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Abstract: 
 
Block truncation coding is a lossy moment preserving quantization method for compressing 
digital gray-level images. Its advantages are simplicity, fault tolerance, the relatively high 
compression efficiency and good image quality of the decoded image. Several improvements 
of the basic method have been recently proposed in the literature. In this survey we will study 
the basic algorithm and its improvements by dividing it into three separate tasks: performing 
quantization, coding the quantization data, and coding the bit plane. Each phase of the 
algorithm will be analyzed separately. On the basis of the analysis, a combined BTC 
algorithm will be proposed, and comparisons to the standard JPEG algorithm will be made. 
 
Index terms: image compression, quantization methods, lossy compression techniques. 
 
 
 

1. INTRODUCTION 
 
 
Block truncation coding (BTC) is a simple and fast lossy compression technique for digitized 
gray scale images originally introduced by Delp and Mitchell [10]. The key idea of BTC is to 
perform moment preserving (MP) quantization for blocks of pixels so that the quality of the 
image will remain acceptable and at the same time the demand for the storage space will 
decrease. Even if the compression gain of the algorithm is inferior to the standard JPEG 
compression algorithm [46], BTC has gained popularity due to its practical usefulness. 
Several improvements of the basic method have been recently proposed in the literature. 
 
In this survey we study BTC and its improvements by dividing the algorithm into three 
separate tasks: performing the quantization of a block, coding the quantization data, and 
coding the bit plane. Each phase of the algorithm is analyzed separately by first introducing 
various improvements presented in the literature, including some new ideas of our own, and 
then comparing the performance of them against each other. On the basis of the analysis, a 
new combined BTC algorithm is proposed and compared to the JPEG algorithm. 
 
We start in Section 2 by recalling factors characterizing the usefulness of compression 
techniques. Then the original BTC method are briefly described in Section 3. Variants of the 
basic algorithm is studied in Section 4 in the following way. 



 
Several alternatives for the quantization method are presented in Section 4.1 
[10, 14, 19, 23, 31, 47]. These methods try to either preserve certain moments [10, 23, 31], or 
minimize a fidelity criterion which is usually mean square error (MSE) or mean absolute 
error (MAE). They can also aim at the same goal by using a heuristic algorithm [14, 19] or by 
performing indirect quantization via a neural network [47]. 
 
The quantization data of a block can be expressed either by two statistical values (usually 
mean and standard deviation), or by the quantization level values themselves. For these two 
approaches, several coding methods are discussed in Section 4.2. One can significantly reduce 
the amount of data at the cost of image quality by using vector quantization [61] or discrete 
cosine transform [73]. Remarkable savings are also possible via entropy coding [16, 34] 
without any loss in the quality. The application of any other lossless image coding method is 
also possible, and thus we propose the use of FELICS coding [25] the implementation and 
testing of which is described in this paper. 
 
In Section 4.3, we review methods for reducing the storage size of the bit plane. Most of these 
select a representative for the bit plane from a smaller subset, which is either a root signal set 
of some filtering technique [3, 65, 66], a codebook of a vector quantization method 
[14, 61, 73], or designed ad hoc [41]. A different approach is the use of interpolation [76], or 
entropy coding [16]. 
 
BTC can also be applied hierarchically using variable sized blocks [27, 54]. With a large 
block size one can decrease the total number of blocks and therefore reduce the bit rate. On 
the other hand, small blocks of the hierarchy improve the image quality. The technique is 
studied in Section 5. 
 
Several extensions of BTC are discussed in Section 6 including 3-level quantization and  
generalization to n-level quantization [12, 19, 35, 53, 56]. Hybrid formulations of BTC are 
considered [10, 11] as well as some pre- and post processing techniques [37, 41]. BTC's 
application to color [31, 74] and video images [24, 54] are shortly discussed. Some block to 
block adaptive approaches [14, 22, 37, 41] are discussed in Section 7. 
 
In Section 8, we evaluate the different methods experimentally, starting with the quantization 
methods in Section 8.1. We will observe, that because of unavoidable rounding errors, the 
moment preserving quantization does not preserve the first moment any better than the other 
tested quantization methods. It turns out that the moment preserving quantization is the worst 
in the MSE-sense, and that a simple and fast heuristic algorithm produces high quality 
decompressed images with only 5 % deficiency from the MSE-optimal quantization. 
 
Some aspects of the coding of the quantization data are studied in Section 8.2. FELICS turns 
out to be a very good method for its efficiency and practical usefulness. Several bit plane 
coding methods are studied experimentally in Section 8.3. Among these, interpolation gives 
the best results in the MSE-sense. Hierarchical block decomposition is studied in Section 8.4. 
The choice for the minimum block size of hierarchy turns out to be the most important factor 
when small MSE-values are desired. 
 
The need for block to block adaptive schemes is analyzed in Section 8.5. For typical images, 
more than 50 % of all MSE originates from the 10 % of the high variance blocks. Even so, 
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there was no evidence that the superiority between any two given bit plane coding methods 
was dependent on the variance of a block.  
 
In Section 8.6 we link together the most promising methods to form an efficient BTC 
algorithm. With this we perform several test runs and make comparisons with the standard 
JPEG algorithm. The overall performance of BTC turns out to be weaker than that of JPEG, 
but because of the high speed (especially at the decoding phase) and simplicity, BTC is useful 
in practical implementations. 
 
 
Notations: 
 
a, b  Quantization levels. 
$a ,   Predictions of the quantization levels. $b
B  Bit plane of a block. 
bpp  Bits per pixel. 
ei,j  Difference between the original and predicted pixel value. 
k  Number of bits assigned to a single pixel. 
m  Number of pixels in a block. 
MAE  Mean absolute error of the reconstructed image. 
MSE  Mean square error of the reconstructed image. 
N  Number of pixels in an image. 
q  Number of pixels in a block whose intensity is greater than or equal to xth. 
SNR  Signal to Noise Ratio. 
vth  Variance threshold. 
xi  Pixel value of the original image. 
$xi   Predicted pixel value of xi. 
xmax  Maximum pixel value. 
xmin  Minimum pixel value. 
xth  Quantization threshold. 
x   Mean of xi-values. 
xr   Mean of xi

r-values. 
xl   Lower mean; average of xi < xth. 
xh  Higher mean; average of xi ≥ xth. 
yi  Pixel value of the reconstructed (decompressed) image. 
α  Sample first absolute central moment. 
σ  Sample standard deviation. 
σ'  Standard deviation according to xth. 
 
 
 

3 



2. BACKGROUND 
 
 
Let us consider a digital gray-level still image of the size N pixels where each pixel is 
expressed by k bits. The aim of the image compression is to transform the image to a space 
efficient (compressed) form so that the information content is preserved as far as possible 
when decompressing the encoded image. 
 
The quality of a compression method can be characterized by considering a set of features 
which describe the usefulness of the method. These features include the bit rate, which gives 
the average number of bits per stored pixel of the image. Bit rate is the principal parameter of 
a compression technique because it measures the efficiency of the technique. 
 
Another feature is the ability to preserve the information content. A compression technique is 
lossless if the decoded image is exactly the same as the original one. Otherwise the technique 
is lossy. Most of the image compression techniques are of the latter type. The quality of the 
reconstructed image can be measured by the mean square error (MSE), mean absolute error 
(MAE), signal to noise ratio (SNR), or it can be analyzed by a human photo analyst. Let xi 
stand for the i'th pixel value in the original image and yi the corresponding pixel in the 
reconstructed image (i=1,2,...,N). Here the row-major order of pixels of the image matrix is 
supposed. The three quantitative measures are defined as 
 

 MSE = −
=
∑1 2

1N
y xi i

i

N

           (1) 

 

 MAE =
=
∑1

1N
y xi

i

N

− i            (2) 

 
 SNR MSE= − ⋅10 25510

2log          (3) 
 
These parameters are widely used but unfortunately they do not always coincide with the 
evaluations of an human expert [36]. For a survey of different quality measures, see 
Eskicioglu and Fisher [15]. 
 
The third feature of importance is the processing speed of the compression and 
decompression algorithms. In on-line applications the response times are often critical factors. 
In the extreme case a space efficient compression algorithm is useless if its processing time 
causes an intolerable delay in the image processing application. In some cases one can 
tolerate longer compression time if the compression operation can be done as a background 
task. However, fast decompression is desirable. 
 
The fourth feature of importance is robustness against data transmission errors. The 
compressed file is normally an object of a data transmission operation. The transmission is in 
the simplest form between internal memory and secondary storage but it can as well be 
between two remote sites via transmission lines. Visual comparison of the original and a 
disturbed images gives a direct evaluation of the robustness. However, the data transmission 
systems commonly contain fault tolerant internal data formats so that this property is not 
always obligatory. 
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Among other interesting features of the compression techniques we may mention the ease of 
implementation and the demand for a working storage space. Nowadays these factors are 
often of secondary importance. From the practical point of view the last but often not least 
feature is complexity of the algorithm itself. Reliability of the software often to a high degree 
depends on the complexity of the algorithm. 
 
 

3. ORIGINAL BTC ALGORITHM 
 
 
The N pixel image is divided into smaller blocks of the size m pixels and each block is 
processed separately. A compact representation is searched locally for each block. The 
decompression process transforms the compressed blocks back into pixel values so that the 
decoded image resembles the original one as much as possible. The mean value (x ) and 
standard deviation (σ) are calculated and encoded for each block. 
 

 x
m

xi
i

m

=
=
∑1

1

            (4) 

 

 x
m

xi
i

m
2 2

1

1
=

=
∑             (5) 

 
 σ = −x x2 2

            (6) 
 
 
Then a two-level quantization is performed. Pixels with values less than the quantization 
threshold (xi<xth) are quantized to value a and pixels with values greater than or equal to the 
threshold (xi≥xth) are quantized to value b. Here the threshold xth is supposed to be x  and the 
values a and b are chosen so that the first and second sample moments ( x ,x 2 ) are preserved 
in the compression. This is the case for the selection  
 

 
a x q

m q

b x m q
q

= − ⋅
−

= + ⋅
−

σ

σ
           (7) 

  
where q stands for the number of pixels xi ≥xth. 
 
A compressed block appears as a triple ( x ,σ,B), where x  and σ give mean and standard 
deviation of the pixel values in the block and B stands for the bit plane, giving the 
quantization of the pixel values, see Fig. 1. 
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FIGURE 1.  BTC by (x ,σ,B). 

 
 
A straightforward coding of x  and σ by k bits yields a bit rate of 
 
 k k m

m
k

m
+ +

= +1 2   bits per pixel (bpp)        (8) 

 
The method is fast, requires very little extra memory, is easy to implement [28], and has low 
computational demands. It preserves the quality of the reconstructed image and retains the 
edges. It also recovers excellently from transmission errors. One can still improve it in several 
different ways. 
 
 
 

4. VARIANTS OF THE BASIC METHOD 
 
 
Several modifications and improvements of the basic BTC have been proposed in the 
literature. They aim mostly at a lower bit rate, but other weaknesses of the method are also 
considered. The greatest deficiency of BTC is a relatively high bit rate as compared to other 
coding schemes, like DCT [1], vector quantization [18, 42], or the so-called second 
generation image compression techniques [29, 30]. Other significant drawbacks are ragged 
edges (staircase effect) in the reproduced image, and the blocky appearance in some cases. 
 
Our intention is to make a summary of the BTC variants, their similarities and differences, 
and finally draw conclusions from the ideas presented. For this study BTC is divided into 
three separate steps, and each of these is analyzed separately. The overall structure of the 
algorithm is as follows: 
 
 BTC algorithm for coding a single block 
 
  1) Perform quantization 
   - Select the threshold. 
     - Select the quantization levels (a,b). 
  2) Code the quantization data. 
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  3) Code the bit plane. 
 
In many variants, the selection of the threshold and the pair (a,b) are interdependent, while 
some variants concern only one or the other. The stages 1, 2 and 3 are relatively independent. 
 
Most of the variants do not presuppose a particular block size. Their implementations, 
however, are often designed for 4*4-blocks only. For clarity, we will therefore fix this block 
size. However, different block sizes will be studied in the computer simulations of Section 8. 
(See also the hierarchical decomposition of the image, in Section 5.) We also presume  that 
the pixel intensities are represented by k=8 bits unless otherwise noted. 
 
 

4.1. PERFORMING THE QUANTIZATION 
 
 
In principle, selecting the threshold pixel value and selecting the quantization levels can be 
seen as two separate stages. On the other hand, most BTC algorithms are designed to preserve 
certain sample moments, or to minimize some fidelity function. Therefore xth, a and b are in 
close association with each other. 
 
Next we will present several variants, which can be classified roughly into three categories. 
The first category consists of the methods that will preserve certain moments. The methods of 
the second category minimize the MSE-value, and the methods in the third one minimize the 
MAE-value. The remainder of the variants are intermediate between these three types, or aim 
at the same goal with some heuristic algorithm. 
 
 
A) Moment preserving quantization 
 
A great number of the modifications found in the literature are based on the original, two 
moments preserving quantization [10]. The following formulas must hold for this: 
 

 
mx m q a q b

mx m q a q b

= − ⋅ + ⋅

= − ⋅ + ⋅

( )

( )2 2 2
          (9) 

 
This will be attained by using x  as a threshold and selecting a and b as in (7). This selection 
is not optimal in the MSE-sense. However, the basic idea behind the method has been a 
different fidelity criterion, i.e. preserving the sample moments of the input [12]. A motivation 
for the method is that the human eye does not observe small changes of intensity between 
individual pixels, but is sensitive to the average value and contrast in larger regions [36]. 
 
 
B) Third moment preserving quantization 
 
One can modify BTC so that it preserves in addition to x  and x 2  the third moment x3  [10], 
too. This can be achieved by selecting xth so that the parameter q attains the value 
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= ⋅ + ⋅
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42           (10) 

 
where  
 

 A
xx x x

=
− −3 22 3 3

3σ
           (11) 

 
In comparison to the basic BTC the coding phase is more involved. On the other hand, 
decoding is still fast. The point of the variant is that it improves some subtle features (near 
edges) of the image. In fact, the third moment corresponds to the skewness of the distribution 
[9]. Negative values indicate negative skewness and positive values positive skewness. As in 
method A, the quantization levels (a,b) must be selected according  to (7). 
 
 
C) Generalized moment preserving quantization 
 
The BTC method can be generalized to preserve the r, 2r and 3r'th moments, see Halverson et 
al. [23]. We bypass here the exact formulation of the method. Higher moments cause 
overflow problems and rarely good quality images. If one wants to preserve r and 2r'th 
moments only, the threshold is  
 
 xth

rr= x              (12) 
 
Compared to the original first and second moments preserving quantization, the method 
slightly improves the MSE-value [23]. 
 
 
D)  Absolute Moment BTC 
 
Absolute moment block truncation coding (AMBTC) by Lema and Mitchell [31] preserves x  
and the sample first absolute central moment 
 

 α = ⋅ −
=
∑1

1m
x xi

i

m

            (13) 

 
Quantization levels are calculated from 
 

 a x m
m q

= − ⋅
−

α
2

            (14) 

 

 b x m
q

= + ⋅
α
2

            (15) 

 
One can show that a=x l (lower mean) and b=x h (higher mean), where  
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⋅
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∑1             (16) 

 

 x
q

xh i
x xi

= ⋅
≥
∑1             (17) 

 
Furthermore, this selection minimizes the MSE-value among the BTC-variants that use x  as a 
quantization threshold [60]. It can, however, easily be shown that it is optimal for other 
selections of xth, too. The coding and decoding processes are very fast for AMBTC because 
square root and multiplication operations are omitted. 
 
 
E) MSE-optimal quantization 
 
The MSE-optimal choice for (a,b) is according to AMBTC, and it is independent of the 
quantization threshold. Therefore the MSE-optimal quantization can be obtained by selecting 
the quantization threshold so that it minimizes: 
 

         (18) MSE x a x bi
i

m q

i
i m q

m

= − + −
=

− −

= −
∑ ∑2

1

1
2

 
(We suppose that xi-values are here in an ascending order.) An obvious way to find the right 
threshold, is an exhaustive search among the m candidate pixel values of a block [10]. The 
MSE-optimal quantization is also known as minimum MSE quantization (MMSE). 
 
 
F) MAE-optimal quantization 
 
The MAE fidelity criterion (2) can be minimized by selecting 
 
           (19) a median x x xm q= − −1 2 1, ,...,

           (20) b median x xm q m= − ,...,
 
Now the optimal threshold is again found by an exhaustive search [10]. The MAE-optimal 
quantization is also known as minimum MAE quantization (MMAE). 
 
 
G) Heuristic criterion 
 
Goeddel and Bass [19] proposed a heuristic selection criterion for the threshold: 
 

 x
x x

th =
+min max

2
           (21) 

 
where xmin and xmax stand for the minimal and maximal pixel values of a block. The criterion 
gives improved MSE-values in comparison to method A. The moments will not be preserved 
by the technique. However, if we use formulas (16-17) to select (a,b) instead of (7), this 
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criterion can be considered as a practical approximation for the MSE-optimal quantization 
(method E). 
 
 
H) Lloyd quantization 
 
Another nearly MSE-optimal quantization is obtained by an iterative algorithm proposed by 
Efrati et al. [14] and Lu et al. [34]: 
 
 1. Let xth = x . 
 2. Compute a and b according to (16) and (17). 
 3. If xth = (a+b)/2 then exit. 
 4. Let xth = (a+b)/2. Go to step 2. 
 
The algorithm produces the quantization levels and threshold of the Lloyd quantization [33]. 
The average number of iterations needed (phase 2), is only 1.71 per block with our set of test 
images (see Section 8). 
 
 
I) Hopfield neural network 
 
A totally different approach to the quantization is proposed by Qiu et al. [47, 48]. No direct 
quantization threshold is given, but instead a Hopfield neural network outputs for each input 
pixel, whether it should be quantized to a or b. This method gives circa 7 % better MSE-
values compared to the method D [47]. It has also been shown that the result is not optimal, 
but gives virtually identical results to the Lloyd quantization [38]. 
 
 
 

4.2. CODING THE QUANTIZATION DATA 
 
 
The second task in the structured BTC-algorithm is to encode the given quantization data of a 
block. Before this can be done, an important choice must be made: which data should be 
coded. There are two alternative approaches for sending the quantization data to the decoder.  
 
In the first approach the quantization data is expressed by two statistical values, representing 
the mid-value and variation quantity of a block (usually mean and standard deviation). It is 
known that the dispersion of the variation quantity is smaller than the dispersion of individual 
pixel intensities, and small values occur more frequently than large ones. This gives a 
compact representation for the block without any redundancy. 
 
In the original moment preserving BTC (methods A and B) the quantization data are 
represented by the pair (x ,σ). This is not the case for the other quantization methods. For 
example AMBTC (method D) uses the mean and the absolute first central moment (13). If the 
heuristic threshold selection of [19] (method G) is applied, then one has to code the threshold 
and deviation corresponding to it: 
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=
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1m
x xi th

i

m

           (22) 

 
A drawback to this approach is that the quantization levels are calculated at the decoding 
phase from the quantized values of (x ,σ) containing rounding errors. Thus extra degradation 
is caused by the coding phase. 
 
The other approach is to calculate the quantization levels (a,b) already at the encoding phase 
and transmit them. In this way one can minimize both the quantization error and the 
computation needed at the decoding phase. They are also independent of the quantization 
method selected. Certain methods (e.g. methods C, E, F, H, and I) of Section 4.1 even exclude 
the possibility of expressing the quantization by statistical quantities, therefore (a,b) is the 
only choice. The pair (a,b) contains redundancy, which can be easily removed by a suitable 
prediction and coding technique. 
 
Several methods for coding the quantization data will be presented next. 
 
 
A) Fixed number of bits 
 
The most straightforward approach is to code the quantization data by 8+8 bits as such. 
No extra computations are then needed and direct access to the coded file is retained. It has 
been observed [10], that the decrease in the quality of the image will be small if (x ,σ) is 
quantized to 6+4 bits. Here one can simply allocate the values evenly within the ranges x∈
[0,255], and σ∈[0,127] (or even truncate the standard deviation to the range σ∈[0,63]). In the 
same way, less than 8+8 bits can be allocated for the pair (a,b). Our experiments indicate that 
the MSE-value of the test image Lena increases only circa 3 % when using 6+6 bits in the 
quantization, see Section 8. 
 
 
B) Joint Quantization 
 
Healy and Mitchell [24] improved the 6+4 bits coding system by applying joint quantization 
to ( x ,σ) with 10 bits. Here the accuracy of x  depends inversely on the value of σ, see Fig. 2. 
For example if σ=4 there are 10-3=7 bits left to code x . The technique still gives the same bit 
rate, but it has been argued that the quantization error is more visible to the human eye in the 
low variance regions, and a more accurate representation is needed in these. In 
contradistinction to this effect, our experiments show that the greatest contribution to the 
MSE-values comes from the high variance blocks. This indicates that there is a contradiction 
between MSE and subjective quality. 
 
The concept joint quantization was originally introduced by Mitchell and Delp [37]. They 
used the method for 16- and 32-level images by using 6 and 7 bits for the pair ( x ,σ), 
respectively. 
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FIGURE 2. Joint quantization of x  and σ. 

 
 
C) Vector Quantization 
 
The use of vector quantization [18, 42] for coding the bit plane was first proposed by Udpikar 
and Raina [61]. They used a variant of AMBTC [60] that stores a compressed block in the 
form (x ,x l,B). The decoder replaces each 0-bit of B by x l and each 1-bit by x h, where 
 
 x x m

q
x xh l l= + ⋅ −            (23) 

 
By applying vector quantization (VQ) to the pair ( x ,x l), the bit rate can be reduces to 8 bits 
for (x ,x l) with the cost of increased MSE-value. The method, however, does not consider 
interblock correlations, i.e. the dependencies between neighboring blocks.  
 
Weitzman and H.B. Mitchell [69] apply predictive vector quantization for reducing the 
interblock redundancy. Instead of coding (a,b), they apply VQ to the prediction errors 
(eai,ebi):  
 

 
ea a a a a

eb b b b b
i i west north northwest

i i west north northwest

= − + +

= − + +

2 2

2 2

5

5
        (24) 

 
Here awest, anorthwest, and anorth refer to the a-values of the neighboring blocks that have 
already been coded.  
 
Another approach was proposed by Alcaim and Oliveira [2]. They encode x  and σ separately, 
making two subsample images, one from the x -values and another from the σ-values of the 
blocks. These subsample images are decomposed into 2*2 blocks which are then coded by 
VQ. In this way one can reduce both the interblock and intrablock redundancy. 
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D) Discrete Cosine Transform 
 
Wu and Coll [73] propose the compression of the pair (a,b) by the use of discrete cosine 
transform (DCT). Two subsample images are formed, one from the a-values and another from 
the b-values of the blocks. These subsample images contain one pixel per block of the 
original image. They are then coded by the adaptive DCT presented in [4, 5]. Details of the 
subsample images must be preserved as accurately as possible, since they have an influence 
on a large number of pixels in the reconstructed image. 
 
An improved variant of the method is also given in [73]. Here the second subsample image is 
not formed from the b-values, but from the (b-a)-differences instead. If one wants to retain the 
same MSE-level, the differences must be calculated at the coding phase by b-a', where a' is 
the reconstructed a-value after inverse DCT.  
 
The use of a computationally demanding algorithm like DCT is justified by the fact that the 
subsample images are only 1/16 of size of the original image, for the block size 4*4. When 
the compression ratio of the DCT is predefined to 3:1, the total bit rate of a and b is 0.33 bpp 
at the cost of higher MSE. 
 
 
E) Lossless coding 
 
The two subsample images can be compressed by several different image coding algorithms. 
As stated earlier, it is important that the information of the subsample images is preserved as 
far as possible. Therefore the use of a lossless image compression algorithm is apparently a 
good choice. Two variants of this type, and another related method, will be presented next. 
For more information on lossless image compression, see [25, 26, 49, 50, 57, 58]. 
 
1. Predictive entropy coding: 
 
Fränti and Nevalainen [16] propose the use of a predictive coding scheme with a suitable 
context model. For each (a,b)-pair to be coded, a prediction is made using the data already 
coded. Instead of coding (a,b), the prediction errors eai and ebi are calculated: 
 

 
ea a a a

eb b a

i i
west north

i i i

= −
+

= −
2            (25) 

 
Denote the entropy of an individual prediction error eai by H0(eai) corresponding to 
memoryless source: 
 
            (26) H ea p eai0 ( ) log= − i

 
Here p(eai) stands for the probability of the occurrence of a particular prediction error eai. 
(The entropy of H0(ebi) is found similarly.) Because a one-pass compression method is 
preferred, the probabilities are determined adaptively from the coded image. By applying 
arithmetic coding [72] one can express eai and ebi by the number of bits given by the entropy. 
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The entropy coding scheme can be improved by using eai-1 and ebi-1 as contexts when coding 
the prediction errors eai and ebi. Here eai-1 and ebi-1 refer to the prediction errors of the 
previously coded block. The benefit of the context model remains relatively small since the 
predictive coding already takes advantage of the neighboring blocks. 
 
A drawback of the method is that arithmetic coding is time consuming, and the overall 
compression system is rather complex compared to the original BTC algorithm. 
 
2. FELICS coding: 
 
We consider next a new approach for coding the two subsample images. We apply FELICS 
coding (Fast and Efficient Lossless Image Compression System) by Howard and Vitter [25]. 
The method is highly applicable to BTC because of its practical usefulness, and it is also one 
of the most efficient lossless methods known. 
 
FELICS coding uses the information of two adjacent pixels when coding the current one. 
These are the one to the left of the current pixel, and the one above it. Denote the values of 
the neighboring pixels by L and H so that L is the one which is smaller. Howard and Vitter 
[25] have found that the probability of individual pixels obeys the distribution given in Fig. 3. 
Our experiments show that the same distribution holds very well for the pixels of the 
subsample images, too.  
 
 

L H

below
range

above
range

 in
range

probability

intensity

 
 

FIGURE 3. Probability distribution of intensity values. 
 
The coding scheme is as follows: A code bit indicates whether the actual value falls into the 
in-range. If so, an adjusted binary coding is applied. Here the hypothesis is that the in-range 
values are uniformly distributed. Otherwise the above/below-range decision requires another 
code bit, and the value is then coded by Rice coding [52] with adaptive k-parameter selection. 
For details of FELICS coding, see [25]. 
 
We can improve the coding of b if we remember that a is already known at the moment of 
coding b, and that b≥a. Thus, if a falls into the same interval as b, the actual range of b can be 
reduced so that only the potential values are considered. For example if a belongs to the 
in-range of b, the interval is reduced by changing the lower bound L to a. The improvement, 
however, remains marginal. 
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The results of FELICS are quite similar compared to the results of the predictive entropy 
coding scheme, but it is fast and much less involved, see Section 8. 
 
3. LGD-algorithm: 
 
Lu et al. [34] propose a coding method, which also involves predictive coding and entropy 
coding, as in [16]. The difference between the methods is that in [34] the predictive coding is 
performed for the original image, while in [16] it is applied to the quantization levels. 
 
The coding scheme is as follows: for each pixel in a block to be coded, differences between 
the value of a current original pixel and the value of the previous reconstructed pixel in the 
same horizontal line is constructed. Quantization levels a and b are then calculated for the 
differences by the Lloyd quantization of Section 4.1. For this it is known that xth=(a+b)/2, so 
the pair (xth,xth-a) can be coded instead of (a,b). It is expected that these values are small 
integers close to zero, so a simple prefix code is proposed in [34]. Here the values close to 
zero are represented by fewer bits, see Fig. 4. Notice, that one extra bit is needed for the sign 
of xth, because the values are differences, and they can have a negative value, too. It seems 
evident that Rice-Colomb coding [7, 52] could be applied instead of this code table. 
 
 value  code   value  code   value  code 
    0  000      6  11000   12  11110 
    1  001      7  11001   13  1111100000000 
    2  010      8  11010   14  1111100000001 
    3  011      9  11011   15  1111100000010 
    4  100    10  11100     :   : 
    5  101    11  11101     :   : 
 

FIGURE 4. Code table for the differences by [34]. 
 

4.3. BIT PLANE REDUCTION 
 
 
In the basic BTC method, both quantization data and the bit plane of a block require 16 bits 
each. Several methods for reducing the bits needed for the quantization data was presented in 
Section 4.2. One can reduce circa 30 % of the bits needed without any (further) loss. A larger 
reduction is still possible at the cost of decreased image quality. In this section, we will 
consider several attempts to reduce the size of the bit plane. 
 
 
A) Skipping the bit plane 
 
If the contrast of xi-values is very small one can omit the storing of B and thus implicitly code 
all pixels by x , see [37, 41]. The criterion for using this one-level quantization varies. 
Mitchell and Delp [37] omit the bit plane if σ<1. The pair ( x ,σ) is coded before the bit plane 
and therefore the decoder always knows whether the bit plane follows or not. Nasiopoulos et 
al. [41] use range as a threshold criterion instead of the variance: 
 
 range x x= −max min            (27) 
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A block is represented by its average if the range is less than a given threshold. An extra code 
bit indicates whether the bit plane is skipped or not, and therefore only x  needs to be coded. 
 
The one-level quantization method of uniform blocks causes increased blocky appearance in 
the reconstructed image. This is because the blocks which were represented by their averages 
have intensity values which are necessarily not close to each other and their boundaries can 
therefore be recognized. This negative effect can be avoided or at least reduced by averaging 
filtering, see Section 6. 
 
 
B) Prediction technique 
 
A simple prediction technique proposed by Mitchell and Delp [37] reduces the volume of the 
bit plane by encoding only half of the bits, see Fig. 5. The remainder of the bits are 
"concluded" on the basis of the coded ones by a set of logical expressions. This method 
naturally causes more distortion to the image, and in our experiments the MSE-value was 
multiplied by a factor of 2 to 4, see Section 8. The result of the prediction technique is 
weakest in the blocks with a large contrast. Therefore an adaptive bit plane coding method by 
[37] uses the prediction technique only when the variance is small enough, say 1 ≤ σ ≤ 4. 
 
 

A  B  C  D

E  F  G  H

I  J  K  L

M  N  O  P

Prediction formulas:
B = (A and D) or (F and J)
C = (A and D) or (G and K)
E = (A and M) or (F and G)
H = (D and P) or (F and G)
I = (A and M) or (J and K)
L = (D and P) or (J and K)
N = (M and P) or (F and J)
O = (M and P) or (G and K)

 
 

FIGURE 5. Description of the prediction logic [37]. Encircled bits are stored. 
 
 
C) Filtering technique 
 
Median filtering [59] is a signal processing technique where the input signal is processed by 
replacing each input value with the median of the original values within a given window. The 
signal can be filtered over and over again until it reaches its roots, i.e. it is not affected by the 
filtering anymore. The root signal set includes all the signals that are roots. It has been shown 
that the block signals have a very high probability of belonging to the root signal set [3]. 
 
Arce and Gallagher [3] proposed a 1D-median filtering for the BTC bit plane. The window 
was set to three pixels including the current pixel and two of its neighboring pixels in the 
same row. For the border pixels, the outer pixels are presumed to be of the same intensity as 
the border pixel. Each row of a block is median filtered to its roots. In the case of 4*4 blocks, 
roots can be reached by a single filtering pass. Compression is achieved because the number 
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of possible patterns has decreased from 16 down to 10, see Fig. 6 and 7. All the combinations 
that include isolated bits have been eliminated. 
 
To realize the benefit of the filtering, only the 8 most common combinations (marked by '*') 
of Fig. 7 are allowed to occur. The remaining patterns can now be coded by 3 bits each, 
giving a total 0.75 bits per pixel for the bit plane. The scheme is extremely simple and can be 
implemented very efficiently by look-up table. 
 

ORIGINAL
BIT PLANE

OUTPUT OF
FILTERING

1  1  0  1

1  1  1  0

1  0  1  0

1  0  0  1

1  1  1  1

1  1  1  0

1  1  0  0

1  0  0  1

 

* 1:  0 0 0 0   0.20

* 2:  0 0 0 1   0.08

* 3:  0 0 1 1   0.11

  4:  0 1 1 0   0.02

* 5:  0 1 1 1   0.07

* 6:  1 0 0 0   0.09

  7:  1 0 0 1   0.02

* 8:  1 1 0 0   0.12

* 9:  1 1 1 0   0.09

*10:  1 1 1 1   0.20

Root# Pattern
Experimental
 frequency

 
 
FIGURE 6. Illustration of 1D median filtering. FIGURE 7. Roots of the filtering. 
 
 
The method has been improved further so that the vertical correlations are also considered. 
Here the first row of each block is coded by 3 bits as proposed above, but for the other rows 
only 2 bits are used. This is done by reducing the number of transitions to 4 discarding the 
least likely patterns and taking into consideration the pattern of the previous row. This 
scheme reduces the bit rate of the bit plane to (3+2+2+2)/16 = 0.56 bits per pixel. For details, 
see [3]. 
 
Wang and Neuvo [66] proposed the use of 2D-filtering for exploiting the vertical correlations. 
They give two related filtering schemes, separable median filtering (SMF) and cross median 
filtering (CMF). The first one is a two-stage procedure where the length three window 
filtering is first applied in a horizontal direction and then in a vertical direction. In CMF a 
symmetrical two-dimensional window is used and only one stage is needed for one filtering 
pass. The number of roots for SMF is 2126 and for CMF 8208. The bit plane can therefore be 
coded respectively by 11, or 13 bits giving 0.69, or 0.81 bits per pixel. 
 
Wang et al. [64, 65] also considered a third filtering scheme by applying 1-dimensional 
morphological filters. The main difference from the other filtering schemes is the way the 
root signal set is formed. Two sets of roots, namely roots of opening and roots of closing, are 
adaptively used in the method. For more information about morphological filters, see [43, 63]. 
 
A summary of test results for the different filtering methods is given in Table 1. The results 
are for the test image Lena with the moment preserving BTC [10], and are collected from 
[63]. 
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TABLE 1. Summary of the filtering scheme results for Lena. 
 

Method: Reference: No. of bits: MSE: MSE-inc.: 
Original BTC [10] 16 44.76 00.0 % 
Cross-median [66] 13 51.11 14.2 % 
Morphologial [65] 12 54.56 21.9 % 
1D-median [3] 12 55.21 23.3 % 
Separable median [66] 11 55.46 23.9 % 
2D-median [3] 9 Not given Not given 
 
 
D) Vector Quantization 
 
Several approaches have been proposed for reducing the volume of the bit plane by the use of 
vector quantization [14, 61, 68, 73] or a similar ad hoc technique [41]. The basic idea of VQ 
is to select a small set of representative vectors (binary blocks) and to code all possible 
vectors by an index to this set [18, 48]. The codebook is generated off-line on the basis of 
training vectors by using a suitable algorithm, like the generalized Lloyd algorithm [18, 32]. 
Then the same codebook is used for whatever images are to be coded. Adaptive vector 
quantization [20] was considered by Wu and Coll [73], but they prefer the non-adaptive, 
universal codebook VQ, because of the speed.  
 
The representative for a bit plane can be chosen by a total search, i.e. by testing each 
candidate codevector and selecting the one which minimizes the given distortion function. In 
this way, the result of the search is always optimal (corresponding to the distortion function) 
but it is impractical for large codebooks. The decoding, however, is always quick. 
 
A localized search was proposed by Weitzman and H.B. Mitchell [68]. They divide the 
codebook into several overlapping sub-codebooks. For each bit plane, its combination index 
is calculated. It determines the sub-codebook in which the search is performed. Even if the 
search method is not extensive anymore, the correct code vector (corresponding to the 
extensive search) will still be found with a very high probability (> 99%) according to [68]. 
 
The performance of a search method depends not only on the organization of the codebook, 
but also on the selected distortion function. MSE is the most obvious measure, however, it 
cannot be calculated independently from the quantization data (a,b) [17]. Most of the existing 
methods thus use Hamming distance, i.e. the number of positions in which the elements of the 
two binary vectors differ, as a distortion measure [41, 61, 68, 73]. If there are two or more 
codevectors with the same Hamming distance from the original bit vector, the one with the 
same number of 1-bits is chosen [73]. The advantage of Hamming distance is that it can be 
implemented by look-up table (LUT). 
 
The size of the codebook was 256 in [14, 61, 73] and 128 in [41], so the bit rate of the bit 
plane was respectively 0.5 and 0.44. Weitzman and H.B. Mitchell [70] proposed the use of 
several codebooks of different sizes. The size of a codebook depends on the contrast of a 
block (measured by b-a): the greater the contrast the larger the codebook. Nasiopoulos et al. 
[41] coded only blocks whose contrast is between a given range (not too large but not too low 
either) by VQ. The codebook was formed so that edge blocks are well represented. This also 
reduces the so-called staircase effect, which is otherwise impaired by VQ.  

18 



 
A classified VQ algorithm is proposed by Efrati et al. [14] for avoiding the staircase effect. 
BTC algorithm with VQ is used for the low contrast blocks, and a three-level quantizer is 
applied for the high contrast blocks, see Section 6. Thus, the algorithm uses two different 
codebooks, one for the low contrast and another for the high contrast blocks. 
 
 
E) Interpolation 
 
All the methods discussed above were based on the idea that the bit plane is only partially 
coded, thus omitting a part of it, or by selecting a representative for the bit plane (or for its 
rows) from a smaller subset, which can either be called a root signal set or a codebook. 
Therefore the reconstructed image contains pixels where an a-value has been changed to a b-
value or vice versa. The cost of these errors may be high in the MSE-sense, if the contrast in 
the block is large. To avoid this problem, a totally different approach is taken in the following 
method. 
 
Zeng's interpolative BTC [76, 77] is similar to the prediction technique (method B) in the 
sense that half of the bit plane is omitted. At the decoding phase the partial image is first 
reconstructed and then the missing pixel values are interpolated on the basis of the existing 
ones. Zeng has proposed two variants of the method: one which codes 50 % (IBTC-1) and 
another which codes 25 % of the bits (IBTC-2), see Fig. 8. 
 

IBTC-1

Coded Pixel

Reconstructed
pixel

IBTC-2

Coded Pixel

Reconstructed pixel at the
first interpolation step

Reconstructed pixel at the
second interpolation step

 
 

FIGURE 8. Interpolation patterns of IBTC-1 and IBTC-2. 
 
 
The interpolation is done by stack filters designed to be optimal in the MAE-sense 
[71, 76, 78] or by using median filters [77]. The latter is recommended because of the ease of 
implementation. In the IBTC-1 four adjacent coded pixels are used to calculate the intensity 
of the current one: 
 

 y y y y y y y y yi j i j i j i j i j i j i j i j i j, , , , , , , ,, , , ,= ⋅ + ,+ +− + − + − + − +median 1 1 1 1 1 1 1 1
1
4

   (28) 
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In the IBTC-2 a two-phase interpolation is used. At the first phase the following median filter 
is used, where each pixel is interpolated on the basis of the coded pixels. 
 

 y y y y y y y y yi j i j i j i j i j i j i j i j i j, , , , , , , , ,, , , ,= ⋅ + + +− − − + + − + + − − − + + − + +median 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1
4

 (29) 

 
At the second phase, the median filter of (28) is used. Note that the interpolation is a separate 
phase of the decoding process and therefore the block boundaries do not disturb the 
reconstruction of the missing pixels. 
 
We also implemented a third interpolative scheme. Three pixels out of four were coded in it. 
The missing ones are interpolated by (28). This gives three different interpolation levels with 
corresponding bit rates 0.75, 0.50 and 0.25 for the bit plane. 
 
 
F) Entropy coding 
 
Since the bit plane can be considered as a binary image, one might expect that a binary image 
coding method could be used. On the other hand, the BTC-process ensures that the number of 
0 and 1 bits are almost equal and the bits are relatively evenly distributed all over the bit 
plane, see Fig 9. Therefore simple coding methods, like run length coding [44], are unlike to 
give any compression. 
 
Entropy based bit plane compression has been described in [16]. The image (the bit plane) is 
proceeded in row major order from left to right. A high degree Markov model is applied for 
each pixel. The value of a pixel is predicted by the 7-bit context template shown in Fig. 10, 
and then coded by arithmetic coding according to its probability. QM-coder [45, 46] was used 
as the arithmetic coding component. 
 
The size and shape of the template have major effect on the coding efficiency when 
compressing binary images, and better results can be achieved with larger templates [39]. 
However, this does not necessarily apply to the block truncation coding. The problem here is 
the blockwise quantization according to the mean x  of each individual block. This destroys 
the correlation of neighboring bits belonging to two different blocks. 
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 FIGURE 9. a) Bit plane of Lena by BTC     b) Bit plane of Lena by HBTC 
 
 

Bit to be coded

Bit within template

 
 
     FIGURE 10. 7-bit template. 

The benefit of the entropy coding remains relatively 
small: for Lena, only ca. 0.1 bits per pixel (=10%) 
can be saved. The result are slightly better when 
hierarchical decomposition is applied, but not as 
good as expected.  
 

 
 

5. HIERARCHICAL DECOMPOSITION OF THE IMAGE 
 
 
A natural extension of the single-level BTC is to use a hierarchy of blocks [27, 54]. In 
hierarchical block truncation coding (HBTC) the processing begins with a large block size 
(m1*m1). If variance σ2 of a block is less than a predefined threshold vth the block is coded 
by a BTC-variant. Otherwise it is divided into four subblocks and the same process is 
repeated until the variance threshold criterion is met, or the minimal block size (m2*m2) is 
reached, see Fig. 11. A quadtree structure [55] is maintained to render the decoding possible. 
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FIGURE 11. Hierarchical decomposition of Lena. 
 
By adjusting the variance threshold vth, and the block sizes m1, m2, one can direct the benefit 
of the hierarchical decomposition to achieve a low bit rate or high image quality. The block 
sizes in the hierarchy were set to m1=8, m2=2 by Kamel et al. [27] and m1=32, m2=4 by Roy 
and Nasrabadi [54]. Nasiopoulos et al. [41] proposed a two-level hierarchy with m1=4, m2=2. 
They use range (see formula 27) as threshold criterion, instead of variance. 
 
The high MSE-values rarely originate from the largest blocks unless the variance threshold is 
too high. Therefore, if a low MSE-value is the primary criterion of the image quality, the 
maximal block size of 32*32 is recommended. The selection for the smallest block size m2 
causes a more dramatic change in MSE. If one wants to achieve very high quality images the 
smallest block size must be set to m2=2. The variance threshold vth can be considered as a 
finetuning parameter. 
 
Although the hierarchical decomposition seems to be an excellent idea, it has some 
drawbacks also. Several non-hierarchical methods (Section 4) preserve direct access to the 
compressed file, but a straightforward implementation of HBTC does not. This also means 
that the fault tolerance has decreased. Moreover, large uniform areas may cause blocky 
appearance in the reconstructed image.  
 
 

6. EXTENSIONS OF BTC 
 
 
In this section, several external pre- and post-processing techniques will be discussed. Some 
of them aim at an improved visual quality of the reconstructed image, while others simply 
strive for lower bit rates. BTC's application to color images and video compression will be 
shortly discussed. 
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A) Smoothing filter 
 
A simple smoothing operation of the original image is proposed by Mitchell and Delp [37]. 
The purpose of the smoothing is to reduce noise in the original image which causes pixel 
values near the threshold to be quantized to the wrong value. Each pixel xi,j of a block is 
replaced by a weighted sum of itself and the four adjacent pixels. 
 
       (30) x x x x x xi j i j i j i j i j i j' . ., , , , ,= ⋅ + ⋅ + + +− − + +0 6 0 1 1 1 1 , 1

 
B) Blocky appearance 
 
Blocky appearance is a common feature of block coding techniques like BTC. The relatively 
small size of blocks (4*4) keeps the effect almost unnoticeable for human eyes. However, 
when large block sizes are applied in the hierarchical variant, the effect becomes more visible. 
Another source for the blocky appearance is the skipping uniform blocks -technique presented 
in Section 4.3, where pixels of low contrast blocks are represented by their average. 
 
For reducing the blocky appearance Nasiopoulos et al. [41] proposed the use of smoothing 
filter as a postprocessing technique. The reconstructed image is scanned using an 
8*8-window. If the contrast in the window is smaller than a predefined smoothness criterion, 
the area is smoothed by a 3*3 averaging filter. Here each pixel yi,j of the window is replaced 
by the value y'i,j. 
 

 y i j i j
ji

' , = ⋅
=−=−
∑∑1

9 1

1

1

1

y ,            (31) 

 
The method takes care of the blocky appearance of the reconstructed image, but the smoothed 
regions now look flat and artificial. In order to give back to the image the lost texture, 
Gaussian random noise is added to the averaged areas. 
 
 
C) Discrete Cosine Transform 
 
A hybrid of BTC and DCT is proposed by Delp and Mitchell [10]. First a highly compressed 
image is obtained by taking the two-dimensional discrete cosine transform over 16*16 pixel 
blocks. Only the eight non-dc coefficients in the low frequency section of each block are 
retained. A difference image is constructed by subtracting the transform coded image from the 
original. The basic BTC algorithm is then applied to this difference image. Both BTC and 
transform codes are sent to the decoder with bit rate 1.63 + 0.25 = 1.88 bpp. 
 
The hybrid method was argued for using the different properties of the methods. While BTC 
preserves edges, they tend to be ragged (the staircase effect). On the other hand, transform 
coding usually produces smooth edges. In the hybrid formulation, the aim is to improve visual 
quality of the image. At the same time, MSE-value is reported to decrease [10]. 
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D) Differential Pulse Code Modulation 
 
Differential pulse code modulation (DPCM) is a well-known signal coding technique and it 
has been widely used in image compression [8, 44, 50]. In DPCM, each pixel value is first 
predicted on the basis of previously coded pixels. The result of the prediction is then 
subtracted from the actual pixel values, and the difference ei,j = xi,j - $x i,j is coded. 
 
Delp and Mitchell [11] propose a composite method of DPCM and BTC. First an open-loop 
prediction is performed to construct the mean value and standard deviation of the differences 
(e ,σe), see Fig. 12. In this stage, quantization levels a and b are also calculated, because they 
are needed for the predictor. Then the quantization procedure is performed by applying 
DPCM with a closed-loop prediction. Prediction function is as follows. 
 
 $ . . ., , , ,x y yi j i j i j i j= ⋅ − ⋅ + y⋅− − −0 8 0 6 0 81 1 1 −1         (32) 
 
Because the ranges of e  and σe are smaller than those of x  and σ, they can be coded with 
fewer bits. With the block size 8*8, Delp and Mitchell have found that 4+3 bits suffice; 
however, the detailed bit allocation table is not given. It has been shown that while x  of a 
block is preserved, the second moment is not [11]. 
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FIGURE 12. Differential Pulse Code Modulation. 
 
A similar coding scheme is proposed by Lu et al. [34]. They, however, use a simple 
prediction function $ , ,x yi j k j= . Here yk j,  denotes the nearest pixel of the same row, but outside 
of the current block. Thus this pixel is already known by the decoder, and the closed-loop 
prediction can be applied. The bit allocation system of the method was presented in Section 
4.2. 
 
E)  N-level quantization 
 
The basic idea of block truncation coding, two-level quantization, can be derived to a general 
n-level quantizer [12, 33, 35, 56]. Delp and Mitchell have proposed a moment preserving 
quantizer, which is shown to be related to the Gauss-Jacobi mechanical quadrature problem 
[12]. MSE-optimal quantizer has been given by Max [35]. These quantizers, however, 
presuppose that the probability distribution of the signal is either uniform, Gaussian, or 
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Laplacian. In Lloyd's quantizer [33] all quantization levels are given by an iterative 
algorithm. 
 
Monet and Dubois [40] have proposed a uniform quantization method in which the overhead 
information of a block is first coded, consisting of the pair (xmin, xmax). The pixel values of a 
block are then scaled and normalized within this interval. They are finally quantized so that 
the number of quantization levels in a block is fixed regardless of the variance of the block. 
 
More specific approaches has been taken by several authors concentrating on the 3-level 
quantization [13, 14, 19, 53]. Goeddel and Bass [19] proposed a 3-level quantizer to be used 
along with the original BTC. For each block, both quantizations are determined, but only the 
one with the smaller MSE-value is sent to decoder. Ronsin and DeWitte [53] use both 3- and 
4-level quantization. They later developed another algorithm, in which the edge blocks are 
coded by a 3-level and the non-edge blocks by a 2-level quantizer [13]. The same idea was 
also applied by Efrati et al. [14].  
 
Vector quantization of the quantization matrix is performed in all of these approaches. The 
codebook is designed to contain edge blocks [14]; or the end points of the edges are coded by 
an edge following algorithm [13, 53]. Wang and Mitra propose a more sophisticated 
algorithm by using block pattern models [67]. 
 
Ceng and Tsai [6] proposed the use of a 4-level quantizer without increasing the number of 
parameters. All four quantization levels can still be derived from the pair (a,b). Wu and Coll 
[75] has given a non-uniform n-level quantizer, where each of the quantization levels are 
iteratively determined aiming at minimal MAE. They also introduced a predictive entropy 
coding scheme for coding the overhead in the special case of a 4-level quantizer. Uhl [62] has 
extended the idea of multilevel quantization and proposed a hybrid algorithm. The blocks are 
classified and for each class, a different quantization is applied. They use 1, 2, 4, and 8-level 
quantizers, and a copy operation depending on the type of block. 
 
The properties of these quantizers are briefly summarized in Table 2. The overhead refers to 
the storage requirements, supposing that the quantizers are adaptively applied for each block, 
as in the framework of block adaptive quantization methods. The overhead of the quantization 
matrix is expressed as bit per pixel, and in principle, is equal to the 2-base logarithm of the 
number of quantization levels in the quantizer. The quantization parameters require one byte 
per parameter (per block). Uniform quantizers need only two parameters, while non-uniform 
quantizers often require one parameter per each quantization level value (like Lloyd's 
quantizer). This might be somewhat impractical in block adaptive coding methods like BTC. 
However, a practical implementation [75] limits the number of levels to four. 
 
 
TABLE 2. Properties of different quantizers. 
 

Quantizer: Refe-
rence.: 

Quantization 
parameters: 

Quant. 
levels: 

Overhead 
 Quant.      Quant. 
 param.:   matrices:

BTC [10] (a,b) 2 2 1 
3-level BTC [53] (a,b) 3 2 log 3 
4-level BTC [6] (a,b) 4 2 2 
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n-level BTC [75] one value/level N N log N 
Block adaptive quantizer [40] (xmin, xmax) N 2 log N 
Lloyd quantizer [33] one value/level N N log N 
 
 
F) Color images 
 
The most common representation of color images, RGB, divides the image into three separate 
color planes, namely red, green, and blue. This color system is based on the trichromatic 
nature of the human vision [21]. There exists a high degree of correlation between the planes 
R, G and B, and therefore a color space conversion from RGB to YUV (or YIQ) is usually 
performed [46]. Y represents the luminance of the image, while U,V (I,Q) consists of the color 
information, i.e. chrominance: 
 

 
Y R G B
U B Y
V R Y

= ⋅ + ⋅ + ⋅
= −
= −

0 3 0 6 0 1. . .
          (33) 

 

 
I V U
Q V
= ⋅ − ⋅
= ⋅ + ⋅

0 74 0 27
0 48 0 41
. .
. . U

           (34) 

 
Color images are considered as a three-component generalization of gray scale images, and 
thus they can be compressed by extending the existing algorithms. Lema and Mitchell [31] 
propose an algorithm in which the three components of the YIQ-space are separately coded 
by the absolute moment BTC. As the human visual system is most sensitive to the variations 
of Y, and less to I and least to Q, the chrominance planes are subsampled. It means, that only 
the average value of each 2*2-block in the I-plane and the average value of each 4*4-block in 
the Q-plane is retained. In the decompression phase, the size of the planes are recovered by 
using bilinear interpolations. The method yields a bit rate of 2.13 (1.62+0.41+0.10) bpp. 
 
Wu and Coll [74] proposed the use of a single bit map for all three components, given by the 
quantization of the Y-component. The quantization levels of each component are further 
compressed by DCT, as presented in Section 4.2. High-frequency components of the DCT 
domain are discarded in the chrominance components so, that it correspond to a 3*3 
averaging filter for the I-signal and a 5*5 averaging filtering for the Q-signal. Several 
variations of the basic idea are considered in [74], including both RGB and YIQ color space 
images. A bit rate of 1.71 bpp has been reported for the latter. 
 
 
G) Video images 
 
A straightforward application of BTC to video images proposed by Healy and Mitchell [24]. 
They extended the block to consists of pixels from consecutive frames by using block size of 
4*4*3. A registration algorithm is used for detecting global translations, like camera 
movements. 2D-BTC is performed on movement blocks and edge regions. Bit rate can be 
reduced by coding only one 2D bit plane for the 3D-blocks. Further reduction is possible by 
skipping the coding of one or two frames, and coding only the blocks consisting of some 
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activities. All of these ideas are applied adaptively so that more accurate representation is 
used whenever necessary for preserving the image quality. 
 
Roy and Nasrabadi [54] have experimented also with the hierarchical BTC on video images. 
Bit rates have been reported down to 0.39 bpp for the CCITT test sequence "Walter". 
 
 
 

7. BLOCK TO BLOCK ADAPTIVE BTC 
 
 
In an adaptive compression scheme one can change the compression method from block to 
block. The adaptation may concern the quantization method, bit plane coding method, or both 
of them. In principle, one could even change the whole compression system, for example use 
BTC for one block and another coding system for the next block. Several attempts of this kind 
apply multilevel quantizers (see Section 6) along with the original BTC [6, 13, 14, 19, 62]. 
 
Griswold et al. [22] vary the quantization system so that a different set of moments (r'th and 
2r'th moments) is preserved. For each block, the BTC is tentatively applied with all values of 
r=1, 2, 3, 4, and the one with minimum MSE-value is selected. Quantization levels (a,b) are 
calculated already in the encoding phase, and therefore decoder does not need to know the 
choice of r. 
 
Mitchell and Delp [37] apply the adaptation only to the coding of the bit plane: 
 
 Standard deviation:  Bit plane coding: Bit rate: 
  High    Full resolution  16 bits 
  Medium   Prediction technique   8 bits 
  Low    Uniform block    0 bits 
 
Standard deviation is separately coded from the bit plane and assumed to be sent first. The 
decoder thus knows implicitly whether the bit plane follows, and by how many bits. 
 
Adaptive compression coding (ACC) is proposed by Nasiopoulos et al. [41], see Fig. 13. If 
the range of a 4*4 block is smaller than a given smoothness threshold (18, 30, or 42) it is 
represented by its average. Blocks that are above the threshold but below 120 are coded by 
absolute moment BTC. If the difference of quantization levels (b-a) is less than or equal 
to 20, the bit plane is coded by vector quantization including only edge blocks. Hierarchical 
decomposition is applied to the remaining high activity blocks. Small blocks are either 
copied, or compressed by the one-level quantization, see Section 4.3. Overhead information is 
needed to inform the decoder of the coding system used. 
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FIGURE 13. Adaptive compression coding system [41]. 
 
 
The adaptive compression coding system is indeed a very promising BTC variant. The coding 
scheme corresponds to most of the conclusions in Section 8. ACC, however, does not 
consider the coding of the quantization data (a,b) at all, and thus the results given in [41] do 
not quite compete with the ones that are given in Section 8. 
 
 
 

8. EXPERIMENTAL TESTS 
 
 
We built an integrated BTC software for testing the various methods presented in this survey. 
Our object has been usability of the software, so that any particular method could be easily 
utilized by a choice of the parameters. Main interest is focused on the bit rate (bpp), and the 
image quality. The latter is usually evaluated by the mean square error function (MSE). We 
fix the bit rate and then compare the MSE-values. Because of the highly procedural approach 
used in the implementation, we give almost no attention to the running times. The set of test 
images includes 18 different 8-bit gray-scale images of varying sizes from 256*256 to 
720*576, see Fig. 14. There are two version of Lena: the first one is the green-component 
(G), of the original RGB-image, while Lenna is the luminance component (Y). The first one is 
the most frequently used image in the literature, and thus will be the primary test image in this 
survey. 
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Airplane (512 x 512)      Baboon (512 x 512)         Bigfoot (647 x 504) 

 

     
Boats (720 x 576)      Bridge (256 x 256)         Camera (256 x 256) 

 

     
Couple (256 x 256)      Girl (720 x 576)         Gold Hill (720 x 576) 
 
 

FIGURE 14 a. Test images 1 to 9. 
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Lena (512 x 512)       Lenna (512 x 512)         Peppers (512 x 512) 

 

     
Sail (512 x 512)       Tiffany (512 x 512)         New Orleans (512 x 512) 

 

     
Xray (512 x 512)       Jupiter (720 x 576)         Galaxy (512 x 512) 
 
 

FIGURE 14 b. Test images 1 to 9. 
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8.1. QUANTIZATION METHOD 
 
 
We start by comparing the different quantization methods of Section 4.1, see Table 3 for the 
selected methods. First we compress the test image Lena by all these methods. Quantization 
levels (a,b) are coded by 8+8 bits, and the bit plane is stored as such. The quality of the 
reconstructed images is shown in Table 4. The results indicate that the difference between the 
original 2nd moment preserving and the MSE-optimal quantization is remarkable. 
Magnifications of the reconstructed images are shown in Fig. 15. The coding artifacts are 
clearly seen in the magnifications; however, it is almost impossible to observe any subjective 
quality differences between the quantization methods. 
 
The MSE-values are compared with the corresponding MSE-optimal quantization values in 
Fig. 16. The methods that preserve some set of moments are worst in the MSE-sense. The 
best candidates aside MSE-optimal quantization are the Lloyd and the one which uses 
GB-heuristics as a threshold. The latter is also easy to calculate, and is thus a good alternative 
to the MSE-optimal quantization. In the following sections, the MSE-optimal quantization 
will be the point of comparisons, unless otherwise noted. 
 
 
TABLE 3. Quantization methods. 
 
 2nd mom. 3rd mom. Abs.mom. GB+mean Lloyd MSE-opt. MAE-opt.
xth mean 3rd moment mean (xmax+xmin)/2 (a+b) / 2 MSE-opt. MAE-opt. 

(a,b) moment 
preserving 

moment 
preserving 

mean values mean values mean values mean values medians 

 
 
TABLE 4. Fidelity function values for reconstructed Lena. 
 

 2nd mom. 3rd mom. Abs.mom. GB+mean Lloyd MSE-opt. MAE-opt.
MSE 43.76 42.11 40.51 37.05 36.83 35.54 40.21 
MAE 3.88 3.89 3.67 3.68 3.78 3.54 3.34 
SNR 31.72 31.89 32.06 32.44 32.47 32.62 32.09 
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   Original         2nd moment          3rd moment 

     
  bpp=8.00     mse=0       bpp=2.00     mse=43.76        bpp=2.00     mse=42.11 
 
 
   Absolute moment       GB+mean          Lloyd 

     
  bpp=2.00     mse=40.51      bpp=2.00     mse=37.05        bpp=2.00     mse=36.83 
 
 
   MSE-optimal     MAE-optimal 

   
   bpp=2.00     mse=35.54   bpp=2.00     mse=40.21 

 
 

FIGURE 15. Eye of reconstructed Lena after different quantization methods. 
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FIGURE 16. MSE-deficiency compared to the MSE-optimal quantization. 
 
 
The basic idea behind the original BTC was to preserve certain moments. Despite the fact that 
the moment preserving quantizers can be written in closed form, the resulting quantization 
levels are only integer approximations of the formulas, and thus distorted by rounding errors. 
Fig. 17 and 18 demonstrate how well the two first moments are actually preserved in different 
quantization systems (white sections in the columns). 
 
The illustrations show that the moments are not preserved precisely in any method. In fact, 
the moment preserving quantization does not preserve the first moment (mean) any better 
than the other quantization methods (except the MAE-optimal quantization). It will, however, 
preserve the second moment somewhat better, but the difference is hardly significant. 
 
Moreover, if the quantization data and/or bit plane is further compressed, the moments are 
even less accurately preserved. In Fig. 17 and 18, there are also errors originating from 
quantization of (a,b) to 6+6 bits (gray sections in the columns) and from 50 % interpolation of 
the bit plane (dark sections in the columns). Despite all of that, the greatest deficiency of the 
moment preserving quantization is that it does not even try to preserve the moments beyond 
the block boundaries. 
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FIFURE 17. Error in the 1st moments of the reconstructed Lena. 
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FIGURE 18. Error in the 2nd moments of the reconstructed Lena. 
 
 

8.2. CODING THE QUANTIZATION DATA 
 
 
There are several choices of quantization data to be coded, but only (a,b) is independent of 
the selected quantization method. It also minimizes the computation required by the decoder. 
The pair (a,b) contains redundancy but it can easily be removed by representing the 
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quantization data by (a,b-a). On the other hand, the use of (x ,σ), or ( x ,α) takes advantage of 
the skewness information included in the bit plane, and therefore a less accurate 
representation would be possible with the same MSE. However, the extra degdaration 
generated by the rounding errors causes the overall performance for (a,b) to be slightly better 
[16] in the sense of bit rate and MSE. 
 
Next we will show the effect of the number of bits allocated to (a,b) on the MSE-value. 
Table 5 summarizes the results with a set of test images. It turns out that the number of bits 
can be reduced to 6+6 with only a small increase in MSE. Similar results hold for the other 
test images, too. 
 
 
TABLE 5. MSE-values of different accuracy. 
 
No. of bits:  8+8 7+7 6+6 5+5 4+4 3+3 2+2 
Airplane 34.51 34.78 35.78 39.86 55.67 130.91 342.96 
Baboon 118.22 118.48 119.48 123.50 139.67 204.85 431.69 
Boats 27.97 28.24 29.25 33.22 48.24 109.46 445.86 
Bridge 87.67 87.92 88.92 92.88 109.01 173.86 488.38 
Lena 35.54 35.80 36.80 40.74 56.57 118.29 376.27 
New Orleans 14.21 14.47 15.46 19.41 34.96 94.60 432.14 
X-ray 14.69 14.98 16.16 21.23 43.01 140.17 892.06 
Galaxy 0.82 1.10 1.99 6.63 28.66 76.56 187.32 
 
 
Several promising methods for coding the quantization data were introduced in Section 4.2. 
We consider here only two of them, Entropy coding (EC) and FELICS, see Table 6. In 
FELICS the intrablock redundancy is not properly taken into consideration. In spite of this, 
the results are surprisingly close to EC, and sometimes even better. Moreover, the 
implementation of FELICS is very simple, and thus it is a strong candidate for coding the 
quantization data. 
 
 
TABLE 6. Performance of various quantization data coding schemes. 
 
Accuracy: 
Coding method: 

8+8 bits 
     EC        FELICS 

6+6 bits 
     EC        FELICS 

Airplane 9.70 9.57 6.34 6.30 
Baboon 12.26 12.21 8.03 8.03 
Boats 9.60 9.49 6.38 6.26 
Bridge 13.02 12.54 8.51 8.45 
Lena 10.58 10.69 6.69 6.75 
New Orleans 10.29 9.82 6.50 6.21 
X-ray 8.98 9.54 5.65 6.11 
Galaxy 4.08 5.26 2.94 4.26 
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8.3. CODING THE BIT PLANE 
 
 
We implemented four of the bit plane coding methods of Section 4.3. The interpolative BTC 
proposed by Zeng [76, 77] includes two levels of interpolation in which 50 % or 25 % of bits 
of the bit planes are stored. We modified the 50 % variant so that a 75 % interpolation scheme 
was obtained, too. 
 
Other methods considered are the 1-dimensional median filtering [3], vector quantization 
[61], and the prediction technique [37]. They may not be the best representatives of their kind, 
but we try to get an idea of their power relative to each other. In the VQ implementation, we 
experimented several different search techniques, but we report here only the results for the 
extensive (MSE-optimal) search. The codebook was generated by the generalized Lloyd 
algorithm, and the initial codebook was selected heuristically as the 256 most frequent 
matrices, as proposed in [17]. 
 
The MSE-values for different methods and test images are summarized in Table 7. Magnified 
parts of the reconstructed Lena are shown in Fig. 19. The interpolative method (with 50 % 
and 75 % schemes) was the most promising in the MSE-sense in our tests. 
 
 
TABLE 7. MSE-values according to different bit plane coding methods. 
 

Method: Storing Int-75% Int-50% Int-25% Filtering VQ Prediction
bpp: 1.00 0.75 0.50 0.25 0.75 0.50 0.50 

Airplane 34.51 37.11 39.60 75.43 40.14 42.72 120.62 
Baboon 118.22 169.60 217.80 387.47 170.83 234.54 417.59 
Boats 27.97 30.99 34.13 76.61 39.91 35.61 90.00 
Bridge 87.67 112.96 138.40 247.74 127.52 141.94 271.34 
Lena 35.54 38.85 41.93 63.83 46.46 48.29 101.48 
New Orleans 14.21 15.73 17.31 27.65 17.50 19.84 42.49 
Xray 14.69 17.95 21.33 48.76 20.61 18.47 33.05 
Galaxy 0.82 1.11 1.39 1.77 1.28 1.33 1.95 
 
 
There is an obvious way to improve the VQ and the filtering schemes. The quantization level 
values (a,b) are calculated according to the original partition of a block, however, the VQ or 
median filtering stage performs a new (indirect) partition. Therefore it makes sense to 
recalculate (a,b) according the new partition. In fact, the VQ search should be done on the 
basis of the original block, and not on the basis of the bit plane given by a quantization 
method which is ignored later on. This gives an order of 10 % improvement in the MSE, see 
[17]. 
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   Original      1 bit per pixel 

   
   bpp=8.00     mse=0    bpp=2.00     mse=35.54 
 
 
  Interpolation 75 %       Interpolation 50 %         Interpolation 25 % 

     
  bpp=1.75     mse=38.85      bpp=1.50     mse=41.93        bpp=1.25     mse=63.83 
 

 
   1D median filtering       VQ           Prediction technique 

     
  bpp=1.75     mse=46.46      bpp=1.50     mse=48.29        bpp=1.50     mse=101.48 
 
 

FIGURE 19. Eye of Lena with different bit plane coding methods. 
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8.4. DECOMPOSITION OF THE IMAGE 
 
 
In most BTC variants the block size is fixed to 4*4, however, any size and shape of blocks 
can be applied. Here we consider only square-like blocks. The size of a block has an 
immediate effect on the bit rate and the image quality, see Table 8. 
 
 
TABLE 8. Compression results for Lena with different block sizes. 
 
Block size 2*2 3*3 4*4 5*5 6*6 7*7 8*8 
MSE 7.69 23.56 35.54 46.44 56.17 64.62 72.36 
bpp 5.00 2.79 2.00 1.66 1.47 1.36 1.25 
 
 
In hierarchical decomposition, we apply the quadtree division and a block size which is 
a power of two. Different selections of the block sizes are compared in Fig. 20 and 21. The 
smallest block size is either 4*4 or 2*2, and it has a major effect both on the bit rate and the 
image quality. The largest block size can vary from 4*4 to 32*32 and its influence is only 
marginal for most of the images. It is also shown that the images containing more 
homogenous areas are easiest for the hierarchical BTC and thus gives the lowest bit rates. 
 
The criterion for dividing a block can be either standard deviation, variance, or range of the 
block. Variance was used with a threshold of vth=30 for the results in Fig. 20 and 21. 
A different threshold value can be given for each size of block, and it might be useful to apply 
a smaller threshold value to the larger blocks than to the smaller ones. In particular, the 
threshold for "4*4→2*2" division can be used to adjust the method towards better image 
quality or lower bit rate. 
 
Hierarchical decomposition is easy to implement, but the variable block size makes the 
coding of the bit plane somewhat more complicated. VQ implementation, for example, is 
tuned to 4*4-blocks only and therefore it excludes the use of 2*2-blocks. For larger blocks 
(32*32, 16*16, 8*8) the problem is solved by dividing the bit plane until 4*4 size is reached 
and then they are coded by the 4*4-block method. Interpolation is implemented as a 
two-phase algorithm, so it is independent of block size. 
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FIGURE 20. Compression efficiency versus block size.  
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FIGURE 21. Image quality versus block size.  
 
 

8.5. BLOCK TO BLOCK ADAPTIVE BTC 
 
 
In Adaptive BTC, the blocks are classified according to the contrast of a block, and a different 
coding method is applied to different types of blocks. Fig. 22 and 23 illustrates the 
distribution of the blocks and their average MSE values (per pixel) according to standard 
deviation. The higher the variance, the greater the MSE contributed by the block. Even if 
there are only few such blocks, their net effect is remarkable: more than 50 % of the 
MSE-value originates from the 10 % of the high variance blocks. This indicates that another 
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compression method might be used for these. One can also reduce the number of the high 
variance blocks by the use of hierarchical decomposition, as was done in the previous section. 
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   FIGURE 22. Distribution of 4*4 blocks.    FIGURE 23. Average MSE of different blocks. 
 
 
Fig. 24 illustrates the (absolute) additional MSE (compared to the basic BTC) originating 
from the coding of the bit plane. Even if the increase of MSE is greater in high variance 
blocks, there is no evidence that the variance of a block would reflect to the relative increase 
in MSE. A more important observation is that the superiority between any two given bit plane 
coding method is independent of the contrast of a block. The consequence of this is that there 
is no clear advantage of block to block adaptation in the bit plane coding method. 
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FIGURE 24. Additional MSE contributed by bit plane coding according to the block types. 

 
 
We have restricted our study of the adaptive schemes to the bit plane coding only. It would 
still be possible to extend the adaptation to the other parts of the algorithm also, and even 
other related coding systems, see Sections  6 and 7. 
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8.6. COMPARISON TO JPEG 
 
 
Next we will link together the best ideas of the BTC algorithm. Since the three phases of the 
BTC were studied separately, there is no guarantee that the combined algorithm is optimal in 
any sense, nor the best that could be constructed from these elements. In spite of that, we will 
compare it against JPEG. This is done by first fixing a certain bit rate and then comparing the 
MSE-values of these two methods. 
 
The combined BTC algorithm consists of the components given in Table 9. Hierarchical 
decomposition is fully utilized: The corresponding minimum and maximum block sizes are 
2*2 and 32*32. Standard deviation (σ) is used as a threshold criterion and is set to 6 for other 
level transitions than "4*4->2*2", for which the threshold is left as an adjusting parameter. 
 
 
TABLE 9. Elements of the combined BTC algorithm. 
 
Phase: Methods: 
Block size • Hierarchical (32→2) 
Quantization system • GB + means 
Quantization data • (a,b) 
Number of bits • 6+6 
Coding the quant. data • FELICS 
Coding the bit plane • 1 bpp 

• Interpolation 
• Skipping the bit plane 

 
 
The bit plane is either stored as such, or its size is reduced by the interpolation technique. The 
level of interpolation is chosen according to the desired bit rate level. It will be referred by the 
proportion of coded bits which is either 50, 75, or 100 %. Bit planes of uniform blocks are 
skipped and the 1-bit quantization is applied to these blocks. The uniform block skipping 
threshold is used as a fine-tuning parameter. 
 
Fig. 25 illustrates the performance of the combined BTC algorithm for Lena. The tests were 
performed by varying the threshold of the hierarchical decomposition from σ=0 to 50. Each 
curve represents one of the selected interpolation levels. In this way we are able to cover 
reasonably well the bit rates from 1.0 to 2.0 bits per pixel. Better image qualities are still 
possible at the cost of decreasing compression efficiency, but the increase of the bit rate 
serves the purpose only up to a limit. By the use of lossless image compression methods, such 
as lossless JPEG [46, 57] or FELICS [25], one can achieve bit rates of about 4.5 bpp (for 
Lena). At the other end, the image quality will decrease rapidly if very low bit rates are 
desired. 
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FIGURE 25. Performance of the combined BTC algorithm for Lena. 
 
 
A comparison of JPEG and the combined BTC is summarized in Fig. 26-29. Here we use the 
same parameters that were used for the test results in Fig. 25 with one exception: we 
performed two different tests. In the first one, we used the skipping threshold σ=0, and in the 
second σ=5. The final curves of Fig. 26-29 are assembled from the results of these two so that 
they correspond to the best MSE-values for each bits per pixel selection. The non-
continuation of the curve in Fig. 29 originates from the nature of the image Galaxy. It consists 
entirely of low contrast regions, and therefore the hierarchical decomposition cannot be used 
for adjusting its performance as much as is desirable (see Fig. 20 and 21 of Section 8.4). 
 
In our tests, JPEG clearly outperforms BTC (see Fig. 30). At the bit rate of 2.0, the MSE of 
JPEG is 65 % from the MSE of BTC (for Lena), and at the bit rate of 1.0 bpp, it is only 53 %. 
The difference in the visual quality is yet unclear. Small differences in the MSE-value are not 
necessarily reflected in the visual quality and one must keep in mind, that the distortions 
caused by these two methods are not alike. Moreover, distortion is almost unnoticeable if one 
looks at the images in their natural sizes. Magnifications of Lena are shown in Fig. 31. We 
want to emphasize that there is a definite need for a better objective quality measure than 
MSE. 
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FIGURE 26. Comparison of JPEG versus BTC with test image Lena. 
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FIGURE 27. Comparison of JPEG versus BTC with test image Boats. 
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FIGURE 28. Comparison of JPEG versus BTC with test image Baboon. 
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FIGURE 29. Comparison of JPEG versus BTC with test image Galaxy. 
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FIGURE 30. Part of Lena when coded by JPEG and BTC. 
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FIGURE 31. Eye of Lena when coded by JPEG and BTC. 
 

46 



 

9. CONCLUSIONS 
 
 
We have done a comparative study of the variants of the block truncation coding. Our main 
observation was that one can remarkably improve the overall performance of BTC by the use 
of hierarchical decomposition, interpolation and FELICS coding. The most important change 
for improving the image quality was the use of 2*2-blocks in the high contrast regions. When 
compared to the performance of JPEG, the new combined block truncation coding is still 
weak if the image quality is measured by the mean square error. 
 
There are still other aspects which make BTC a useful alternative for JPEG in some practical 
applications. All the selected algorithms are quite simple and easy to implement. The 
integration makes the implementation somewhat more complicated, but it is nevertheless 
probably much simpler than the JPEG implementation. Since we did not perform any 
throughput analysis, we can only estimate the running times. 
 
The encoding phase of BTC is very fast, and the decoding phase is even faster. (Though it has 
to be said that the JPEG software used was not slow either.) One can maximize the 
throughput at the decoding phase by the use of (a,b) as the quantization data. It could be 
further improved by the use of vector quantization instead of interpolation. This would load 
the encoding more, but the computational demands would be much less at the decoding phase. 
FELICS coding is a fast and practical alternative to other lossless schemes, and therefore it is 
a good choice here. Moreover, it is utilized only twice per block. The hierarchical 
decomposition has only a small effect on the throughput, but is directly reflected in the 
number of blocks to be coded. 
 
By the use of hierarchical decomposition and FELICS coding, one can reduce the interblock 
redundancy. This will eliminate direct access to the decoded file and thus there is no longer 
guarantee of fault tolerance. 
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