ( ) and these steps constitute 

the most processing time. 

Algorithm 2. Steps of random swap algorithm. 

1. Centroids initialization. Define initial centroids as   randomly selected 
points. 

2.  Initial partition. Partition data points according to the initial centroids. 

Repeat T times: 

3.  Swap. A centroid is randomly selected, and replaced by a randomly 
chosen data point in the data space: 

                                 

4.  K-means. A few iterations of K-means (e.g.  ) are executed. 

5. Test. Check if the new solution (new centroids and associated 
partition) has a lower      cost than the previous solution. If so, 
it is accepted and made as the current solution. Otherwise, 
previous centroids and the corresponding data partition are 

                  



restored. 

6. Final tuning. The last defined solution is improved by a final execution 
of K-means, which is iterated until convergence or after a maximum 
number of iterations are executed. 

Evaluation of clustering accuracy 

Random swap iterations are controlled by the      value, which monotonically decreases as 

the swap iterations proceed. This quantity guides the search. The clustering accuracy can also be 

evaluated by another internal index like the Silhouette index (see later in this section). External 

quality indexes can be used for testing purposes if ground truth (  ) centroids or ground truth 

partitions (  ) are known. Ground truth partitions are specified by furnishing the initial clusters, 

that is the cluster label each point is partitioned to. Some of such indexes are described below. 

Centroid Index (  ) 
   was introduced in [32] to measure how well the centroid locations match the ground truth 

centroids. It can be used with synthetic datasets constructed by some specific distribution of 

points around pre-defined centroids (prototypes). The    value of a solution can be understood 

intuitively in Fig. 1, where the clustering solution admits 4 real clusters not having any centroid 

and 3 with more than one centroid. The    value is the greater of these numbers. 

Formally, the    value of two centroid solutions    and    can be computed by mapping    

onto    and vice versa and counting dissimilarities. In particular, first each centroid of    is 

mapped onto its nearest centroid in    according to Euclidean distance. Then the number of 

“orphans” in    is counted as the elements of    where no item of    was mapped onto. In a 

similar way, centroids of    are subsequently mapped onto the centroids of    and the resultant 

number of “orphans” in    is counted. Finally: 

                                                 (4) 

In the case the bijection evaluates to 0, the solution    has the same distribution of the centroids 

globally as   , and has therefore high probability to be correct with respect to   . 

 
Figure 1. An intuitive interpretation of the Centroid Index (  ) [4]. 

 

                  



Two cases of accepted swap iterations are shown in Fig. 2. The one that decreases both      

and    is considered successful even though the algorithm accepts both of them. 

 
Figure 2. A successful swap iteration [4]. 

Generalized Centroid Index (   ) 
The centroid index was generalized in [33] for it to be applied to set-based partitions. Two set-

based partitions     and     are compared. For example, a partition    [ ] can be mapped onto 

the partition of     which shares most points with    [ ]. In another case,    [ ] can be 

mapped onto the partition of     according to minimal Jaccard distance: 

 
                     

|       |

|       |
 

(5) 

In the Jaccard distance, the number of shared points is normalized against the total number of 

points in both the partitions. This work adopts the Jaccard distance as the criterion for comparing 

two set-based partitions. Similarly to   , the number of orphans in the two mapping directions is 

established. The generalized centroid index (   ) is defined as follows: 

                                    ,                   . (6) 

Silhouette Index (  ) 
It is a classic measure of clustering accuracy [34]. For each point   two quantities are computed: 

   and    (see Fig. 3). The component    is an intra-cluster measure, that is the average distance 

of   from all the other points in the same cluster. The component    is the minimum average 

distance of   from all the points in other clusters. The Silhouette value associated with the point 

  is calculated as: 

 
   

     

           
 

(7) 

The Silhouette index is the average of the    values: 

 

   
 

 
∑   

 

   

 

(8) 

 

                  



 
Figure 3. Intuitive illustration of the Silhouette Index (  ). 

The    value is in the range [-1,1]. A value 1 indicates well-separated clusters (reduced overlap). 

A value close to 0 mirrors high overlap of clusters. A value toward -1 indicates incorrect 

clustering. 

IV.  ENABLING PARALLEL RANDOM SWAP IN JAVA 

Different operations of the random swap algorithm shown in Alg. 2 can be executed in parallel. 

The initial partition (step 2), the partition and update steps of K-means (steps 4 and 6) and the 

restore partition of step 5, can purposely be carried out in parallel. Further operations that can 

benefit of parallelism include the computation of clustering indexes like the Silhouette (  ) 
which has a cost of       because it requires the calculation of all pairwise distances. The 

corresponding sequential wall-clock time can then be a problem for large datasets. All operations 

mentioned above will be carried out in parallel. 

 

Stream-based Parallel Random Swap 

The following briefly outlines the developed Java classes supporting parallel/sequential random 

swap. As in [31], all the parameters which drive simulations, data structures, basic algorithms for 

I/O, for centroids initialization (implemented methods include [8]: Random, Kmeans++, 

Maxmin, Kaufman, ROBIN and DKmeans++), and for computing clustering indexes, are 

collected in a   (global) class. Here the user can specify the dataset external name to load, the 

value of   (dataset size),   (number of coordinates of points),   (number of clusters),   

(number of swap iterations), and so forth.  

The dataset and centroids are mapped onto native arrays of           objects, from which 

streams are derived.           exposes methods for point arithmetic (e.g., addition and mean) 

and various kinds of distance notions (including Euclidean, Manhattan, and Hamming). A data 

point also holds    , which is the index of the centroid it was partitioned to. 
 

Algorithm 3. Random swap program in Java based on streams. 

public static void main( String[] args ) throws IOException{ 
 initialize(); 
 start=System.currentTimeMillis(); 
 partition(); 
 previous_cost=nMSE(); 

                  



 step=1; 
 for( ; step<=T; ++step ) { 
  if( accepted ) save_prototypes(); 
  make_swap(); 
  k_means(5); 
  current_cost=nMSE();  
  if( current_cost<previous_cost ) { 
   accepted=true; previous_cost=current_cost; 
   rec_accept(); //bookkeeping 
  } 
  else { 
   accepted=false; 
   restore_partition(); 
   restore_centroids(); 
   rec_refuse(); //bookkeeping 
  } 
 }//for( step... ) 
 k_means(); 
 end=System.currentTimeMillis(); 
 output(); 
}//main 

 

Alg. 3 draws the stream-based random swap program, where helper methods hide basic and 

bookkeeping (recording data gathered during a simulation) operations and contribute to keeping 

the Java code closer to the pseudo-code in Alg. 2.  

The              method loads the dataset and ground truth centroids and partitions, if 

available, from the file system. The method also initializes centroids by a random selection of   

points in the dataset (random() method of the   class). The real-time required by the   swap 

iterations is annotated at the end of each run. 

Alg. 4 shows the partition operation which, depending on the value of the          

parameter, can be executed in parallel or sequentially. 
 

Algorithm 4. The partition operation. 

Stream<DataPoint> p_stream=Stream.of( dataset ); 
if( PARALLEL ) p_stream=p_stream.parallel(); 
p_stream 
 .map( p -> {  
  double md=Double.MAX_VALUE; 
  for( int k=0; k<K; ++k ) { 
   double d=p.distance( centroids[k] ); 
   if( d<md ) { md=d; p.setCID(k); } 
  } 
  return p; } ) 
 .forEach( p->{} ); 

 

A basic design issue emerges from Alg. 4. The     operation receives a lambda expression 

(Function value) whose parameter   is a point, whose     is set to the index of the nearest 

centroid. No shared data gets modified: each individual point modifies itself. The terminal 

        operation serves just to trigger the mapping operation which can proceed in parallel. 

The partition operation is also used within the               method which receives the 

                  



number of iterations to accomplish. However, in this case, at the first iteration, the     of each 

point gets preliminarily saved. 

Alg. 5 depicts an excerpt of the update centroids phase of          method. Individual 

centroids can be updated in parallel. It is worth noting that traversing once the dataset points as 

done in Alg. 4, was avoided because it would cause race conditions tied to multiple data points 

that share the same centroid. 
 
Algorithm 5. An excerpt of the update centroids step of K-means. 

//update centroids 
Stream<DataPoint> c_stream=Stream.of( centroids ); 
if( PARALLEL ) c_stream=c_stream.parallel(); 
c_stream 
 .map( c -> { 
  for( int i=0; i<N; ++i ) { 
   if( dataset[i].getCID()==c.getCID() ) c.add(dataset[i]) ; 
  } 
  c.mean(); 
  return c; } ) 
 .forEach( c->{} ); 

 

The invocation of          at the end of a run (see Alg. 3), has no parameters because it gets 

iterated at maximum   times or as early as convergence is reached. 

The                     method, similarly to the partition operation in Alg. 4, processes all 

the points of the dataset so as to restore previously saved     (partition). All of this can naturally 

be accomplished in parallel. 

It is worth noting that the adopted program organization purposely executes in parallel 

specific macro-actions of a swap iteration, like partition and update steps of K-means or 

restoring a previous partition. Consequently, a swap iteration path starts sequentially, making it 

possible to execute a swap using a single Random object (the Java Random class is thread-safe) 

without thread contention which would degrade the execution performance. 

 

Theatre-based Parallel Random Swap 

This second implementation exploits the Theatre actor system [11] developed for high-

performance computing. The solution rests on a Master/Worker organization (see also [31]) plus 

the initial configurator (main program) which bootstraps the system and launches the execution. 

The configurator creates   theatres, where   is the number of (physical+virtual) available cores. 

Each Theatre instance has a unique    in [      ] and it is provided of an instance of the 

transport layer (used to receive externally generated messages directed to actors of this theatre) 

and control layer (here parallel            ). By convention, theatre   also receives an 

instance of              which controls the termination condition (complete message 

exhaustion all over the system).  

After that, the configurator continues by creating one instance of the Master and   
  instances of the Worker actor class, which are moved respectively to theatre 0 and theatres 

from   to    . Master and Worker classes are heirs of a basic         class which defines 

common messages. Each manager actor is initialized by sending to it an        message which 

carries the identity of the manager (0 for the Master,        for the Workers), a subblock of 

the dataset (region) and the identity of the Master for workers, and the array of all the manager 

references for the Master. The configurator finishes its task by activating all the theatres. 

                  



 Alg. 6 reports the class Worker. Each worker manages a contiguous region (segment) of the 

dataset transmitted through the        message. The             message server receives the 

(absolute) current centroids and assigns each point of the local region to the nearest centroid. 

Finally, the worker sends a        message to the master. The           message server 

receives the reference centroids (accessed by copy semantics, that is, since the array is shared by 

all workers, no one will update it) and realizes one iteration (assignment and update) of K-

means. 

Obviously, a worker can only evaluate a partial view of new centroids, according to the local 

region. The partial array is sent back to the Master which will assemble all the received partial 

centroids to generate the effective new centroids.         also receives a Boolean save 

parameter which can ask to save previous partitioning (cluster ID or CID) of region points. Upon 

such a saved information will operate the                     message which is requested by 

Master following an unproductive swap iteration.  

The master actor which embodies the random swap logic through a finite state machine, has 

more complex behavior. In the following we will highlight only the major aspects. 

First of all, the master includes the worker’s behavior. It therefore implements the 

           ,          and                     messages, see Alg. 6.  

The master enters the           state at the end of the        message, after having sent in 

broadcast a             message to all the workers and to itself. The        message also 

initializes the local variable          to true. In the same way, following an unaccepted swap, 

the master broadcasts a                     message to all the workers (and to itself), and 

enters the                   state. In both cases, the master will wait for          
messages. 

 
Algorithm 6. The Worker actor class. 

public class Worker extends Manager{ 
 private DataPoint[] region, partial; 
 private int ID; 
 private Master m; 
 @Msgsrv 
 public void init( Integer ID, DataPoint[] region, Master m ) { 
  this.ID=ID; 
  this.region=region; //a sub-block of the whole dataset 
  this.m=m; 
  this.partial=new DataPoint[K]; 
  for( int i=0; i<K; ++i )  this.partial[i]=new DataPoint(); 
 }//init 
 @Msgsrv 
 public void partition( Integer id, DataPoint[] centroids ) { 
  for( int i=0; i<region.length; ++i ) { 
   double minD=Double.MAX_VALUE,d=0; 
   for( int j=0; j<K; ++j ) { 
    d=region[i].distance( centroids[j] ); 
    if( d<minD ) { minD=d; region[i].setCID(j); } 
   } 
  } 
  m.send( "done" ); 
 }//partition 
 @Msgsrv 
 public void kmeans( Boolean save, DataPoint[] centroids ) { 

                  



  //partition local data points according to received centroids 
  for( int i=0; i<region.length; ++i ) { 
   if( save ) region[i].saveCID(); 
   double minD=Double.MAX_VALUE,d=0; 
   for( int j=0; j<K; ++j ) { 
    d=region[i].distance( centroids[j] ); 
    if( d<minD ) { minD=d; region[i].setCID(j); } 
   } 
  } 
  for( int k=0; k<K; ++k ) partial[k].reset(); 
  //updates partial centroids 
  for( int i=0; i<region.length; ++i ) { 
   int cid=region[i].getCID(); 
   partial[cid].add( region[i] ); 
  }  
  m.send( "done", ID, partial ); 
 }//kmeans 
 @Msgsrv 
 public void restore_partition() { 
  for( int i=0; i<region.length; ++i ) region[i].restoreCID(); 
  m.send( "done" ); 
 }//restore_partition 
}//Worker 

In the           state, the master will then initialize the previous cost and sends to itself a 

       message thus starting the first swap iteration and entering the        state. Following 

a                  , first centroids are restored from a copied value, then either a new 

swap iteration is started by a new        message, or the algorithm terminates if the maximum 

number of steps ( ) was reached.  

Responding to a        message causes the master to make a new swap. If the last swap was 

successful (i.e., the          state variable is true) first a copy of the current centroids is 

created, then the current cost is made as the new previous cost. After that a swap is accomplished 

followed by a K-means execution. A local variable       is used which indicates to the master 

how many K-means iterations remain to execute. When       reaches   (or convergence is 

sensed in the last iteration of K-means), current K-means is finished.  

Two kinds of        messages exist. The first one, without arguments, follows the 

          or a                   state. The second type of       , used in        

state, carries as an argument a partial evaluation of centroids proposed by a worker (or by the 

master itself). When   of such        messages are received, the master first determines the 

new centroids, then sends to itself a             message to decide what to do. 

The             message first checks the acceptable or not acceptable status of the just 

concluded swap iteration. In the case of a successful swap, the termination condition of random 

swap is sensed and if it was reached, an exhaustive step of K-means is launched by setting       

to   and broadcasting the          message. For an unproductive swap,             puts 

         to false, moves to the                   state and broadcasts the 

                    message.  

At the end of                   (         messages arrived) the        message 

server checks termination and, in case it was reached, a last exhaustive K-means step is executed. 

The             message which follows K-means and recognizes termination, does not self-

send a new        message thus causing the whole application to terminate. 

                  



 The above-outlined actor-based parallel random swap was also stripped down (only a 

simplified version of the Master actor is kept) so as to use the standalone version of Theatre for 

sequential execution comparisons. 

V.  EXPERIMENTAL SETUP 

Correctness of the developed parallel random swap implementations was verified by applying 

them to 15 benchmark datasets [6,35], of which two are very challenging to solve. For all the 

datasets either the ground truth (  ) centroids or ground true partitions are publicly available. 

The datasets characterize for the number and shape of clusters and point distributions used to 

construct the dataset.  

The A1, A2 and A3 datasets (Fig. 4) contain equal size spherical clusters with an increasing 

number of clusters. The sets A1 and A2 are merely subsets of A3 as follows:         . 

The S sets (Fig. 5) contain Gaussian clusters with varying degree of overlap.  

 
Figure 4. The A1, A2 and A3 datasets [35]. 

 
Figure 5. The S1, S2, S3 and S4 datasets [35]. 

 
Figure 6. Examples of G2 datasets [35]. 

The G2 sets (Fig. 6) contain 2048 points distributed according to two Gaussian clusters at fixed 

locations. Overlap was created by varying the standard deviation from 10 to 100. A particular 

dataset is named            accordingly. The             dataset was selected for 

the experiments. 

                  



The DIM sets (Fig. 7) contain well-separated clusters in high-dimensional space. For the 

experiments       was chosen: 32 dimensions for each one of the 1024 points. Points are 

randomly distributed among clusters by Gaussian distribution. 

The Unbalance dataset (Fig. 8) has eight clusters organized in two well-separated groups. The 

first three clusters are dense with 2000 points each. The remaining five clusters contain 100 

points each. 

  
Figure 7. The DIM32 dataset [35]. Figure 8. The Unbalance dataset [35]. 

 

  
Figure 9. The Birch1 and Birch2 datasets [35]. Figure 10. The Birch3 dataset [35]. 

 

 
Figure 11. The Worms_2d dataset [35]. 

The Birch1 and Birch2 sets of Fig. 9 contain spherical clusters organized on a 10×10 grid 

(Birch1), or on a sine curve (Birch2). Birch3 is more challenging because it is composed of 

random-sized clusters located in random positions.  

We also selected the two worms artificial datasets discussed in [16]. Worms_2D contains 35 

worm-shaped clusters in 2-dimensional space, and Worms_64D contains 25 clusters in 64-

dimensional space. The worm shapes start from a random position and move to a random 

direction. At each step, points are drawn from a Gaussian distribution whose variance increases 

                  



gradually with each step. The direction of movement is continually altered to an orthogonal 

direction. In the 64D case, the orthogonal direction is randomly selected at each step. 

Parameters of the datasets are collected in Table 1. They have been used in [6] for an in-depth 

analysis of K-means properties, and in [4] for comparing the clustering accuracy of random swap 

against K-means and its variants. We use the datasets for checking the computational efficiency 

and verify that the results of the proposed parallel random swap are equal to the original 

sequential algorithm. 
Table 1. Parameters of the benchmark datasets [35]. 

dataset N D K 
                                   

                      
                     

                 
                   

                                  
                     
                       

VI.  RESULTS 

The achieved Parallel random swap tools were applied to the benchmark datasets described in 

Section V. Although only 2 iterations of K-means per swap were suggested in [4] to refine a 

local solution at each swap iteration, we increased this to   motivated by the parallel support. In 

addition, not originally used in [4], we also refine the final solution after the swap iterations, by 

executing K-means exhaustively until convergence (step 6 of Alg. 2). The maximum number of 

swap iterations and the maximum number of steps of the final invocation of K-means were fixed, 

by default, to       . Only for the complex Birch3 and Worms_2d datasets,  =10
6
 was used. 

All the execution experiments were carried out on a Win10 Pro, Dell XPS 8940, Intel i7-

10700 (8 physical cores with the support of 16 threads via hyperthreading), CPU@2.90 GHz, 

32GB Ram, Java 17.  

Experimental setup 

Preliminary runs were devoted to assess the correctness of the developed random swap 

programs, in particular that the programs deliver the same result both in sequential and in parallel 

mode on all the benchmark datasets.  

Table 2 summarizes a snapshot of the output generated by one run of Birch1. Steps 2 and 3 

are examples of successful steps. Unsuccessful steps (     did not improve) are omitted in the 

table. Sometimes      improved but    did not. Such changes are also accepted by the 

algorithm although they are not considered successful steps like those that failed to improve 

    . 

 
  Table 2. Debugging example of Birch1. 

             
  6.622308508119364E8 13 

  6.05899752096259E8 9 

  5.74568446939268E8 8 

  5.73673847218781E8 8 

   5.629913152219414E8 7 

   5.385070562725195E8 6 

   5.3324325081301624E8 5 

                  



   5.213528313807281E8 4 

   5.052130404197854E8 3 

    4.815435483122903E8 1 

    4.7379832580636716E8 0 

    4.664072159088196E8 0 

    4.6386566539892936E8 0 

    4.6386462201360106E8 0 

    4.638641013410574E8 0 

     4.638640964116055E8 0 

     4.638640668751212E8 0 

     4.638640333827571E8 0 

     4.638640290995247E8 0 

     4.638640290995247E8 0 

 

The results in Table 2 confirm the monotonic decrease of     . Starting from step 237,    
stabilizes to value   indicating that the centroids are roughly at their correct positions. Further 

improvement in      still happens until step      after which all remaining swaps are 

unproductive as      did not improve further. 

Computational efficiency 

To check the computational efficiency, five runs of the stream-based random swap program were 

executed on the Birch1 dataset (see Table 1), both in sequential and parallel mode. The overall 

wall-clock time required for completing the        swap iterations (see Alg. 3) was 

measured. The two times are referred to as RS
S
 Sequential Elapsed Time (RS

S
-SET) and RS

S
 

Parallel Elapsed Time (RS
S
-PET). After that, the Average SET (aSET) and the Average PET 

(aPET) were calculated. The speedup was evaluated as the ratio of aSET/aPET.  

Similarly, the SI-SET and SI-PET were measured by computing the Silhouette index (  ) 
both in the sequential and parallel mode. The average execution times, namely aSI-SET and aSI-

PET, were calculated, and the corresponding speedup evaluated as the ratio aSI-SET/aSI-PET. 

The recorded execution times are summarized in Table 3. 

 
Table 3. Birch1 execution times on the stream-based random swap (RS

S
) and Silhouette Index (  ) (P=16 threads). 

#run RS
S
-SET (ms) RS

S
-PET (ms) SI-SET (ms) SI-PET (ms) 

                            
                            
                            
                            
                            

 

From Table 3, we derive an average value aSET
S
=1244331 ms, and aPET

S
=190552 ms. This 

results in a speedup of     . The average times for    emerged to be: aSI-SET
S
=89881 ms and 

aSI-PET
S
=6506 ms, with a speedup of      . 

For completeness, Table 4 reports the measured execution times of Birch1 using the Theatre-

based implementation of random swap (RS
T
), in sequential (one single, standalone theatre is 

used) and parallel mode (     theatres are spawned).  

From the results in Table 4 an average value aSET
T
=464035 ms, and an average value 

aPET
T
=33612 ms were derived, with a speedup of      . A detailed comparison between Tables 

3 and 4 reveals that the Theatre actor-based version of RS outperforms the stream-based version 

                  



both in the sequential and the parallel mode. In particular, a relative speedup, that is the ratio 

between aPET
S
 and aPET

T
 emerges to be     . 

 
Table 4. Birch1 execution times on the Theatre-based random swap (RS

T
) (P=16 threads). 

#run RS
T
-SET (ms) RS

T
-PET (ms) 

               
               
               
               
               

 

Better performance of the Theatre-based version mirrors better resource exploitation with respect 

to the stream implementation. In the stream-based version, each time a parallel operation, like a 

partition/assignment or a centroid update of K-means or restoring the previous partition as a 

consequence of an unsuccessful swap iteration, requires to be carried on the dataset, a new 

stream has to be created upon which the fork/join mechanism spawns new threads for processing 

chunks of the data points. In the Theatre organization, theatres/threads are initially configured to 

run on different cores. Each theatre is initialized with the region of the dataset to be managed, 

which remains unchanged for the duration of the simulation. Actors Master and Workers can 

process, in parallel, operations simply by accepting and executing messages. In this way, the 

costs of dynamically creating and dismissing threads of the stream-based program, are 

completely avoided. 

 

Clustering accuracy 

The quality of clustering solutions generated by parallel random swap was estimated by    runs, 

each of        swap iterations, executed in parallel mode, for each dataset in Table 1. A 

clustering solution consists of the final centroids and the index of the clusters in which the data 

points were assigned. The accuracy of the solution is captured by     , Silhouette index (  ), 
and Centroid index (  ) calculated between the found solution and the ground truth centroids. 

Table 5 reports the resultant quality values for the 10 runs of Birch1. 

 
Table 5. Resulting quality values for the 10 runs of Birch1. 

#run nMSE SI CI 

                       
                       
                       
                       
                       
                       
                       
                       
                       
                        

 

As seen from Table 5, every solution for Birch1 has value      which guarantees the 

correctness of the cluster-level structure of the found solution. The corresponding Silhouette 

index is always 0.46. The      values also reduce to a common result of 4.64E8 with only 

minor variation.  

                  



The achieved results,      and            , comply exactly with the same results 

documented in [32] and in [4].  

Table 6 contains the recorded results for the 15 benchmark datasets discussed in Section V, 

which were studied using        swap iterations. The data of each row are the averages of 10 

independent runs. 

As a notable property, both the stream-based and Theatre actor-based variants were capable of 

finding the correct solution for all datasets except for the Birch3 and Worms_2d cases (see Table 

6). For Worms_64d they always obtained value      (     ) which is the same result as 

reported in [16]. An average value of         is reported for the Worms_2d in [16] by using 

the fast and powerful density peaks clustering algorithm based on a     graph construction. 

The accuracy of parallel random swap tools was also compared to the Repeated K-Means [31] 

under random (RKM
R
) and K-means++ (RKM

++
) centroids initialization (see Section II). K-

means was repeated 100 times. For simplicity, the minimum      value, the average        
value (        ), the average relative        value              , that is, the average 

       divided by the number of clusters  ), the             , i.e. the number of times 

       was found equal to 0 divided by the number of runs, and the average number of 

iterations (    ) K-means executed until convergence, were monitored. Tables 7 and 8 report the 

results separately for the two cases      and      . For simplicity, all the      values in 

the Tables from 6 to 8, are reported by dividing them by a scale factor:     for    to   ,     for 

   to   ,     for             and    ,     for          ,     for        and 

      ,     for         and          and          . 
Table 6. Clustering accuracy of the selected benchmark datasets. 

                       
               
               
                
               
               
               
               

                        
                  

                      
                   
                   
       1.86 0.52 13.7 

                       
                      

 
Table 7. Results of applying 100 repetitions of RKM

R
 to the 15 benchmark datasets. 

                                                  
                            
                            
                            
                            
                          
                            
                            

                                    
                                

                                   
                                

                  



                                 
                                  

                                    
                                    

 
Table 8. Results of applying 100 repetitions of RKM

++
 to the 15 benchmark datasets. 
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From the Tables 6, 7 and 8 it clearly emerges that Parallel Random Swap is superior to      

and      , and, as expected,       also outperforms      for the better initialization 

technique which chooses centroids far away each other. Only the             dataset was 

correctly solved in all the     repetitions of both      and      . This was anticipated in [6] 

as a consequence of the positive impact of overlap (which is significant in the chosen    dataset) 

on the K-means behavior. 

The unsatisfactory clustering results registered by using repeated K-Means algorithms to 

Birch and Worms datasets should be noted.  

Tables 9 and 10 report an observed execution trace respectively for Worms_2d and 

Worms_64d datasets, when        swap iterations was used. For simplicity, steps where the 

    value repeats are omitted. 

 
Table 9. An execution trace for Worms_2d Table 10. An execution trace for Worms_64d 
              
1 31617.126664532883 12 

2 25526.79312268663 10 

3 23607.109779022692 10 

4 23436.676790899786 9 

5 21625.758079806976 7 

6 20677.503100491762 8 

8 20229.59512684583 7 

9 19992.72890435367 8 

15 19888.94688278889 9 

16 19685.0593379738 8 

28 19159.778478917495 7 

29 19044.685310944787 6 

48 18647.38655185947 9 

76 18456.228546408256 8 

121 18365.40531029041 7 

211 18231.97969573148 8 

266 18144.940517231156 7 

              
1 2320435.5335298977 13 

7 2258728.9430443444 11 

12 2244208.0184919285 10 

19 2231982.2069647466 9 

26 2229550.809941683 9 

29 2219612.544481429 8 

47 2207176.936861572 7 

49 2198411.3557836837 6 

68 2181701.4026172264 5 

74 2175031.860439957 4 

113 2167974.855536757 3 

225 2155946.7481358326 2 

234 2144827.541439402 1 

1105 2139296.362707094 1 

1181 2138956.2773386287 0 

4049 2132424.422130961 0 

5000 2132208.9876207393 0 
 

                  



308 18061.5029279617 9 

342 18056.11609784498 7 

390 17971.577874260052 8 

519 17824.253756818613 9 

726 17702.16609296501 8 

921 17690.568528220727 9 

1710 17642.91790804943 8 

1990 17561.070543492715 7 

2262 17516.81140096279 8 

5000 17494.584121060423 8 
 

 

From the Table 9 it emerges that, for worms_2d, although the      value monotonically 

diminishes, the corresponding     index fluctuates and sometimes increases even if      

decreases. All of this indicates that Worms_2d is an example of a dataset where “good” 

clustering does not follow the optimization of the      cost.  

A different situation occurs for Worms_64d (see Table 10). Here, a decrease in the      

value never causes an increase in the     value. In addition, the final value of     is 0 as 

expected (see also Table 5). What can explain the different behavior of Worms_2d and 

Worms_64d are the consequence of multi-dimensionality. While higher dimensions are 

seemingly more demanding, the clusters actually become more separated when more dimensions 

are added. 

The Birch3 dataset is another well-known complex case where, as for the Worms_2d, “good” 

clustering does not follow the      optimization. 

Two further simulation experiments were executed using the parallel Theatre-based version of 

random swap applied to the Worms_2d and Birch3 datasets with       swap iterations. Table 

11 collects the emerged results that confirm the clustering solutions generated by parallel random 

swap are in the same line of accuracy of other powerful clustering algorithms [16,36]. 

 
Table 11. Clustering accuracy of Birch3 and Worms_2d datasets 

using T=10
6
 with Theatre-based Parallel Random Swap. 

                                
       1.87E8 0.520 12 7340912 

                               

 

VII. CONCLUSIONS AND FUTURE WORK 

This paper proposes Parallel Random Swap [4], an efficient and reliable clustering algorithm on 

multi-core machines. It leverages the lock-free concurrency support which Java natively offers 

when dealing with parallel streams of non-trivial datasets. A second implementation of the 

algorithm uses the Theatre actor-based framework [11,31,37] which can deliver higher 

execution performance by exploiting better resource control. The two realizations were applied 

to a set of benchmark datasets and the results confirmed that the original clustering accuracy 

can be achieved but with significantly better time efficiency.  

Our future work consists of the following. 

First, to identify possible heuristics for early termination of the method to avoid an 

overwhelming number of swap iterations ( ). Preliminary experiments suggest that when a 

certain number of consecutive accepted iterations do not change the reported local CI-value 

between the current and previous solution, followed by a few hundred unproductive iterations, 

it serves as evidence that the search can be terminated and the last found solution is the correct 

                  



one with high probability. More investigation, though, is deemed necessary using both synthetic 

and real-world datasets. 

Second, to extend the Theatre-based approach proposed in this paper toward a better support 

of big data, e.g., through an implementation based on Spark [29]. 

Third, to experiment with Java parallelism in other clustering algorithms, e.g., based on 

density peaks [5]. Some preliminary work [38-39] has been directed to improving specifically 

K-means with a centroids initialization which depends on the identification of density peaks. A 

k-nearest neighbors (   ) approach [16] is used to predict the hyperball radius in  -

dimensional space, which is then used to estimate point densities. Density peaks are finally 

exploited to select initial centroids using a technique derived from Density K-means++ [8,40]. 
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