

XNN Graph

Pasi Fränti, Radu Mariescu-Istodor and Caiming Zhong

30.11.2016

Applications

- KNN classifier
- Manifold learning
- 3D object matching
- Clustering
- Outlier detection
- Traveling salesman problem
- Word similarity in web mining

K nearest neighbor graph k=3

K nearest neighbor graph k=4

Bottleneck issues

What we have:

- No good way to setup *k* automatically
- It does not adapt to local density

What we want:

- Setup *k* automatically
- Value *k* should be small, preferably constant.
- Connected graph
- Constructing the graph efficiently

Neighborhood graphs

KNN:

- Parameter k needs to be setup experimentally
- Graph may not be connected

MST:

- Connected
- Corresponds to *k*=1 but constrained by connectivity

k-MST:

- MST repeated *k* times for remaining edges
- Average number of links equals to *kNN*
- Inherits connectivity of MST

Delanuay triangulation:

- Partition space by Voronoi diagram
- Connected
- High number of edges
- Exponential time complexity $O(n^{d/2+1})$

X-nearest neighbor graph (XNN)

Neighbor rules

С

Basic definition:

A and B are neighbors, if no other points within the circle.

Neighbor rules

Basic definition:

A and B are neighbors, if no other points within the circle.

Three variants

Neighbor rules distances

Gabriel rule:

 $ab^2 < ac^2 + bc^2$

Using midpoint:

ab < 2mc

C is the nearest point to the midpoint m

Neighbor rule similarities

Assume similarity-to-distance conversion:

 $d=1/(s+\epsilon)$ where $s \in [0,1]$ $\epsilon=0.001$

Neighbor rule:

$$ab^{-2} < ac^{-2} + bc^{-2} \Leftrightarrow \frac{ab^2 \cdot bc^2 + ab^2 \cdot ac^2}{ac^2 \cdot bc^2} > 1$$

Algorithm to create full XNN

Algorithm 1: Full XNN(data set) \rightarrow XNN FOR i=1 to N-1 DO FOR j=i+1 to N DO Calculate midpoint m \leftarrow (xi+xj)/2 x \leftarrow Find nearest point for m IF x== xi OR x== xj THEN Mark xi and xj as neighbors.

How many neighbors...?

Experimental observations

- G2 data sets
- Two clusters of 500 points each
- Varying overlap (10%..90%)

Effect of density (varying N) G2-32-10

Effect of dimension G2-xx-70

Hierarchical XNN

Algorithm 2: Hierarchical XNN(data) \rightarrow XNN Put all in one cluster; XNN $\leftarrow \emptyset$; WHILE |XNN| < N DO ab \leftarrow SelectLargestCluster(C); a, b \leftarrow SplitCluster(*ab*); XNN \leftarrow XNN \cup (a,b) UpdateXNN;

Update after split

- Add link *ab* always
- Choose subset of { *ac, bc, ad, bd*}

Which links to choose? (*ac* or *bc*) (*ad* or *bd*)

- Accept both \Rightarrow complete graph
- Accept shorter \Rightarrow spanning tree
- Neighbor rule \Rightarrow hierarchical XNN

Time complexity: $X \cdot \sum_{i=1}^{N} i = X \cdot N^2$

Number of links: Still too high

K-limited XNN

- Select ab
- Select 2(k-1) closest among the rest
- *k* is global parameter (as in KNN)

\Rightarrow

Average number of links per point $\leq k$

Number of neighbors

k=10

	Dataset	Dim	Full	Hierarchical	k-limited
16D	Bridge	16	68.8	48	6.5
3D	House	3	14.4	22	7.9
16D	Miss America	16	345	94	6.8
2D	Birch1	2	4.0	(3.4)	(3.4)
	Birch2	2	(3.7)	(3.4)	(3.4)
	Birch3	2	(3.9)	(3.4)	(3.3)
2D	S 1	2	3.8	3.4	3.3
	S2	2	3.9	3.4	3.4
	S3	2	3.9	3.4	3.4
	S4	2	3.9	3.4	3.4

Applications examples

Path-based clustering

Travelling salesman problem

KNN classifier

Travelling salesman problem

Datasat	Points	Edg	ges	Common	
Dalasei	Ν	Total	Per node	Total	Per point
eil101	101	229	2.3	98	97%
a280	280	750	2.7	280	100%
RAT575	575	1213	2.1	552	96%
PR1002	1002	2060	2.0	957	96%
PR2392	2392	5127	2.1	2306	96%

Conclusions

- New neighborhood XNN
- Compromise between KNN and Gabriel
- It is connected
- Neighborhood size automatically selected