

Improving the information base and optimising service solutions to support social welfare & healthcare reform

Web-tool for optimizing locations of health centers

Pasi Fränti

University of Eastern Finland Joensuu, FINLAND

10.11.2022

UEF // MACHINE LEARNING

STEMI case study

- 22 Health centers (HC)
- 17346 patients (ICD10 codes I21.0-I21.3)
- Patient locations (postal code precision)
- Red patients do not reach HC in time.
- Fast travel-time estimation (almost ready)

Who is at Risk (90 min)?

Infarctions are serious and life threatening.

A patient not within **90** minutes of a hospital is considered at Risk.

Tighter bound (45 min)

Infarctions are serious and life threatening.

A patient not within **45** minutes of a hospital is considered at Risk.

Web-tool for optimizing

Control parameters

Parameter choices in the tool :

Optimization goal:

Optimized Risk 90 min --- Health Centers ---**Original locations** Remove two University hospitals --- Optimized Locations ---Optimized Distance (Bird) Optimized Distance (Road) **Optimized Time** Optimized Risk 30 min Optimized Risk 45 min Optimized Risk 60 min Optimized Risk 75 min

Optimized Risk 90 min

Critical time: 30 minutes

Critical time: 45 minutes

i IMPRO

Effect when removing HC

University hospital clusters

Road infrastructure supports furthest reach

Patients nearest **H** Is not always the best choice

Optimization Procedure

Random Swap Algorithm

Fast Travel-Time Estimation

Objective function

P. Fränti Efficiency of random swap clustering *Journal of Big Data*, 2018.

R. Mariescu-Istodor and P. Fränti Estimating travel-cost using an Overhead Graph Journal of Location-based Services, 2021.

K-Means

Randomly choose **K** initial centers $\mathbf{C} = \{c_1, \ldots, c_K\}$ REPEAT $\mathbf{C}_{\text{previous}} \leftarrow \mathbf{C}$ FOR all i $\in [1, N]$ DO // Partitioning label(i) \leftarrow arg min d(p_i, c_j) FOR all j $\in [1, k]$ DO // Centroid update $c_j \leftarrow$ Average of p_i, whose label(i) = j UNTIL $\mathbf{C} = \mathbf{C}_{\text{previous}}$

K-Means: Partitioning

K-Means (**P**, **K**) \rightarrow (**C**, **L**) Input : points **P** = {p₁,...,p_N} the number of clusters **K** Output: cluster centers **C** = {c₁,...,c_K} cluster labels **L** = {label(i), i=1,...,N} Randomly choose **K** initial centers **C** = {c₁,...,c_K} REPEAT **C**_{previous} \leftarrow **C** FOR all i \in [1, N] DO // Partitioning label(i) \leftarrow arg min d(p_i, c_j) FOR all j \in [1, k] DO // Centroid update c_i \leftarrow Average of p_i, whose label(i) = j

UNTIL **C** = **C**_{previous}

Estimating travel using **Overhead Graphs**

Overhead Graph: Node density

512 nodes

Two cost functions

Experiments

Euclidean distance

Travel time

Optimization results

Current Locations

Optimized Locations

Summary of results

	Bird Distance	Travel Distance	Travel Time	At Risk
Original HC Locations	29.0 km	36.6 km	35.3 min	832 (5 %)
Optimization Function				
Bird Distance or time (fixed speed)	27.9 km	36.1 km	36.2 min	792 (5 %)
Travel Distance	28.4 km	34.7 km	34.1 min	519 (3 %)
Travel Time	29.8 km	36.8 km	34.0 min	488 (3 %)
Sigmoid (Travel Time)	44.3 km	54.9 km	48.6 min	135 (1 %)

• Travel times and distances are estimates using the overhead graph

Statistics: Hospitals removed

Total patients: 17,346		Average Travel			
Test-case	At Pick*	Time	Distance	Hospitals in Range	
				1	2+
All Hospitals	5,401 (31%)	73 min	79 km	51 %	18 %
Two Removed**	5,775 (33 %)	75 min	82 km	49 %	18 %
University hospitals	11,570 (67 %)	121 min	142 km	33 %	0

* Round trip to nearest hospital > 90 minutes

** All Hospitals except Savonlinna and Länsipohja

Changes in detail

Optimized using Euclidean distance

Optimized using travel time

Optimized for travel time

Conclusions

- Web-tool for optimizing health center locations
- Support: Euclidean, travel distance, travel time, patients at risk
- Optimizing for patients at risk increases average time.

