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Abstract—We hypothesize that similar objects should
have similar outlier scores. To the best of our knowledge,
all existing outlier detectors calculate the outlier score for
each object independently regardless of the outlier scores
of the other objects. Therefore, they do not guarantee that
similar objects have similar outlier scores. To verify our
proposed hypothesis, we propose an outlier score post-
processing technique for outlier detectors, called neigh-
borhood averaging (NA) for neighborhood smoothing in
outlier score space. It pays attention to objects and their
neighbors and guarantees them to have more similar outlier
scores than their original scores. Given an object and its
outlier score from any outlier detector, NA modifies its
outlier score by combining it with its k nearest neighbors’
scores. We demonstrate the effectivity of NA by using
the well-known k nearest neighbors (k-NN). Experimental
results show that NA improves all 10 tested baseline detec-
tors by 13% on average relative to the original results (from
0.70 to 0.79 AUC) evaluated on nine real-world datasets.
Moreover, deep-learning-based detectors and even outlier
detectors that are already based on k-NN are also improved.
The experiments also show that in some applications, the
choice of detector is no more significant when detectors
are jointly used with NA. This may pose a challenge to the
generally considered idea that the data model is the most
important factor. We open our code on www.outlierNet.com
for reproducibility.

Index Terms—outlier detection, anomaly detection,
FDOD, DDM, KOBE, dimensional outlier

I. INTRODUCTION

OUTLIERS are objects that significantly deviate from
other objects. Outliers can indicate useful information,

which can be applied in applications such as fraud detection
[1], [2], abnormal time series [3], [4], and traffic patterns [5],
[6]. Outliers can also be harmful because they are generally
unwanted, can be considered errors, and may bias statistical
analysis for applications like clustering [7], [8]. Recently,
outlier detection has also been applied to manufacturing data
[9] and industrial applications [10]. For these reasons, outliers
need to be detected.

Most outlier detectors calculate the so-called outlier score
for each object independently and then threshold the scores
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that deviate significantly from the others and label them as
outliers [11]. To improve the results of baseline outlier de-
tectors, ensemble techniques have been developed to combine
the outcomes of multiple detectors to obtain a more accurate
detector [12], [13]. An example is the average ensemble
[1], which calculates the average outlier score from multiple
baseline detectors. However, the existing ensemble techniques
merely use more detectors but do not attempt to ensemble
outlier scores of neighboring objects. Their success is also
bounded by the reliability of the baseline detectors.

The outlier score is a fundamental concept in all score-
based outlier detectors. All outlier detectors assume that out-
lier objects should have significantly higher or lower outlier
scores [1]. Except for that, no attention has been paid to the
relationship between objects and their outlier scores. Because
outlier objects are directly decided by their outlier scores, it is
vital to understand their relationship. In this paper, we address
this problem.

In Figure 1, all detectors successfully assign significantly
higher scores to the outlier eggs (red triangles) but cannot
guide the selection of the best detectors. We can see that egg A
is distinctive and has the highest score. Detector 2 and Detector
3 are therefore better than Detector 1. Similarly, because eggs
C, D, E, and F have the same color and size, they should have
the same outlier scores. In this case, Detector 3 is better than
Detector 2. Therefore, we can conclude that Detector 3 is the
best among the three by comparing the similarities between
objects’ features and their outlier scores.
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Fig. 1. Outlier scores are given by three detectors on the task of
detecting outlier eggs from a Robin bird. The results of Detector 3 can
be obtained from the results of Detector 2 using the proposed method
as shown in Fig. 7.

Based on the case in Figure 1, we conclude that similar
objects should have similar outlier scores. Although this
could be seen as obvious, none of the state-of-the-art outlier
detectors uses this. Many detectors simply make use of the
objects’ neighborhood in the process of producing outlier
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scores (especially all k-NN-based detectors). However, they
do not consider the relationship between objects’ features and
their outlier scores. For example, egg B (the red triangle in
the middle) in Figure 1 is much more similar to other normal
eggs C, D, E, and F compared to egg A. It should therefore
have a lower score than egg A.

To address this problem, we propose a novel neighborhood
averaging (NA) technique for neighborhood smoothing in
outlier score space. It post-processes the outlier score of each
object provided by any existing outlier detector by averaging
it with the scores of its neighbors. In other words, if an object
is an outlier, it is more likely that its near neighbors are
also outliers. In this case, the predicted score is enhanced.
On the contrary, if the neighboring objects have low outlier
scores (predicted as normalities), the score of the object is also
reduced accordingly.

The beauty of NA is that it can serve as an additional and
independent post-processing technique that can be used after
any existing detectors. It is different from ensemble techniques
because rather than operating the results of multiple detectors
of a single object, NA operates the results of multiple objects
of a single detector as shown in Figure 2. NA is conceptu-
ally and fundamentally different from ensemble techniques.
It is also complementary to the ensembles, and these two
approaches can be used jointly. While ensembles cannot ensure
similar objects have similar outlier scores, NA can achieve this.

Detector 1Detector 2 Detector 3

Ensemble

NA

Fig. 2. Difference between NA and ensembles. Ensembles use
multiple detectors’ prediction of the same object (on the bottom), while
NA uses a single detector’s prediction of the different (neighboring)
objects (with a gray background).

Figure 3 demonstrates all the combinations that can be con-
structed from NA and the existing outlier detection methods,
including ensemble techniques. On the top, we have the typical
situation where dataset X is input into an outlier detector,
which produces scores that are further processed by a threshold
component to determine outliers. The second case is the multi-
detector ensemble where the dataset is input into two outlier
detectors to produce two separate scores. The scores are then
combined by the ensemble component before they are pro-
cessed by the threshold component to determine the outliers.
The third case is the proposed NA where the dataset is input
into an outlier detector, after which the scores are averaged
before they are processed by the threshold component. The
last case is a combination of the multiple-detector ensemble
and NA, where two outlier detectors produce scores that are
first combined by the ensemble and then post-processed by
NA.

To summarize this paper’s contribution, (1) we assume that
similar objects in feature space should have similar outlier
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Fig. 3. Outlier detection process.

scores. (2) We propose NA based on k-NN to post-process the
existing outlier scores to produce more reliable and consistent
scores for neighborhood smoothing in outlier score space.
While there are already many k-NN-based methods, they all
operate in the feature space. In contrast, NA operates in
the score space by modifying existing scores without any
additional information besides the neighborhood graph defined
in the feature space. The method is not limited to geographical
data [14] or any other single application, but it can be applied
in any application domain. It can improve any existing score-
based outlier detectors or ensemble techniques, and it is not
limited to use with k-NN-based outlier detectors. (3) We
perform comprehensive experiments showing NA’s superiority
when jointly used with existing outlier detection techniques.

We organize this paper as follows. In Section II, we
recall several state-of-the-art outlier detectors from several
categories. They later are used as our baseline detectors. In
Section III, we introduce the proposed hypothesis and NA.
The experimental setup is described in Section IV, and the
results are shown in Section V. In Section VI, we describe our
conclusions.

II. OUTLIER DETECTORS

We next review the existing outlier detection methods. They
all analyze the relationship between the objects globally or
locally and calculate an independent outlier score to conclude
whether an object is an outlier. NA can be applied to all of
these as an outlier score post-processing technique, and to the
best of our knowledge, there is no similar technique in the
literature. All introduced detectors consider only the relation-
ship between objects’ features and, unlike our technique, they
do not operate on the outlier scores.

By constructing the reference set [1] for the calculation of
outlier scores, outlier detectors can be grouped into global
detectors and local detectors. Global detectors use all objects
and local detectors use only a small subset of objects, such
as k-NN, in the dataset as a reference set. We next review
12 well-known and state-of-the-art outlier detectors including
deep-learning-based detectors.

In distance-based outlier detectors [15]–[17], outlier objects
essentially should be located far away from other objects. The
detector proposed by Ramaswamy et al. [15] computes the
distance between an object and its kth nearest neighbor as
the outlier score. This detector is referred to as KNN [15]. A
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variant that evaluates the average distance to its all k neighbors
was proposed by Hautamäki et al. [16]. The method proposed
by Shekhar et al. [14] calculates the distance to the average
of its k-NN. It uses spatial features to determine the neighbors
and the other features for the outlier detection.

Instead of considering the distance, the detector proposed
by Knorr et al. [17] counts the number of objects within a
predefined distance threshold to the object. The count is used
as the outlier score. Outlier detection using indegree of nodes
(ODIN) proposed by Hautamäki et al. [16] is also based on
the k-NN graph. It uses the number of being other objects’
neighbors as the outlier score.

Reverse unreachability (NC, as defined by Li et al. [18]),
is a detector based on representation. A given object is
represented by k-NN with a weight matrix corresponding to the
contribution from each neighbor. The negative weights carry
information on the possibility of being outliers. The occurrence
of negative weights is used as the outlier score.

Mean-shift outlier detection (MOD) [7], [8], [19] replaces
an object with its k-NN’s mean. This process is repeated
three times. The distance between the original object and the
modified object is the outlier score. This approach works well,
especially when a dataset contains a large number of outliers
[7].

In density-based detectors [20], [21], outlier objects have
considerably lower densities than their neighbors. Local outlier
factor (LOF) [18] evaluates the density of an object relative to
that of its k-NN as the outlier score. In [22], LOF was reported
to be the best-known detector when compared to the other 12
k-NN-based detectors.

The minimum covariance determinant (MCD) [23] is based
on statistical analysis and is a robust estimator for evaluating
the mean and covariance matrix. It finds 50% of objects with
a covariance matrix having the smallest determinant. It then
uses the difference from an object to the center of the objects
as the outlier score.

Isolation-based anomaly detection (IFOREST, as defined by
Liu et al. [24]) builds trees over the dataset. It recursively
separates the objects into two parts with a threshold randomly
selected from each dimension. To remove the bias of random-
ness, it repeats the process several times. The average number
of splits to isolate an object from other objects is its outlier
score. An improved version of IFOREST can be found in [25].

Support vector machine (SVM) has been widely applied to
pattern recognition tasks. One class support vector machine
(OCSVM) [26] treats the objects as training data and creates
a one-class model. The distance to the trained model is then
used as the outlier score.

Principal component analysis (PCA) is an established data-
mining technique. PCA can extract the principal structure
of the data. The principal-component-analysis-based outlier
detection method (PCAD) [27] reconstructs objects using the
eigenvectors with reconstruction errors. The normalized errors
are outlier scores.

Angle-based outlier detection (ABOD) [28] calculates the
angles between objects. The variance of these angles is used as
the outlier score. It was viewed as overcoming dimensionality
better than distance-based measures in [28].

Multiple-objective generative-adversarial active learning
(MO-GAAL) [29] is proposed to overcome the sparsity of
data in high-dimensional space by generating additional data
objects. MO-GAAL first trains a neural network to classify the
generative and real-data objects. The outlier score is calculated
as the possibility of the object being real.

Copula-based outlier detector (COPOD) [30], [31] predicts
the tail probabilities of each object by constructing an empir-
ical copula. The probability is used as the outlier score.

To sum up, the above-mentioned detectors can be divided
into four categories: proximity-based detectors (KNN, ODIN,
NC, MOD, LOF, and ABOD), statistics-based detectors (MCD
and PCA), learning-based detectors (MO-GAA and SVM), and
ensemble-based detectors (IFORES and COPOD). Regardless
of the categories of detectors, outlier scores for different ob-
jects have been generated independently without considering
the scores of other objects. This will lead to inconsistent scores
for similar objects, in which case NA will be needed to smooth
these inconsistent scores to improve detectors.

III. METHODOLOGY

In this section, we present the general framework of NA.
In general, outlier detectors utilize different assumptions to
produce outlier scores, such as distance or density. However,
NA does not set any requirements but assumes that similar
objects in the feature space should have similar outlier scores.

A. General averaging framework
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Fig. 4. Define local variance in outlier scores: relative outlier scores do
not match the relative degree of being outliers.

The example in Figure 1 shows that similar objects should
have similar outlier scores. Although Detector 1 can find the
two outliers (with a proper threshold), by plotting the outlier
scores in Figure 4, we can see there is a local peak in the
distribution of the outlier scores, which does not match reality.
Figure 5 shows that the local peak will cause either a false
positive or a false negative regardless of which threshold value
is selected. It is therefore necessary to remove the local peak.

In a recommendation system [32], a related hypothesis
for collaborative filtering techniques states that similar users
must/should have similar preferences. Both of these hypothe-
ses rely on defining the similarity of the objects in the feature
space. However, there is one important difference between
them. While collaborative filtering does not involve any outlier
score calculations, the definition of the outlier score is the key
to outlier detection.

Figure 6 shows three types of similar objects. Various
distance metrics can be employed to define similar objects.
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For tabular data, the Euclidean distance, Manhattan distance,
or Cosine distance can be utilized. Set data can be evaluated
using the Jaccard distance, while string data can be assessed
using the Hamming distance or Edit distance. Spatial data can
be measured using the Haversine distance, and graph data can
be analyzed using the Geodesic distance. In the case of a data
type with multiple options for distance metrics, the selection of
an optimized distance metric may be determined based on the
distribution of the data and the patterns of outliers. However,
due to constraints on the length of this paper, a detailed
exploration of this topic will be deferred to future research.
With the aid of distance metrics, similar objects can be defined
as objects with a sufficiently small distance. Optionally, similar
objects can be defined as objects within the same partition
after performing a data partition. The accurate definition of
similar objects has a direct impact on the performance of NA.
In cases where the boundary between outliers and normalities
is uncertain, the application of a smoothing method may have
a detrimental effect on performance. To mitigate this issue,
it is crucial to precisely define similar objects. This can be
accomplished by either defining objects within a narrow region
as similar or by considering objects that are in close proximity
to each other using various distance metrics.
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Fig. 6. Definition of the similarity of objects can be different with
different data. In feature space, it can be based on the distance of
objects (Left); it can be based on the nodes’ common neighbors
(Middle); and it can be based on which level the object is located in the
structure (Right).

B. Neighborhood averaging (NA)

The proposed NA technique is simple: We take any base-
line outlier detector and use it to compute the preliminary
outlier score for every object. We then modify the objects’
outlier scores in the neighborhood to be closer to one another
to smooth the baseline outlier detectors’ results. The main
advantage of NA is its applicability to any existing outlier
detectors or ensemble techniques. While we use k-NN defined
by Euclidean distance in this paper, it should be noted that
any neighborhood model can also be applied.

NA first defines an outlier score similarity function f (·) as
Equation 1.

f (θi) = ∑
j

Wj(θi−S j)
2,X j ∈ ψ

k
i ,S j ∈ S (1)

where ψk
i is defined as the set containing Xi and its k-NN and

Wj is a weight satisfying ∑ j Wj = 1,Wj > 0. Then, NA finds
the θi such that the f (·) can be minimized as Equation 2 and
uses the θi found as the revised outlier score for object Xi.

θi← argmin
θi

f (θi) (2)

To obtain the θi to minimize the f (·), NA gets θi =
∑ j W jS j
∑ j W j

after solving the equation ∂ f
∂θi

= 0. The weight Wj is influenced
by two factors: the similarity of objects and the reliability of
the scores. When the scores are more reliable and the objects
are more similar, the weight Wj increases. Therefore, it is not
recommended to use the distances (or normalized within k-
NN) between objects as the weight values directly. To simplify
the solution, we can set Wj =Wp for any X j,Xp ∈ψk

i . Finally,
θi can be calculated as Equation 3. The solution with the
optimal weights can be future work as validating the concept
of NA is more important than focusing on developing a more
sophisticated solution.

θi =
∑ j S j

k+1
,X j ∈ ψ

k
i ,S j ∈ S (3)

Algorithm 1 NA(X ,S,k)
Input : Dataset X , Raw outlier scores S, Neighborhood size k
Output: Revised outlier scores θ

foreach Xi ∈ X do
calculate θi via Equation 3;

end

Algorithm 1 shows the pseudo-code and Figure 7 demon-
strates NA’s two steps. Considering the red object (object B in
Figure 4), NA first searches its k-NN and then calculates the
average scores of the neighbors. As a result, the peak in the
outlier scores in Figure 4 has been removed. The visualization
examples with and without NA are shown in Figure 8. We can
see that the LOF detector (with k = 40) falsely detects many
boundary objects as outliers (cross), but it succeeds after using
NA.

NA updates the outlier score of an object by the average of
the scores of its neighbors. Where the object is also a neighbor
of other objects, NA would be applied with multiple iterations,
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are given by the LOF detector with and without NA, respectively (k
= 40). LOF falsely detects boundary objects as outliers (cross) as
evaluated on a noisy A1 dataset [33], while NA improves the result of
the LOF significantly.

and in each current iteration, only the score of the last iteration
is used to revise each object’s score. The iteration leading to
coverage of outlier scores of all objects in the dataset should
be avoided. More information about the effect and selection
of the iteration can be found in Section V.B.

C. Theoretical analysis
Theoretical analysis with the bias-variance tradeoff: The

idea of analyzing the unsupervised outlier ensemble using
the bias-variance tradeoff, as proposed by Aggarwal [34],
can be employed to analyze NA. In this analysis, we make
the assumption that the ideal (ground truth) outlier score for
a given object is determined by an unknown function g(·),
which can be estimated using outlier detectors such as h(·).
Both g(·) and h(·) produce scores that satisfy the assumption
of having a zero mean and unit variance across all objects
Xi ∈ X . The mean-squared error (MSE) of the detector h(·),
calculated over all the test objects in Xi ∈ X , is defined as
MSE = 1

N ∑
N
i=1{g(Xi)−h(Xi)}2.

After introducing a random noise term εi (variable) to the
Xi, denoted as X̂i = Xi + εi, the score of Xi can be calculated
by ensembling the outlier scores of X̂i with different noise

εi. Consequently, the expected MSE over various εi is repre-
sented by Equation 4, where E[·] represents the mathematical
expectation. The first and second components of Equation 4
correspond to the (squared) bias and variance, respectively.
In other words, Equation 4 is equivalent to the expression
E[MSE] = bias2+variance. To minimize the value of E[MSE],
techniques can be developed to reduce either the bias or
variance component. However, NA focuses on reducing the
variance term by setting X̂i = Xi + εi = X j, where X j ∈ ψk

i (as
defined in Equation 1). Since Xi and X j are close to each
other in terms of distance, the noise εi = Xi−X j is also small.
Consequently, the difference E[h(X̂i)]− h(X̂i) is also small,
leading to a reduction in the variance component.

E[MSE]=
1
N

N

∑
i=1

E[{g(Xi)−h(X̂i)}2]

=
1
N

N

∑
i=1

E[{g(Xi)−E[h(X̂i)]+E[h(X̂i)]−h(X̂i)}2]

=
1
N

N

∑
i=1

E[{g(Xi)−E[h(X̂i)]}2]

+
2
N

N

∑
i=1
{g(Xi)−E[h(X̂i)]}{E[h(X̂i)]−E[h(X̂i)]}

+
1
N

N

∑
i=1

E[{E[h(X̂i)]−h(X̂i)}2]

=
1
N

N

∑
i=1

E[{g(Xi)−E[h(X̂i)]}2]

+
1
N

N

∑
i=1

E[{E[h(X̂i)]−h(X̂i)}2]

(4)

Theoretical analysis with a case: It is very challenging
to theoretically prove that the revised score calculated via
Equation 3 can improve the outlier score reliability because
the proof process has to consider all the factors that affect the
outlier detection. These include the data dimensions, the data
types, the number of clusters, the properties of clusters such
as shape, size, and density, the outlier types, and the number
of outliers. Therefore, we give a theoretical analysis of how
the revised score calculated via Equation 3 can improve the
reliability of outlier scores by analyzing an example as shown
in Figure 9.
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Fig. 9. An example where a normality object (point A, yellow circle)
has a larger outlier score than that of an outlier object (point B, red
triangle).

Figure 9 shows an example that the expected scores should
satisfy S1 > S2 > S3 ∼= S4, while S4 > S1 > S2 > S3 is given.
Here, S1 is the outlier score for the outlier object (point B,
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red triangle), S2 are the outlier scores for boundary objects
(grey circle, normalities), S3 are the outlier scores for insider
objects (blue circle, normalities), and S4 is the outlier score for
normality object (point A, yellow circle). NA revises the scores
so that the revised score θn for normalities and the revised
score θo for the outlier satisfy θo > θn as shown in Equation
5. Here, kn

i and ko
i are the numbers of Si in the neighborhood

of a normality object and an outlier object, respectively. If
the solution for Equation 5 exists, the neighborhood of point
A should not contain the point B, while the neighborhood of
point B should not contain the point A, as shown in Equation
6. If the Equation 6 holds, we can get kn

1 = 0 and k0
4 = 0.

With Equation 5, we can obtain ko
2 > kn

2 +
(S4−S1)
S2−S3

as shown in
Equation 7.

Finally, the solution for θo > θn is the k satisfying klower <
k < kupper as shown in Equation 6 and Equation 7. Therefore,
we can see that NA works when some conditions hold. First,
decided by the upper bound kupper, point A and point B should
have enough distance so that their neighborhoods are not much
overlapped. Second, decided by the lower bound klower, the
outlier score difference between the point A and point B,
namely the term S4−S1, should not be significantly larger than
the outlier score difference between the boundary objects and
insider objects, namely the term S2− S3. If these conditions
are not met, NA may still work by requiring a larger k until
more necessary boundary and insider objects in other clusters
can be included. 

θo > θn

θn =
1
k ∑

3
i=1 kn

i Si

θo =
1
k ∑

3
i=1 ko

i Si

k = ∑
3
i=1 ko

i = ∑
3
i=1 kn

i

(5)

kupper = min{min{k|B ∈ ψ
k
n},min{k|A ∈ ψ

k
o}} (6)

klower = min{k|ko
2 > kn

2 +
S4−S1

S2−S3
} (7)

D. Discussion
In this section, we discuss the proposed NA and conceptu-

ally related techniques to show that the proposed NA is novel
and fundamentally different. One is the k-NN classifier, which
also looks for neighborhood objects when classifying objects.
The difference is that the k-NN classifier is a supervised
method, but NA is not.

Another related technique is the mean-shift technique [7],
which is also widely applied in image processing [35]. NA can
be repeated several times and the process iteratively replaces
an object’s outlier score with its neighbors’ mean scores. This
process is close to the mean-shift process [11]. The difference
is that mean-shift modifies the feature values of the objects
whereas NA modifies the outlier score values of the objects.

All k-NN-based outlier detectors are related as they use
k-NN as their key component. However, their usage of k-
NN differs. In general, all k-NN-based detectors use k-NN
to produce the outlier scores for the objects, as shown at the
top of Figure 10. However, NA uses k-NN to revise the outlier

scores produced by any detector, including detectors based on
k-NN, as shown at the bottom of Figure 10. Using k-NN as
a detector to produce outlier scores is a well-known approach
but it is novel to use it as a post-processing technique for
tuning the score.

Sd = $d(data)Outlier	 scores 
of detector d:

Revised	outlier	
Score of ensemble: R = 3d(S1, … , Sd)

Rd = ℎd(data, Sd)Revised	outlier	
Score of NA:

Fig. 10. Difference between k-NN-based detectors, ensembles, and
NA: they require different inputs and have different models.

It is worth noting that other detectors [7], [14], [16] also
utilize k-NN and the average operation. However, these are
stand-alone detectors and cannot be an add-on to existing
detectors, while NA is an add-on to other existing detectors
and cannot be used as a stand-alone detector.

Ensemble techniques are also related and have a combi-
nation operation. Besides this commonality, NA has three
fundamental differences. First, ensemble techniques combine
several poor detectors to obtain a better one [1], as shown in
the revised outlier score in the ensemble in Figure 10, while
NA removes local variance. Second, ensemble techniques need
to compute the outlier score for the same object multiple times,
while NA does not. Third, ensemble techniques cannot be
applied to a single detector, but NA can.

NA and ensemble techniques are not exclusive, and they can
be applied jointly. Their similarity is that both aim to smooth
the outlier scores; the ensemble operates across the detectors
while NA operates across the objects. Considering the two
detectors (the blue and green lines) in Figure 5, ensemble
techniques can improve these two poorly performing detectors
only when the two peaks happen in the same location (objects)
and with a proper difference.

It is worthwhile to note that NA may be suitable for other
score-based data-mining tasks. This is because similar input
should have a similar output. If we extend the definition of en-
semble as the technique having the operation of score combi-
nation, we can identify several types of ensembles. These types
include feature-based ensemble (feature bagging), detector-
based ensemble, parameter-based ensemble, and object-based
ensemble (the proposed NA). These ensembles should be
applicable to data-mining tasks other than outlier detection.

Recently, Ke et al. [36] proposed a method called group
similarity system (GSS) for unsupervised outlier detection and
Yang et al. [37] proposed a data pre-processing technique
called neighborhood representative (NR) to detect collective
outliers using exiting outlier detectors. GSS partitions the data
into non-overlapped groups and judges the groups as outliers
by considering the mean of the outlier scores of the objects in
each group. NR scores the representative objects sampled from
each group and judges the groups as outliers by considering
the scores of the representative objects in each group. NA
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is not used for collective outliers but for individual outliers,
making it different from GSS or NR.

IV. EXPERIMENTAL SETUP
We used nine public, real-world, semantically meaningful

static datasets, which can be found in UCI repository datasets
or [22]. The information in the datasets varies from 8 to 259.
They contain outliers ranging from 0.40% to 75.40% and have
objects ranging from 195 to 60,632 as summarized in Table
I. For preprocessing, all data were scaled by subtracting the
mean and dividing by the standard deviation for each attribute.

TABLE I
DATASET INFORMATION

Name Objects Dimension Outlier Outlier objects Normality objects
KDD-Cup99 60632 38 246 Intrusion connections Normal connections

Stamps 340 9 340 Forged stamps Genuine stamps
PageBlocks 5393 10 510 Text block Other types of block

Cardiotocography 2114 21 466 Suspect or pathological people Healthy people
Pima 768 8 268 People with diabetes Healthy people

SpamBase 4207 57 1679 Spam emails Non-spam emails
HeartDisease 270 13 120 People with heart problem Healthy people
Arrhythmia 450 259 206 Patients with arrhythmia Healthy people
Parkinson 195 22 147 Patients with Parkinson’s disease Healthy people

The outlier detectors’ performance was measured mainly
by the area under the receiver operating characteristic (ROC)
curve (AUC). The ROC curve was drawn by plotting the
true positive rate against the false positive rate over various
threshold values. The AUC was a single value ranging from
0 to 1. The bigger the value was, the better the performance.

While AUC measured the average performance, we also
tested the performance when a selected thresholding method
was applied. For the threshold component, we used the known
number of outliers in the dataset. This is known as the top-k
method. The result was measured by the F1-score, which was
the average of precision and recall. Precision is the ability to
minimize false positives and recall is the ability to find all the
positive samples.

For k-NN-based outlier detectors, we used the value of k,
which provided the best results when k ranged from 2 to
100. Further discussion on the identification of the optimal
parameter k value for k-NN-based detectors can be found in
this comprehensive survey [38]. The default parameters found
in the literature are used for the other detectors.

The proposed NA was tested with all values of k from 1 to
100. We used k = 100 as the default value. NA was iterated
10 times to study the effect of iterations.

V. RESULTS
A. The overall effect of NA

We varied the neighborhood size k in NA from 1 to 100
to find the best results and compared them with the results
obtained using the default value k = 100. The average AUC
and F1-score results are summarized in Table II. The AUC
results per dataset are summarized in Table III. Based on the
results, we can make the following observations.

First, based on the AUC results in Table II, the proposed NA
significantly improved all the detection results. On average, all
the detectors evaluated for all the datasets improved by +0.04
(from 0.70 to 0.74) with the default k, and +0.06 with the best

k. We can make a similar observation about AUC for the F1-
score. NA improved all outlier detectors by +0.02 (from 0.73
to 0.75) on average when using the default value of k, and by
+0.03 when using the best value of k.

Second, NA provided the most AUC improvement with the
NC detector, from 0.62 to 0.77. The most significant individual
improvement was +0.28 for HeartDisease and KDD-Cup99.
This observation is interesting, as NC was originally one of
the worst detectors. However, when used with NA, it became
competitive. This indicates that NC and NA utilize different
properties and are complementary. It also suggests that the
poorly performing detectors evaluated previously may have
been seriously underestimated.

Third, the default setting with k = 100 performed almost as
well as the best k. This shows that NA is robust on the choice
of the parameter k.

Fourth, as shown in the columns of data labeled original in
Table II, except MO GAAL, without using NA the average
AUC of detectors has a range from 0.62 to 0.75. However,
with NA, the range becomes much smaller, from 0.75 to 0.79.
This indicates that when NA was not used, the choice of
detector mattered, but when NA was used it mattered less.
This may pose a challenge to the generally accepted idea over
the decades that the data model is the most important factor
[1]. For MO GAAL, the ROC AUC is near 0.50, which is
close to random guesses. This may be because MO GAAL
needed more samples to train the neural network.

In Table III, we can see that all detectors for all datasets im-
proved for both the default k and the best k. The only exception
is the result for Arrhythmia, which weakened by -0.02 when
using default k. Most datasets improved from +0.03 to +0.15
on average. The most significant individual improvement was
for HeartDisease, which was +0.17 on average. NA did not
help much with the datasets containing only a few outliers
or when the original detector already performed well. For
example, MOD, KNN, IFOREST, OCVSCM, and PCAD all
achieved AUC = 0.99 for KDD-Cup99.

B. NA’s effect on the best detector per dataset
The table presented in Table IV provides a summary of

the best detectors with and without NA for each dataset.
The impact of NA on the performance of the best detector
varies across three distinct groups. The first group consists
of datasets, such as Cardio. and SpamBase, where the best
detectors remain the same when NA is used. The second
group includes datasets like PageBlocks, Pima, HeartDisease,
and Parkinson, where the best detectors completely change
when NA is applied. The third group comprises datasets
such as KDD-Cup99, Stamps, and Arrhythmia, where the best
detectors partially change when NA is utilized. These find-
ings suggest that there is no single detector that consistently
outperforms others, regardless of the presence of NA. This
observation aligns with the conclusion drawn by Aggarwal
[1].

C. Effect of the iterations
NA can be iterated several times. Next, we varied the

iteration parameter from 1 to 10 times to study its effect on
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TABLE III
AUC IMPROVEMENT PER OUTLIER DETECTOR PER DATASET

Dataset KDD-Cup99 Stamps PageBlocks Cardio. Pima SpamBase HeartDisease Arrhythmia Parkinson AVG. DIFF.outliers 0.4% 9.1% 10.2% 22.2% 34.9% 39.4% 44.4% 45.8% 75.4%

Original

MOD 0.99 0.90 0.91 0.54 0.68 0.55 0.62 0.74 0.64 0.73 -
LOF 0.84 0.89 0.91 0.59 0.69 0.49 0.67 0.73 0.60 0.71 -

ODIN 0.81 0.83 0.79 0.61 0.63 0.52 0.61 0.72 0.53 0.67 -
NC 0.69 0.68 0.70 0.57 0.57 0.55 0.58 0.67 0.56 0.62 -

KNN 0.99 0.91 0.92 0.55 0.73 0.57 0.68 0.74 0.66 0.75 -
ABOD 0.86 0.87 0.85 0.48 0.70 0.42 0.65 0.73 0.64 0.69 -
MCD 0.97 0.85 0.92 0.49 0.68 0.46 0.64 0.72 0.64 0.71 -

IFOREST 0.99 0.86 0.90 0.70 0.67 0.64 0.65 0.76 0.47 0.74 -
OCSVM 0.99 0.87 0.91 0.70 0.62 0.53 0.58 0.74 0.43 0.71 -
PCAD 0.99 0.90 0.90 0.75 0.63 0.55 0.62 0.73 0.38 0.72 -

MO GAAL 0.55 0.63 0.56 0.50 0.56 0.73 0.41 0.50 0.50 0.55 -
COPOD 0.99 0.93 0.88 0.66 0.65 0.69 0.69 0.76 0.54 0.75 -

AVG 0.89 0.84 0.85 0.60 0.65 0.56 0.62 0.71 0.55 0.70 -

NA
(default)

MOD 0.99 0.93 0.91 0.52 0.76 0.59 0.77 0.72 0.72 0.77 +0.04
LOF 0.88 0.93 0.94 0.58 0.76 0.67 0.78 0.73 0.55 0.76 +0.05

ODIN 0.83 0.93 0.83 0.74 0.74 0.57 0.75 0.70 0.56 0.74 +0.07
NC 0.97 0.92 0.86 0.80 0.61 0.61 0.85 0.70 0.32 0.74 +0.12

KNN 0.88 0.92 0.90 0.52 0.77 0.61 0.82 0.72 0.73 0.76 +0.01
ABOD 0.85 0.90 0.79 0.41 0.78 0.36 0.85 0.70 0.80 0.72 +0.03
MCD 0.99 0.92 0.93 0.47 0.74 0.43 0.81 0.70 0.76 0.75 +0.04

IFOREST 0.98 0.92 0.87 0.74 0.73 0.65 0.81 0.70 0.54 0.77 +0.03
OCSVM 0.98 0.92 0.90 0.75 0.68 0.56 0.72 0.72 0.56 0.75 +0.05
PCAD 0.98 0.92 0.89 0.81 0.69 0.58 0.76 0.70 0.40 0.75 +0.03

MO GAAL 0.58 0.80 0.42 0.50 0.52 0.74 0.63 0.50 0.50 0.58 +0.03
COPOD 0.95 0.93 0.84 0.68 0.70 0.69 0.82 0.71 0.60 0.77 +0.01

AVG 0.90 0.91 0.84 0.63 0.71 0.59 0.78 0.69 0.59 0.74 +0.04

NA
(Best)

MOD 0.99 0.95 0.92 0.55 0.76 0.59 0.77 0.74 0.74 0.78 +0.05
LOF 0.88 0.94 0.94 0.59 0.76 0.68 0.78 0.74 0.60 0.77 +0.06

ODIN 0.83 0.94 0.83 0.74 0.74 0.57 0.75 0.72 0.58 0.74 +0.07
NC 0.97 0.92 0.86 0.80 0.61 0.62 0.86 0.72 0.58 0.77 +0.15

KNN 0.99 0.95 0.92 0.55 0.77 0.61 0.82 0.74 0.75 0.79 +0.04
ABOD 0.93 0.94 0.85 0.48 0.78 0.39 0.86 0.73 0.80 0.75 +0.06
MCD 0.99 0.92 0.93 0.49 0.74 0.48 0.81 0.73 0.82 0.77 +0.06

IFOREST 0.99 0.94 0.90 0.74 0.73 0.65 0.81 0.76 0.54 0.78 +0.05
OCSVM 0.99 0.93 0.91 0.75 0.68 0.56 0.73 0.74 0.56 0.76 +0.05
PCAD 0.99 0.94 0.90 0.81 0.69 0.58 0.77 0.73 0.40 0.76 +0.04

MO GAAL 0.60 0.80 0.56 0.50 0.57 0.74 0.63 0.50 0.50 0.60 +0.05
COPOD 0.99 0.95 0.88 0.69 0.70 0.71 0.82 0.76 0.60 0.79 +0.03

AVG 0.93 0.93 0.87 0.64 0.71 0.60 0.78 0.72 0.62 0.76 +0.06

TABLE II
AVERAGE AUC AND F1-SCORE FOR ALL DATASETS

Measurement AUC F1-score

Detector Original NA (k) Original NA (k)
Default Best Default Best

MOD [7] 0.73 0.77 0.78 0.74 0.76 0.77
LOF [20] 0.71 0.76 0.77 0.74 0.76 0.78
ODIN [16] 0.67 0.74 0.75 0.71 0.75 0.76
NC [18] 0.62 0.74 0.77 0.71 0.75 0.77
KNN [15] 0.75 0.76 0.79 0.74 0.76 0.77
ABOD [28] 0.69 0.72 0.75 0.73 0.75 0.75
MCD [23] 0.71 0.75 0.77 0.72 0.75 0.76
IFOREST [24] 0.74 0.77 0.79 0.74 0.76 0.77
OCSVM [26] 0.71 0.75 0.76 0.71 0.75 0.76
PCAD [27] 0.72 0.75 0.76 0.73 0.75 0.75
MO GAAL [29] 0.55 0.58 0.60 0.67 0.69 0.69
COPOD [31] 0.75 0.77 0.79 0.76 0.77 0.78
AVG 0.70 0.74 0.76 0.73 0.75 0.76

the result. The value iteration = 0 corresponds to the original
detector without NA. The average AUC results of all detectors
evaluated for all datasets, a selected detector (MOD), and a
selected dataset (HeartDisease) are summarized in Table V,
Table VI, and Table VII, respectively.

The average results in Table V show the first iteration
achieved the most improvement (+0.06). The second iteration
achieved further improvement (+0.01) but beyond that, the
effect remained rather small (≤+0.03). However, by applying

TABLE IV
BEST DETECTOR WITH AND WITHOUT NA FOR EACH DATASET

Dataset without with NA
KDD-Cup99 MOD, KNN, IFOREST

OCSVM, PCAD, COPOD
MOD, KNN, MCD, IFOREST
OCSVM, PCAD, COPOD

Stamps COPOD MOD, KNN ,COPOD
PageBlocks KNN, MCD LOF

Cardio. PCAD PCAD
Pima KNN ABOD

SpamBase MO GAAL MO GAAL
HeartDisease COPOD NA, ABOD
Arrhythmia COPOD IFOREST, COPOD
Parkinson KNN MCD

NA for multiple iterations the performance was improved from
0.70 to 0.79 AUC.

However, it has been observed that as the number of
iterations increases, the scores assigned to all objects tend
to converge. This convergence negatively impacts the per-
formance of object detection, as indicated by performance
drop (NC) and fluctuations (OCSVM). Achieving an optimal
number of iterations is challenging in unsupervised learning.
To mitigate this issue, it is not recommended to iterate NA
(number of iterations) excessively. However, it is worth noting
that a significant improvement in performance is observed
when using a single iteration for all detectors, thus it is
considered safe to use NA with a single iteration.

The results for the individual datasets with MOD are
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TABLE V
AVERAGE AUC RESULTS FOR ALL DATASETS

Iteration
Detector 0 1 2 3 4 5 6 7 8 9 10

MOD 0.73 0.78 0.8 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
LOF 0.71 0.77 0.78 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80

ODIN 0.67 0.75 0.77 0.78 0.79 0.79 0.80 0.80 0.80 0.80 0.80
NC 0.62 0.77 0.76 0.76 0.75 0.75 0.74 0.74 0.74 0.74 0.74

KNN 0.75 0.79 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
ABOD 0.69 0.75 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
MCD 0.71 0.77 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79

IFOREST 0.74 0.79 0.80 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.83
OCSVM 0.71 0.76 0.79 0.81 0.82 0.82 0.81 0.82 0.82 0.82 0.82
PCAD 0.72 0.76 0.77 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78

MO GAAL 0.55 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.62
COPOD 0.76 0.79 0.82 0.83 0.84 0.84 0.84 0.85 0.85 0.85 0.85

AVG 0.70 0.76 0.77 0.78 0.78 0.78 0.78 0.79 0.79 0.79 0.79

TABLE VI
AUC RESULTS OF MOD DETECTOR

Iteration
Dataset 0 1 2 3 4 5 6 7 8 9 10

KDD-Cup99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Stamps 0.90 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.95

PageBlocks 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Cardio. 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.56
Pima 0.68 0.76 0.78 0.78 0.77 0.76 0.76 0.75 0.75 0.75 0.75

SpamBase 0.55 0.59 0.65 0.69 0.72 0.74 0.75 0.75 0.76 0.76 0.77
HeartDisease 0.62 0.77 0.86 0.89 0.90 0.90 0.90 0.91 0.91 0.91 0.91
Arrhythmia 0.74 0.74 0.71 0.69 0.67 0.65 0.65 0.64 0.64 0.64 0.64
Parkinson 0.64 0.74 0.80 0.83 0.84 0.84 0.85 0.85 0.85 0.85 0.85

AVG 0.73 0.78 0.80 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

TABLE VII
AUC RESULTS ON HEARTDISEASE DATASET

Iteration
Detector 0 1 2 3 4 5 6 7 8 9 10

MOD 0.62 0.77 0.86 0.89 0.9 0.9 0.9 0.91 0.91 0.91 0.91
LOF 0.67 0.78 0.85 0.89 0.90 0.90 0.90 0.91 0.91 0.91 0.91

ODIN 0.61 0.75 0.85 0.89 0.90 0.90 0.90 0.90 0.91 0.91 0.91
NC 0.58 0.86 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

KNN 0.68 0.82 0.87 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.91
ABOD 0.65 0.86 0.89 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91
MCD 0.64 0.81 0.87 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.91

IFOREST 0.65 0.81 0.87 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.91
OCSVM 0.58 0.73 0.84 0.89 0.90 0.90 0.90 0.91 0.91 0.91 0.91
PCAD 0.62 0.77 0.86 0.89 0.90 0.90 0.90 0.91 0.91 0.91 0.91

MO GAAL 0.41 0.63 0.64 0.63 0.62 0.62 0.61 0.61 0.61 0.61 0.61
COPOD 0.69 0.82 0.88 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91

AVG 0.62 0.78 0.85 0.87 0.88 0.88 0.88 0.88 0.89 0.88 0.89

reported in Table VI. All the datasets evaluated with the MOD
detector were improved except Arrhythmia, which started to
deteriorate during the second iteration. This might have been
caused by the so-called curse of dimensionality in high-
dimensional data, as Arrhythmia has 259 dimensions, while
all the other datasets had 60 or fewer. Most other datasets
were improved even when they were iterated 10 times. Another
exception was Pima, for which the result started to deteriorate
after the fourth iteration. This indicated that the iteration
parameter needed to be tuned according to the datasets if
desiring an optimal value. To be conservative, we set the
default value as iteration = 1 despite knowing that some
datasets, such as SpamBase and HeartDisease, would benefit
from more iterations.

The results for the individual detectors with HeartDisease
are reported in Table VII. It shows all detectors can benefit
from iteration = 2.

Drawing inspiration from the elbow method, which is a
visual technique for determining the optimal K in K-means
clustering, we can construct an iteration-mean-squared-error
(iteration-MSE) curve by plotting the iteration of applying
NA and the MSE between the outlier scores in the current
and previous iterations. The elbow point in this curve can
potentially serve as an indicator for identifying the optimal
iteration. In Figure 11, we present the iteration-MSE curves for
three detectors, namely LOF, NC, and OCSVM, when tested
with the Parkinson, HeartDiease, and Spambase datasets. The
elbow points in these curves accurately correspond to the
optimal iterations, which typically fall within a range of three
iterations. Even in the case of OCSVM on the Spambase
dataset, where the performance of OCSVM deteriorates after
five iterations, the elbow point is observed to be around
four, effectively capturing the trend of performance change
with increasing iterations. This demonstrates the utility of the
elbow point in the iteration-MSE curve as an indicator for
determining the optimal iteration.

To summarize, it can be determined that the ideal number
of iterations for applying NA is contingent upon the specific
dataset and detector employed. The elbow point observed
in the iteration-MSE curve may serve as a useful indicator
for identifying the optimal iteration. Nevertheless, we suggest
a conservative approach of utilizing a single iteration, as it
strikes a balance between performance and stability.

TABLE VIII
AVERAGE AUC RESULTS FOR ALL DATASETS WITH K
IN NA EQUALING TO K IN K-NN BASED DETECTORS

Detector Original NA
Default k Best k Default k Best k

MOD 0.71 0.73 0.75 0.77
LOF 0.7 0.71 0.74 0.75
ODIN 0.66 0.67 0.73 0.74
NC 0.60 0.62 0.66 0.73
KNN 0.72 0.75 0.75 0.77
ABOD 0.68 0.69 0.71 0.74
AVG 0.68 0.70 0.72 0.75

D. Effect of k

To study the effect of k in NA, we varied it from 1 to 100.
The average AUC values across all the datasets are shown
in Figure 12. The results on a selected individual dataset
(HeartDisease) are also shown in Figure 13. The value k =
1 corresponds to the original detector without NA.

The results show that when increasing k, all detectors
improved and reached their best performance with k = 100.
We, therefore, recommend k = 100 as the default value.

NA is proposed as an independent component to improve
any single outlier detector. We notice that all k-NN-based out-
lier detectors also need to select the value of k. We considered
using the same k value both for the baseline detectors and
for NA. We performed additional experiments with the k-NN-
based detectors. We varied k from 3 to 100 to find the best
AUC.
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Fig. 11. The elbow points in the iteration-MSE curves for determining the optimal iteration of applying NA. The MSE at each iteration is
normalized by dividing it by the maximum MSE value. The AV G represents the average results of the three tested datasets.

TABLE IX
AUC DIFFERENCE RESULTS FOR ALL DATASETS FOR AVERAGE JOINTLY WORKING WITH NA

Detector combination Post-processing KDD-Cup99 Stamps PageBlocks Cardio. Pima SpamBase HeartDisease Arrhythmia Parkinson AVG.

MOD+KNN
Average 0.99 0.91 0.92 0.55 0.73 0.57 0.68 0.74 0.66 0.75
+NA (default k) 0.99 0.92 0.90 0.52 0.77 0.61 0.82 0.72 0.73 0.77
+NA (best k) 0.99 0.95 0.92 0.55 0.77 0.61 0.82 0.74 0.75 0.79

ODIN+NC
Average 0.81 0.83 0.79 0.61 0.63 0.52 0.61 0.72 0.53 0.67
+NA (default k) 0.81 0.93 0.83 0.74 0.74 0.57 0.75 0.70 0.56 0.74
+NA (best k) 0.83 0.94 0.83 0.74 0.74 0.57 0.75 0.72 0.58 0.75

MOD+NC
Average 0.69 0.68 0.70 0.57 0.57 0.55 0.58 0.67 0.56 0.62
+NA (default k) 0.87 0.92 0.86 0.80 0.61 0.61 0.85 0.70 0.32 0.73
+NA (best k) 0.87 0.92 0.86 0.80 0.61 0.62 0.86 0.72 0.58 0.76

MOD+ODIN+NC+KNN
Average 0.99 0.90 0.91 0.54 0.68 0.55 0.62 0.74 0.64 0.73
+NA (default k) 0.99 0.93 0.91 0.52 0.76 0.59 0.77 0.72 0.72 0.77
+NA (best k) 0.99 0.95 0.92 0.55 0.76 0.59 0.77 0.74 0.74 0.78

All twelve detectors

Average 0.89 0.84 0.82 0.60 0.65 0.56 0.62 0.71 0.55 0.69
+NA (default k) 0.91 0.91 0.82 0.63 0.71 0.59 0.77 0.69 0.59 0.73
+NA (best k) 0.93 0.93 0.84 0.64 0.71 0.60 0.77 0.72 0.62 0.75

The average results over all datasets are summarized in
Table VIII. They show that NA significantly improved the
detectors by +0.05 on average. Most improvement is achieved
with NC (+0.11). Further minimal improvements might be
achieved with some datasets if k was increased further. How-
ever, some datasets do not have enough data to go much
beyond 100, and the results would eventually start to degrade.
The main result was that we can achieve good performance
with rather small k values.
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Fig. 12. Average AUC results for all datasets with varying k.
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Fig. 13. AUC results on HeartDisease with varying k.

E. Effect of the neighbor weight

The effect of weight in Equation 1 is studied in this
section. The Wj corresponding to X j ∈ ψk

i in Equation 1
can be calculated by considering the distance between X j
and Xi, denoted as di, j. Hence, Wj and the normalized Wj
can be calculated as Wj =W ∗j and Wj =W ∗j /∑c W ∗c ,Xc ∈ ψk

i ,
respectively. Here, W ∗j = 1/di, j when di, j ̸= 0 and W ∗j = 1/γ

when di, j = 0. γ can be γ =∑c di,c,Xc ∈ψk
i (denoted as Sum) or

γ = max{di,c|Xc ∈ψk
i } (denoted as Max). Hence, four ways of

calculating Wj can be obtained by considering the combination
of normalization and γ .

Figure 14 shows the results of LOF detector tested
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Fig. 14. The impact of various methods weighting NA is studied using three different datasets. The average outcomes of these three datasets are
denoted as AV G.

with the Parkinson, HeartDiease, and Spambase datasets.
NA Weight Max and NA Weight Max Norm are for Wj =
W ∗j and Wj =W ∗j /∑c W ∗c ,Xc ∈ψk

i with γ =max{di,c|Xc ∈ψk
i },

respectively. NA Weight Sum and NA Weight Sum Norm
are for Wj = W ∗j and Wj = W ∗j /∑c W ∗c ,Xc ∈ ψk

i with γ =

∑c di,c,Xc ∈ψk
i , respectively. The choice of the optimal weight-

ing method is contingent upon the specific dataset. It is
observed that all weighting methods yield substantial improve-
ments in the Parkinson and Spambase datasets compared to
NA. However, in the case of the HeartDiease dataset, only
the NA Weight Sum Norm method demonstrates the ability
to enhance NA. Consequently, we recommend this method as
the default weighting approach. Further research on the various
weighting methods could be considered as a potential avenue
for future investigation.

F. Effect of the distance metric

The effect of defining similar objects using different dis-
tance metrics, which is the core concept of NA, is studied in
this section. Figure 15 shows the results of LOF (k=100) and
OCSVM detector tested with the Parkinson, HeartDiease, and
Spambase datasets. In the legend of Figure 15, the letters E and
V represent fixing the distance metric to the Euclidean metric
and varying the distance metric among Braycurtis, Canberra,
Chebyshev, Euclidean, and Manhattan, respectively.

Several observations can be deduced from the results.
Firstly, the LOF(V ) NA(V ) consistently exhibits superior
performance across various datasets. This suggests that the
selection of the distance metric can align with the requirements
of the detector, which relies on a distance metric to generate
outlier scores. Secondly, for the HeartDiease dataset, the
choice of distance metric does not significantly impact the
results. However, for the Parkinson and Spambase datasets, the
distance metric has a substantial influence on the outcomes.
This indicates that the selection of the distance metric is con-
tingent upon the specific application. Thirdly, the utilization
of the Braycurtis, Euclidean, and Manhattan distance metrics
can enhance the performance of both the LOF and OCSVM
detectors across all datasets. Based on the average results,
namely AV G, the LOF detector benefits the most from the
adoption of the Manhattan distance metric, while the OCSVM
detector experiences the greatest improvement with the use
of the Braycurtis distance metric. Notably, the Euclidean
distance metric brings about equal enhancements for both

detectors. This suggests that the choice of distance metric can
be determined by the requirements of the specific detector. In
other words, the Manhattan and Braycurtis metrics can be
employed as practical solutions for neighborhood-based and
non-neighborhood-based detectors, respectively. On the other
hand, the Euclidean metric can be utilized for combining
both neighborhood and non-neighborhood-based detectors in
an ensemble. Additional research on the distance metric could
be explored as a potential avenue for future inquiry.

G. Outlier ensembles
Next, we tested the effect of augmentation on NA with

an existing outlier ensemble technique. We used the average
ensemble [1] method, with different baseline detector combi-
nations. Results are summarized in Table IX.

We can observe that the results of the outlier ensemble
depend on the quality of the individual detectors. The best
results are obtained by the combination of MOD and KNN,
which reaches 0.75. Combining all 12 detectors would reach
only 0.69.

When applying NA jointly with the outlier ensemble, we
observed the following. First, no matter which combination
was used, NA always improved the results of the ensemble.
Second, the best combination no longer depended on the
quality of the individual detector. The best combination (MOD
and KNN) is based on one of the weaker baseline detectors
among those tested. This combination with NA reached the
overall best result of 0.79, which was very close to the
result (0.77) reached without optimizing the parameter k. This
indicates that NA provides a strong complementary component
to ensembles.

H. Complementary to NR
As in our previous work, NR was a data preprocessing

method to improve detectors, we wanted to know if NA as
an outlier score post-processing method could further improve
NR. We tested LOF, NR+LOF, LOF+NA, and NR+LOF+NA
by setting their parameter k to be the same value. The results
with Parkinson, HeartDiease, and Spambase datasets were
plotted in Figure 16. From Figure 16, we could observe that
a relatively larger k was good when NR and NA were jointly
used. NR+NA+LOF could further improve NR+LOF 31% on
average (0.88 vs. 0.71 AUC) relatively as shown on the right
of Figure 16. It was noteworthy that the performance of LOF
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Fig. 15. The impact of various distance metrics on NA is examined using three distinct datasets. The average outcomes of these three datasets
are denoted as AV G. In the legend, the symbols E and V denote the fixed utilization of the Euclidean metric and the variable utilization of the
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Fig. 16. Experiment results of LOF, NR+LOF, LOF+NA, and NR+LOF+NA ranging k. NA is complementary to NR.

on Spambase dataset with 0.49 AUC was close to random
guess, but when jointly used with NR and NA, it could even
achieve 0.81 AUC. Another noteworthy finding was that the
NR+LOF+NA approach exhibited a performance exceeding
0.90 AUC for both the Parkinson and HeartDiease datasets,
in contrast to the LOF method which yielded AUC values
below 0.70. This performance was significantly superior to any
previously reported results of unsupervised outlier detectors
in existing literature, as far as our knowledge extends. To
summarize, NA is complementary to NR significantly.

I. Computational complexity
NA requires O(NlogN) calculations using KD-tree in low

dimensions (D < 20) and Ball-tree in higher dimensions
(D > 20) to find k-NN. However, since NA serves as a post-
processing step, we care more about its gain relative to its
additional cost. Table X shows the average extra computing
time and the average AUC improvement over all datasets.

Table X shows that the k-NN-based detectors need only 4%
extra time but can improve by 11% in AUC on average. Non-
k-NN-based detectors are usually significantly faster and need
2,543% extra time to reach an average improvement of 7% in
AUC. The main reason is that the k-NN-based detectors have
already calculated the k-NN, which NA can directly utilize.

J. Discussion and limitations
Discussion: NA is not meant to be a stand-alone detector;

rather, it is an add-on to any existing score-based outlier detec-
tor used to enhance its performance as shown in the example
in Figure 3. The add-on does not increase the complexity
of k-NN-based detectors as shown in section V.E, but it can

TABLE X
AVERAGE AUC IMPROVEMENT AND EXTRA

COMPUTING TIME USING NA FOR ALL DATASETS

Detectors AUC
improvement(%)

Extra
time(%)Category Name

K-NN based

MOD 7 2
LOF 8 5
ODIN 11 4
NC 24 2
KNN 5 5
ABOD 11 5
AVG 11 4

Other

MCD 8 408
IFOREST 6 891
OCSVM 8 32
PCAD 6 98
MO GAAL 6 > 1
COPOD 5 1583
AVG 7 2543

bring significant improvement as shown in section V.A. NA
has only one parameter k to tune, which is not sensitive (not
oscillating) to detectors or datasets, and it is easy to tune as
demonstrated in Section V.C. Hence, NA is very useful for
practical applications.

Limitations: One limitation of the method is the k-NN
graph. Some neighbors can be far away, and simple averaging
may not be the best solution. Possible alternatives could be to
use the medoid or the weighted average. Different neighbor
graphs [39]–[41] could also be used. Nevertheless, NA is
already successful and we leave these ideas for future work.

NA also has the same limitation as other distance-based
methods: its performance starts to degrade when the dimen-
sions are large, as shown in the 269-dimensional Arrhythmia
dataset. NA still improved but the performance started to
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degrade if NA was iterated more than once. Such problems
are common for distance-based pattern recognition methods
operating in the raw attribute space. This is often referred to
as the curse of dimensionality.

VI. CONCLUSIONS
A novel post-processing technique called neighborhood

averaging (NA) for neighborhood smoothing in outlier score
space is proposed. The technique can be used to improve any
existing single outlier detector by smoothing its outlier scores.
Simulations showed that it significantly improved all 12 tested
outlier detectors including deep-learning-based detectors from
0.70 to 0.79 AUC on average. This has evidenced the impor-
tance of neighborhood smoothing in outlier score space.

The technique does not require any complicated parameter
tuning and k is the only parameter when applying NA with
a single iteration. When used with a k-NN-based baseline
detector, we do not need to recalculate the k-NN and use the
existing one with the same k value as the detector. With non-k-
NN-based detectors, setting the value of k = 100 was shown to
provide good results for almost all datasets. It is worth noting
that once NA is applied, even a poorly performing outlier
detector becomes competitive. This can help practitioners as
they have one less design component to consider.

Outlier detection is an important topic in data mining. In
addition to its ability to detect outliers in static data, it can
also handle dynamic cases such as time series. Therefore,
it is useful for applications like audio and video content
analysis. In general, whenever similarity between objects can
be properly predefined, whether static or dynamic, the concept
of the neighborhood can be applied. Therefore, the proposed
NA can be applied to enhance performance consistently and
significantly. NA has the potential to be widely adopted in a
variety of applications in data mining and beyond.
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