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Abstract 

In this paper, we define the optimization of health station locations as a clustering problem. We design a robust 
algorithm for the problem using a pre-calculated overhead graph for fast distance calculations and apply a robust 
clustering algorithm called random swap to provide accurate optimization results. We study the effect of three cost 
functions (Euclidean distance, squared Euclidean distance, travel cost) using real patient locations in North Karelia, 
Finland. We compare the optimization results with the existing health station locations. We found that the algorithm 
optimized the locations beyond administrative borders and strongly utilized the transport network. The results can 
provide additional insight for the decision-makers.
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Introduction
At present, there is substantial pressure to reduce health-
care service costs by enhancing the optimization of 
healthcare services, potentially resulting in a reduction 
of the existing healthcare station network and the ser-
vices they offer. Yet, a high quality of health care services 
would lead to healthier citizens and, in this way, reduce 
the overall demand for these services.

Accessibility of the service is one factor in this optimi-
zation. First, it can improve early diagnoses and treat-
ments and support the better provision of preventive 
health care [1]. Accessibility is a major determinant of 
participation in the service, according to Gu et  al. [2]. 
Geographic distance to services has been identified as a 
significant barrier to regular checkup visits and chronic 

care visits, especially in rural areas, whereas acute care 
visits seem to be less sensitive to distance [3]. In Finland, 
among patients with mental health problems, distance 
was negatively associated both with in-person visits to 
health stations as well as in-home visits [4].

Second, good accessibility can save lives in case of 
emergency situations and prevent long-term conse-
quences caused by delayed treatment. Patients living 
closer to a percutaneous coronary intervention (PCI) 
capable cardiac unit have a higher chance of survival than 
those who live far away, according to Di Domenicantonio 
et al. [5].

Third, improving accessibility can reduce the travel 
costs of the patient, both direct costs and time loss asso-
ciated with indirect costs, relieving the financial bur-
den for the patients and lowering the threshold to seek 
preventive care. In addition to costs for patients, long 
distances create societal costs, for example, in different 
forms of reimbursements and transport costs [6]. Acces-
sibility is also a question of equity and fairness of service 
provision that should be considered [7].

Healthcare accessibility has been modeled as a maxi-
mum coverage location problem by maximizing the num-
ber of patients reached given some distance threshold [8]. 
The results in [9], however, suggested that maximizing 
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coverage (minimizing the patients at risk) leads to a sig-
nificant increase in the average travel time of the patients. 
Burkey et  al. [10] reported similar results, optimization 
for the coverage reduced the patients at risk from 6.9 to 
2.7%, on average, in the case of health care services in 
three US states (North Carolina, South Carolina, and Vir-
ginia), but it increased the average travel time by 13%.

Wang & Tang [11]  proposed to minimize the vari-
ance of the distance or travel time for equal accessibil-
ity. Accessibility to tertiary and secondary facilities was 
studied in [12] using data from Shenzhen, China. The 
travel time was estimated by the Baidu Map applica-
tion programming interface (API), and optimization was 
performed using the particle swarm optimization (PSO) 
algorithm [13].

Burkey et  al. [10] reported that the existing loca-
tions already provide near-optimal geographic access to 
healthcare services in three US states (North Carolina, 
South Carolina, and Virginia). The average travel time 
of the existing facilities could be further reduced by only 
about 5% by the -p-median clustering algorithm. The only 
exception was Tennessee, where the reduction was 15%. 
In the case of myocardial infarction patients in Finland, 
better optimization could decrease the average travel 
time to the hospital by only 3.7% [9]. A more remark-
able saving was reported by Gu et al. [2], who managed 
to increase the accessibility of breast cancer screening 
services by 14% (from 0.35 to 0.40). They used Google 
Maps API to estimate the travel distance and time. An 
even more significant reduction in distance (33%) was 
reported by Fo & Silva Mota [14] with data from the Sao 
Paulo metropolitan area.

A completely different approach to measuring acces-
sibility is the two-step floating catchment area (2SFCA) 
method by Shen et al. [15], and its hierarchical variants 
[16, 17]. They measure the ratio of primary-care physi-
cians to population. It first counts the ratio of physicians 
to their surrounding population (within a given travel 
time) and then sums up the ratios around the demand 
locations. This leads to a different optimization problem, 
which would close to resemble maximum coverage but 
favor bigger units. Accordingly, Tao et  al. [17] observed 
that the healthcare facilities in Shenzhen are unevenly 
distributed due to the concentrated distribution of ter-
tiary hospitals.

The use of a clustering algorithm can find theoreti-
cally better facility locations. However, existing research 
suggests that optimizing for one criterion, like coverage, 
can lead to inferior optimization for another criterion, 
like average travel time. The clustering process itself also 
includes several design parameters like the choice of the 
algorithm and the estimation of the travel time, which 
both may have a significant effect on the optimization 

result. It is an open question how these design choices 
affect the clustering results.

To address these questions, we perform an experimen-
tal study with a sample of diabetes-related healthcare 
visits from SiunSote in North Karelia, Finland, between 
2011 and 2014. Instead of classical k-means or its vari-
ant p-median, we use a more robust clustering algorithm 
to reduce the effect of algorithm artifacts. We then show 
the optimization results with different criteria, including 
Euclidean distance, squared Euclidean, travel time, and 
travel cost. We also consider the efficiency of the optimi-
zation process.

We also analyze the optimization results. While the 
results are based on a selected sub-sample of patient data 
and cannot be used to guide the healthcare organization, 
they reveal several interesting facts and trends in the 
area. For example, the location of existing healthcare sta-
tions and allocation of patients to these follow municipal 
borders, whereas the algorithm does not have such a bor-
der as it has no restrictions to allocate patients to nearby 
health stations in the neighboring municipality.

The results also have relevance to other healthcare ser-
vices. For example, the nurse districting problem in [18] 
clusters the patients by simple k-means and tabu search 
based on their locations. The home care scheduling prob-
lem has been considered a two-objective optimization 
problem, which aims at minimizing operating costs while 
maximizing the quality of service at the same time [19]. 
Other closely related problems include ambulance loca-
tion and relocation problems.

Clustering
Next, we describe the clustering component, what com-
ponents it includes, and explain the choices behind 
each of them. The clustering is integrated in a Web-tool 
described in [20].

Distance calculation
K-means is the most common clustering algorithm. It 
minimizes squared Euclidean distances between the data 
(patient locations) and their nearest centroid. Squared 
distance is widely used even if it does not inherently cor-
respond to real-world geographic phenomena. Some 
attempts have been made to make the connection, 
though. For example, Zhou and Li [21] modeled the cost 
of disaster losses as a quadratic function of the distance 
from the emergency facility to the disaster location.

Another common approach is to maximize the number 
of locations that are within a given distance from its near-
est facility. Church [22] defined this as a maximal cover-
ing location problem. It is also referred to as threshold 
distance [23], where the distance cost is 0 if the distance 
to the centroid is less than a predefined threshold value, 
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otherwise, it is 1. Fränti et  al. [24] minimized the num-
ber of myocardial infarction patients at risk by defining 
at-risk individuals based on their proximity to the nearest 
percutaneous coronary intervention (PCI)-capable hos-
pital, specifically considering whether a patient resides 
beyond a predetermined time limit.

Absolute (non-squared) distance is the most used and 
natural choice in the case of location-based applications. 
It has a slight difference from its squared variant in the 
Euclidean distance case. The optimal centroid location 
of a cluster is its geometric center in the case of squared 
distance but its median in the case of absolute distance. 
The average (or median) can be calculated for each coor-
dinate independently. The median is also known as the 
spatial median [25], and the corresponding k-means vari-
ant is known as the p-median [26, 27].

Simple Euclidean distance, however, was shown to 
cause bias in the facility optimization [24]. For this rea-
son, travel distance (or time) is recommended. Cal-
culating the shortest distance via road network is 
straightforward but requires lots of computation. A sin-
gle shortest path calculation is fast, but facility optimiza-
tion requires millions of such calculations. The locations 
of the stations are also dynamically changing during the 
optimization process, which prevents the use of a pre-
calculated distance matrix. The consequence is that the 
optimization processing may take even days.

Boscoe [28] showed that Euclidean distance is an ade-
quate approximation for travel distance in the United 
States when multiplied by a constant factor of 1.4. They 

call this factor the detour index. It virtually equals the 
diagonal of a unit square corresponding to the Manhat-
tan distance. However, our data is mostly in areas where 
lakes and rivers make the road network more complex, 
and a simple Manhattan distance would not be accu-
rate. In city areas, the factor can be smaller than 1.4 
(see Fig. 1), but in areas containing rivers and lakes, the 
factor can be much bigger. In general, there are large 
differences.

Mariescu-Istodor and Fränti [29] adapted this detour 
index locally by constructing a so-called overhead graph. 
The graph was built as pre-processing using patient loca-
tions in the data and the road network to identify traffic 
points. These points constitute the nodes of the graph. 
The overhead ratio was then calculated for all pairs of 
nodes in the graph as the ratio of their true travel dis-
tance and the corresponding Euclidean distance. The 
larger the overhead value, the longer the detour. The val-
ues are stored in the graph (represented by a matrix) and 
used in the optimization process.

During the optimization, when we need to estimate the 
travel distance between a patient’s location and a given 
health station, we first calculate their Euclidean distance. 
We then find the nearest graph nodes of these two loca-
tions and obtain the stored overhead ratio between these 
two locations. The Euclidean distance is then multiplied 
by this constant to obtain an estimation of the travel dis-
tance. Travel times are derived directly from the travel 
distances using the average speed of each road segment. 

Fig. 1 Example of the detour index between Euclidean and road network distances from the patient location (Huvilakatu) to the nearest health 
station (Suvikatu station)
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Dynamics like rush hours are not considered, and opti-
mization is made merely to minimize the average.

This process is extremely efficient, requiring only a single 
lookup table and one multiplication operation (overhead 
ratio × Euclidean distance). With our data, this reduces 
the processing time from 2  weeks to about 15  min when 
using 10,000 iterations of the clustering algorithm. The 
huge speed-up is achieved at the cost of minor inaccuracy 
in the distance estimation, 2%, according to [29], and with 
additional memory of 512 × 512 = 0.25 MB for storing the 
lookup table. The process with two sample graphs is shown 
in Fig. 2.

Optimization function
K-means is by far the most common clustering algorithm 
and would be the most obvious choice for use here as well. 
However, it minimizes the sum of squared Euclidean dis-
tances, and it is unclear whether geographical distances 
should be squared in this application. A more common 
choice is to calculate the sum of Euclidean distances as 
such (without squaring). However, neither of these satisfied 
our needs as we are also interested in the travel costs of the 
patients. We, therefore, consider also the sum of the travel 
costs as the optimization function.

The three optimization functions can be written math-
ematically as follows:

Euclidean :

∑

p∈patients
dL2

(

p, argmin
h∈HS

dL2(h, p)

)

where HS refers to the health stations.
For estimating the travel costs, we adopt the cost model 

presented by [30] tailored for the local region. The model 
assumes that patients use the bus when the distance 
to the nearest bus stop is less than 200  m, otherwise, 
own car is used. Exceptions are patients living within 
1 km from the hospital who are expected to walk to the 
health station with 0 € cost. People 80 years or older are 
assumed to use taxis.

The model’s key elements are summarized in Table  1. 
Our model is slightly simplified; instead of considering 
different zones for bus fares, we apply a flat rate of 5.1€ 
per bus trip. Leminen et al. model also considers the cost 
of the patient’s time during travel based on the average 
hourly gross wage in the respective zip code area. We 
have omitted this component to streamline the optimiza-
tion process.

The ideal goal is to maximize accessibility, but it is not 
clear how to measure it. We use distance, travel time, and 
travel costs. Travel time is derived directly from travel 
distance based on the average speeds of the road seg-
ments used and is the most obvious measure. However, 
people also tend to minimize costs in case of non-urgent 

Squared Euclidean :

∑

p∈patients
dL2

(

p, argmin
h∈HS

dL2(h, p)
2

)2

Travel cost :
∑

p∈patients
dtravel

(

p, argmin
h∈HS

dtravel(h, p)

)

Fig. 2 Overhead graph with 256 nodes constructed for the North Karelia region and an example of its use
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visits, so the travel cost is also a relevant indicator of 
accessibility.

Clustering algorithm
K-means and its variants like p-median would be the 
most obvious choices for the clustering algorithm, but 
they can be inaccurate, see Fig.  3. It was shown in [31]  
that k-means works worse when the number of clusters 
is high, and the clusters are well separated. Part of these 
problems can be compensated by repeating the algo-
rithm multiple times [32] at the cost of increased pro-
cessing time or by better initialization using methods 
like Maxmin [33] or its variant called k-means++ [34]. 
Despite k-means working well for most data, neither of 

these alternatives was able to cluster all benchmark data-
sets correctly [32].

P-median [26, 27] suffers from the same problems as 
k-means. P-median uses a median for the cluster centroid 
instead of a mean. It is potentially more robust on noise, 
but recent results have shown Medoid performing poorly 
in the context of averaging GPS trajectories [35]. Our 
data is from patients’ real home locations, which is much 
less noisy than the result of some medical measurement 
processes.

The accuracy of k-means is usually sufficient when 
applied as a data processing component within a more 
complex pattern recognition system. Kinnunen et al. [36] 
reported that the choice of the algorithm was negligible 

Table 1 Travel cost model as presented in Leminen et al. [30]

Fig. 3 Incorrectly detected clusters (+ sign signifies too many centroids,—sign too few) happen in k-means when there are many clusters 
and some of them are well separated. K-means may fail even with seemingly easy datasets (named A2, S2, Unbalance) to find all clusters correctly 
because the algorithm is incapable of moving the centroids across empty areas (deserts). Repeating the algorithm compensates for this only partly 
but relies too much on luck
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on the overall speaker recognition performance as long 
as a reasonably good algorithm was chosen (including 
repeated k-means). However, clustering is the core com-
ponent of our analysis, and high accuracy is required to 
avoid any bias caused by the algorithm. For this reason, 
we have selected a more robust algorithm.

Many potentially good clustering algorithms exist 
including Ward’s agglomerative clustering method [37], 
its enhanced variant called iterative shrinking [38], split-
ting algorithm [39], global k-means [40], and evolution-
ary algorithms of which the genetic algorithm (GA) [41] 
and the self-adaptive genetic algorithm (SAGA) [42] have 
shown to be the most accurate in terms of minimizing 
the clustering objective function.

Among the many good choices, we select random swap 
[43]. It performs virtually as well as the more complex 
genetic algorithms while having the benefit of straightfor-
ward implementation, see the pseudo-codes of random 
swap and the genetic algorithm in Fig. 4. Its simplicity is 
important because it allows easier adaptation of the algo-
rithm to work with different distance functions such as 
travel cost. Several implementations with different pro-
gramming languages1 are also publicly available, includ-
ing a version supporting parallel processing [44].

The random swap algorithm works as follows. It starts 
with random initial locations for the stations and then 
uses two k-means iterations to reallocate the patients 
to their nearest station and then re-optimize the sta-
tions’ locations. Random swap is a wrapper around the 

k-means. It selects a random station, relocates it to a new 
(random) location, and then iterates k-means twice. If the 
new solution improves the cost function, it is kept; other-
wise, the previous solution is restored. While seemingly 
naïve, this simple trial-and-error approach is effective as 
the trial swaps can be implemented efficiently.

Here, we use T = 5000 trial iterations, which is the 
original recommendation. The algorithm is not particu-
larly sensitive to this parameter, and the exact value is not 
even important in offline optimization as we can easily 
run the algorithm as long as we want, e.g., let the algo-
rithm run 100,000 iterations overnight just to be sure. A 
theory about how to set this value more accurately can 
be found in [43]. Visual animation of the algorithm can 
be found here https:// cs. uef. fi/ ml/ softw are/ and tutorial 
here https:// www. youtu be. com/@ pasif ranti 541.

Figure  5 shows the benefit of random swap over 
k-means. The average squared distance (MSE) is 10% 
smaller for data with lots of clusters (Bridge). Repeating 
k-means 100 times can improve accuracy, but it cannot 
reach the same accuracy level. For data with 100 separate 
clusters (Birch1), the difference is 15%. K-means locates 7 
clusters wrongly. If repeated 2500 times, the number will 
be reduced to 3. Even with a small number, it is too much 
when accuracy is important.

For the centroid, we use arithmetic means of all the 
patient locations in the cluster. This is not the optimal 
choice for minimizing the travel cost, but it is the best 
we can think of, and it can be calculated fast. Finding a 
better location could theoretically be obtained by a local 
search around the current location, but re-calculating all 
distances would be time-consuming. Instead, we consider 
fine-tuning the centroid location to the nearest existing 

Fig. 4 Pseudo codes of two good clustering algorithms. We selected RandoSwap due to its simplicity

1 https:// cs. uef. fi/ ml/ softw are/ and https:// github. com/ uef- machi ne- learn 
ing

https://cs.uef.fi/ml/software/
https://www.youtube.com/@pasifranti541
https://cs.uef.fi/ml/software/
https://github.com/uef-machine-learning
https://github.com/uef-machine-learning
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building. While new buildings can (and probably should) 
be constructed, this at least restricts the centroids from 
being located on lakes and inaccessible places without 
any infrastructure nearby.

Case study: SiunSote healthcare data
As a case study, we used data from type 2 diabetes 
patients in North Karelia, Finland. The reason for select-
ing this cohort is that it includes the exact locations of 
the patients that we need for optimization. For the full 
data, we only have the postal code accuracy. It is accu-
rate enough for optimizing the locations of PCI units 
throughout Finland [24], but it is not necessarily for opti-
mizing the locations of local health stations.

The data is extracted from Siun Sote’s electronic patient 
records, which organizes the regional health services 
in North Karelia. The data includes all type 2 diabetes 
patients (n = 9333) diagnosed by the end of 2012 and hav-
ing visits to primary health care between 2011 and 2014 
(175,039 visits in total, averaging 4.7 visits annually per 
person), see Table  2. Type 2 diabetes patients need fre-
quent follow-up and often have co-morbidities resulting 
in heavy use of health services. The study restricted the 

use of primary health care services, and thus, informa-
tion on specialized care visits was excluded.

The exact locations were extracted by geocoding the 
patient home addresses using ArcGIS 10.3 [45]. The 
information on primary health care visits includes infor-
mation on the health station where the visit occurred. 
Their locations were also geocoded based on the address.

The distances to the existing health stations and near-
est bus stops were calculated using road network dis-
tance information from the OpenStreetMap (OSM) 
server. Distances to the optimized health station loca-
tions were estimated using the overhead graph, as 
explained in Sect. "Distance calculation". The travel costs 
were estimated using the model by [30], as discussed 
in Sect.  "Optimization function". It uses factors like 
patients’ age, distance to the health station, and the pos-
sibility of using public transport; the most likely travel 
mode was decided.

Results
Figure  6 shows the overall optimization results using 
three alternative distance functions. First, we can see that 
in all cases, most of the optimized locations are roughly 
at the same locations as the current health stations, with 
minor variations. First, squared Euclidean distance is 
used in standard k-means packages, and it penalizes long 
distances by using a quadratic function. This creates sta-
tions more easily in sparsely inhabited areas. Euclidean 
distance is more conservative in this regard. The effect of 
travel cost is more difficult to predict since it utilizes both 
the road network, the location of bus stops, and the age 
of the patients (in the case of those older than 80 years).

The total travel cost is the lowest (295 k€/year, 6.76€/
visit) when optimized directly for the travel costs. Using 
Euclidean distance is somewhat worse (317  k€/year, 

Fig. 5 Effect of the optimization by random swap algorithm versus k-means

Table 2 Summary of data

Data Values

Time range 2011–2014

Cohort Type 2 Diabetes patients

Number of patients 9333

Male 47% (4387)

Female 53% (4946)

Mean age (in 2011) 67 years

Number of visits 175,039

Geographical location North-Karelia, Finland



Page 8 of 12Fränti et al. International Journal of Health Geographics            (2025) 24:4 

7.26€/visit) but still slightly better than using squared 
Euclidean distance (336 k€/year, 7.70€/visit).

Next, we will provide a more detailed discussion of the 
implications of the optimization results. Out of the 23 
stations, 17 have remained near their original locations. 
These locations benefit from a road network and public 
transportation system already optimized for their acces-
sibility. However, six health stations were located differ-
ently by the algorithm. We will briefly summarize these 
changes and their underlying reasons as follows:

• Heinävesi removed: lack of patient data.
• Viinijärvi and Ylämylly added: ignoring municipality 

borders.
• Joensuu Center merged with downtown + Lehmo 

was removed.
• Uimaharju removed and Kopravaara added: serves 

more people.
• Mätäsvaara and Multala added: in the middle of 

nowhere.
• Kiihtelysvaara removed + Rääkkylä relocated logisti-

cally.

The first change is merely a data artifact. At the time of 
data collection, Heinävesi health station belonged to Siun-
Sote (wellbeing services) county but administratively did 

not belong to the North Karelia province (joined later). As 
a result, the data had Heinävesi health station but not the 
patients. For this reason, the algorithm naturally relocated 
the unused center elsewhere.

The second change is surprising, although logical. The 
current locations adhere primarily to municipal bounda-
ries. This results in three centers (Siilainen, Niinivaara, Ran-
takylä) within the Joensuu urban area (~ 59,000 inhabitants), 
see Fig.  7. In contrast, the neighboring municipality Liperi 
(12,104 inhabitants) has only one. Liperi itself is an interest-
ing case consisting of three distinct hubs: Liperi center (1,401 
inhabitants), Viinijärvi village (746 inhabitants), and Ylä-
mylly suburban center (~ 6,000 inhabitants). Ylämylly is well 
connected to Joensuu City through a fast motorway and is 
essentially considered a suburban extension of Joensuu.

The algorithm disregards municipal boundaries and 
allocates one station to each of the three hubs in Liperi. 
Placing a station in Ylämylly is logical, as it serves not 
only Ylämylly but also the adjacent westernmost Joen-
suu suburban area, Marjala, with a population of 2,328. 
Relocating one station to Viinijärvi is less obvious but 
is explained by the significant savings in travel costs. 
The total cumulative costs of the three new stations are 
(90 k€) consisting of Liperi (38 k€), Viinijärvi (27 k€), and 
Ylämylly (25 k€), whereas the cost to the current station 
in Liperi is 160 k€. This results in cost savings of 70 k€.

Fig. 6 The optimization results are presented for three different distance functions, with the optimized locations indicated by blue points. In 
some cases, multiple locations are clustered and represented by a single green dot, along with a numerical value denoting the count of stations 
within the cluster. Additionally, the number above corresponds to the total annual travel cost for all patients, measured in euros
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The costs of the removed stations in the city of Joen-
suu are Siilainen (125  k€) and Niinivaara (44  k€), and 
their replacement at Joensuu downtown is only 139 k€. In 
other words, the two stations in Joensuu can be simply 
placed in a better location at the heart of the city down-
town, still achieving a 30 k€ reduction in travel costs for 
the patients. The unused station can then be relocated 
elsewhere in Ylämylly.

The fourth change is the removal of Uimaharju sta-
tion and the creation of a new one in Kopravaara, near 
Koli. Uimaharju is a small town (1,300 inhabitants), best 
known for its pulp mill and sawmill, but with a stead-
ily decreasing population. Although the removal of the 
Uimaharju2 health station resulted in an increase in 
travel costs for the Eno health station from 42 to 80 k€, 
the more strategic placement in the Koli area yielded 
greater reductions in the overall travel costs for Juuka, 
Polvijärvi and Kontiolahti. The importance of the Koli 
area has been increasing due to its famous national 
park, including the national view of Finland, which has 
increased both the number of visitors and the population 
in the area.

One new addition is Mätäsvaara (917 inhabitants), 
located roughly halfway between Nurmes and Lieksa, see 
Fig.  8. Another one is Muljula (382 inhabitants), some-
where between Rääkkylä and Kitee. Neither of them 
serves a major population, but their effect on travel costs 
is apparently so high that the model allocated a station 
there. For example, adding Mätäsvaara reduced the cal-
culative costs of Nurmes from 128 to 88  k€ and Lieksa 
from 118 to 93 k€.

The removal of Kiihtelysvaara station (3622 inhabit-
ants) did not cause any other changes in the area. The 
patients are simply treated cost efficiently either in Ham-
maslahti or Tuupovaara health stations. They all belong 
to Joensuu municipality.

Rääkkylä is one of the rare tiny municipalities that 
have kept their independence despite having only about 
3,000 inhabitants. It is relatively large (530.85  km2) and 
sparsely populated (4,7 inhabitants per square kilome-
ter), even on a Finland scale. The number of inhabitants 
per square meter is 9.4 in North Karelia and 17.6 in the 
entire Finland, on average. Due to the sparsely popu-
lated area, the health station is optimized for a logisti-
cally better place in Mensu, seemingly in the middle of 
nowhere, 10 km to the south of the current location in 
the Rääkkylä town.

Fig. 7 Places with significant changes. The heat map shows the home locations of the patients to whom the new Kopravaara is the nearest health 
station

2 Uimaharju health station was stopped in 2019. No new station was 
founded in Koli, though.
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To summarize the findings, we can see that the algo-
rithm ignores administrative and historical boundaries 
and can suggest better locations. Employing three dis-
tinct cost functions for optimization, we observed that 
while squared Euclidean distance (commonly used in 
standard k-means) enhanced the original locations, the 
non-squared alternative yielded superior results. The 
best results came directly from using the travel cost of 
the patients as an optimization function.

The optimized locations would reduce the total travel 
costs by 19%, from 367 to 296 k€ (Table 3). This means 
better accessibility and reducing the average travel time 
of a single visit from 10.1 to 8.1 min and travel distance 
from 8.4 to 6.2 km. This would be a remarkable achieve-
ment if it could be implemented in real life.

Conclusions
We have designed a clustering algorithm to optimize the 
locations of health stations. The advantage of the pro-
posed approach is its simplicity. It should also generalize 
to entire Finland and other countries if data is available. 
The travel cost needs to be tuned to the region applied, 

but the distance and travel time are generic. The cluster-
ing approach itself can be tuned relatively easily to be 
used with other optimization objectives.

The results with SiunSote data in North Karelia, Fin-
land, showed that the algorithm would ignore munici-
pal borders and emphasize the distances and travel 
costs instead. It allocated a new station in Ylämylly and 
removed one from Lehmo as there is another station 
close to Rantakylä, even in a different municipality. The 
algorithm also removed Uimaharju station, which actu-
ally happened in practice after the data was collected. No 
new station has been founded in the Koli area, though, 
despite what the algorithm has suggested.

The choice of the cost function has a significant effect 
on the result. For example, optimizing for squared 
Euclidean distance (as in standard k-means) would penal-
ize bigger distances more and, therefore, allocate more 
resources to remote places.

Optimizing travel costs exploits the existing trans-
portation routes. Evidence of this is that the algorithm 
allocated one station in downtown Joensuu, which is 
basically next to the start/end points of most bus routes. 
The travel cost model does not emphasize the distance as 
much as squared Euclidean, but it also allocates one sta-
tion halfway between Lieksa and Nurmes, an area having 
less public transportation and higher travel costs due to 
the more frequent need for car transportation.

The algorithm can provide better optimization of the 
resources and would be applicable to data from other 
areas and different patient cohorts. However, the results 
cannot be easily applied to real life. Optimizing the over-
all healthcare service is more complex, and we should 
also consider factors such as volume, specializations, 
quality of care, and effectiveness.

Fig. 8 Other places that lost or gained their health station. Heinävesi patient data were missing, so this removal is merely an artifact of the data. 
Kiihtelysvaara previously operated as a separate municipal station, maintaining its own health station despite serving a relatively small patient 
population. The algorithm optimized a new station in Mätäsvaara instead

Table 3 Effect of the optimization on the average travel distance 
and travel time

Optimized for Travel time Travel 
distance

Travel cost

Original – 10.1 min 8.4 km 367 399 €

Optimized Squared Euclid-
ean

9.1 min 6.8 km 336 913 €

Optimized Euclidean 8.4 min 6.2 km 317 902 €

Optimized Travel cost 8.1 min 6.2 km 295 966 €

Saving 20% 26% 19%
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The optimization exercise can still provide added value, 
especially when there is a need to cut down or increase 
the number of health stations or hospitals that provide 
different services. Such situations easily occur when 
health services are reorganized, as happened in Finland 
at the beginning of 2023 when a large national social and 
health care reform occurred. The algorithm could also 
be used for forecasted data of forecasted future popu-
lation, which would better consider aging and internal 
migration.

Limitations
We have done our best to make sure the optimization is 
well done, and the possibility of results caused by algo-
rithm artifacts remains quite low, contrary to the known 
limitations of algorithms like k-means and also p-median. 
However, when dealing with real data, there are always 
issues that affect the results.

One known limitation in the optimization process is 
the use of a simple geometric center for the health sta-
tion location. This may not be the optimal location when 
minimizing the travel cost. Theoretically, better locations 
could be found by tuning the locations using an itera-
tive local search algorithm. Starting from the geometric 
center, the algorithm could consider its neighboring loca-
tions in a trial-and-error manner utilizing the overhead 
graph [29]. However, this would increase the processing 
time considerably, and it is uncertain if the potentially 
more accurate optimization would be worth the addi-
tional computing.

Another limitation was the lack of Heinävesi popula-
tion data. The consequence of this is that this particular 
health station was removed without any cost, and addi-
tional resources were placed elsewhere. Another issue is 
that the volume and specialization of the stations were 
not considered in the optimization. All health stations 
were assumed to be of equal importance, having full ser-
vice for all patients, which is not always the case. Many 
smaller stations only provide basic primary care ser-
vices, whereas larger stations can also provide specialized 
services.

A third limitation of this case study is that only one 
patient cohort was used: type 2 diabetes patients. This 
does not, of course, represent the service use of the whole 
population and is biased toward the elderly population. 
However, patients with type 2 diabetes are high-service 
users using primary care services and can be regarded as 
a typical patient group in primary health care.

Finally, we only considered the geographic distance to 
measure accessibility. It would be interesting to repeat 
the optimization process with other objectives and 
more parameters. For example, the ratio of physicians 
to patients is an interesting measure, but the simplistic 

thresholding in the method should be removed; other-
wise, it would suffer the same problem as all other meth-
ods optimizing maximum coverage.
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