
applied
sciences

Article

Converting MST to TSP Path by Branch Elimination

Pasi Fränti 1,2,* , Teemu Nenonen 1 and Mingchuan Yuan 2

����������
�������

Citation: Fränti, P.; Nenonen, T.;

Yuan, M. Converting MST to TSP

Path by Branch Elimination. Appl. Sci.

2021, 11, 177. https://dx.doi.org/

10.3390/11010177

Received: 23 November 2020

Accepted: 24 December 2020

Published: 27 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 School of Computing, University of Eastern Finland, 80101 Joensuu, Finland; teemune@outlook.com
2 School of Big Data & Internet, Shenzhen Technology University, Shenzhen 518118, China;

yuanmingchuan@sztu.edu.cn
* Correspondence: franti@cs.uef.fi

Abstract: Travelling salesman problem (TSP) has been widely studied for the classical closed loop
variant but less attention has been paid to the open loop variant. Open loop solution has property
of being also a spanning tree, although not necessarily the minimum spanning tree (MST). In this
paper, we present a simple branch elimination algorithm that removes the branches from MST by
cutting one link and then reconnecting the resulting subtrees via selected leaf nodes. The number of
iterations equals to the number of branches (b) in the MST. Typically, b << n where n is the number of
nodes. With O-Mopsi and Dots datasets, the algorithm reaches gap of 1.69% and 0.61 %, respectively.
The algorithm is suitable especially for educational purposes by showing the connection between
MST and TSP, but it can also serve as a quick approximation for more complex metaheuristics whose
efficiency relies on quality of the initial solution.

Keywords: traveling salesman problem; minimum spanning tree; open-loop TSP; Christofides

1. Introduction

The classical closed loop variant of travelling salesman problem (TSP) visits all the nodes
and then returns to the start node by minimizing the length of the tour. Open loop TSP is
slightly different variant, which skips the return to the start node. They are both NP-hard
problems [1], which means that finding optimal solution fast can be done only for very
small size inputs.

The open loop variant appears in mobile-based orienteering game called O-Mopsi
(http://cs.uef.fi/o-mopsi/) where the goal is to find a set of real-world targets with the
help of smartphone navigation [2]. This includes three challenges: (1) Deciding the order
of visiting the targets, (2) navigating to the next target, and (3) physical movement. Unlike
in classical orienteering where the order of visiting the targets is fixed, O-Mopsi players
optimize the order while playing. Finding the optimal order is not necessary but desirable
if one wants to minimize the tour length. However, the task is quite challenging for humans
even for short problem instances. In [2], only 14% of the players managed to solve the best
order among those who completed the tour. Most players did not even realize they were
dealing with TSP problem.

Minimum spanning tree (MST) and TSP are closely related algorithmic problems. In spe-
cific, open loop TSP solution is also a spanning tree but not necessarily the minimum
spanning tree; see Figure 1. The solutions have the same number of links (n − 1) and they
both minimize the total weight of the selected links. The difference is that TSP does not
have any branches. This connection is interesting for two reasons. First, finding optimal
solution for TSP requires exponential time while optimal solution for MST can be found in
polynomial time using greedy algorithms like Prim and Kruskal, with time complexity very
close to O(n2) with appropriate data structure.

The connection between the two problems have inspired researchers to develop heuris-
tic algorithms for the TSP by utilizing the minimum spanning tree. Classical schoolbook
algorithm is Christofides [3,4], which first creates an MST. More links are then added so

Appl. Sci. 2021, 11, 177. https://dx.doi.org/10.3390/app11010177 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9554-2827
https://www.mdpi.com/2076-3417/11/1/177?type=check_update&version=1
https://dx.doi.org/10.3390/app11010177
https://dx.doi.org/10.3390/app11010177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://cs.uef.fi/o-mopsi/
https://dx.doi.org/10.3390/app11010177
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 177 2 of 17

that the Euler tour can be constructed. Travelling salesman tour is obtained from the
Euler tour by removing nodes that are visited repeatedly. This algorithm is often used as
classroom example because it provides upper limit how far the solution can be from the
optimal solution in the worst case. Even if the upper limit, 50%, is rather high for real life
applications, it serves as an example of the principle of approximation algorithms.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 17

Figure 1. Minimum spanning tree (MST) (left) and open loop travelling salesman problem (TSP) solutions (right) for the
same problem instance. The branching nodes are shown by blue, and the links that are different in the two solutions have
thicker black line. In addition to the branches, there are only two other places (red circles) where the two solutions differ.
Among all links, 29/37 = 78% are the same in both solutions.

The connection between the two problems have inspired researchers to develop heu-
ristic algorithms for the TSP by utilizing the minimum spanning tree. Classical schoolbook
algorithm is Christofides [3,4], which first creates an MST. More links are then added so
that the Euler tour can be constructed. Travelling salesman tour is obtained from the Euler
tour by removing nodes that are visited repeatedly. This algorithm is often used as class-
room example because it provides upper limit how far the solution can be from the opti-
mal solution in the worst case. Even if the upper limit, 50%, is rather high for real life
applications, it serves as an example of the principle of approximation algorithms.

MST has also been used to estimate lower limit for the optimal TSP solution in [5],
and to estimate the difficulty of a TSP instance by counting the number of branches [6].
Prim’s and Kruskal’s algorithms can also been modified to obtain sub-optimal solutions
for TSP. Class of insertion algorithms were studied in [7]. They iteratively add new nodes
to the current path. The variant that adds a new node to either end of the existing path
can be seen as modification of the Prim’s algorithm where additions are allowed only to
the ends of the path. Similarly, algorithm called Kruskal-TSP [8] modifies Kruskal’s algo-
rithm so that it allows to merge two spanning trees (paths in case of TSP) only by their
end points.

In this paper, we introduce a more sophisticated approach to utilize the minimum
spanning tree to obtain solution for travelling salesman problem. The algorithm, called
MST-to-TSP, creates a minimum spanning tree using any algorithm such as Prim or Krus-
kal. However, instead of adding redundant links like Chirstofides, we detect branching
nodes and eliminate them by a series of link swaps, see Figure 2. Branching node is a node
that connects more than two other nodes in the tree [6]. We introduce two strategies. First,
a simple greedy variant removes the longest of all links connecting to any of the branching
nodes. The resulting sub-trees are then reconnected by selecting the shortest link between
leaf nodes. The second strategy, all-pairs, considers all possible removal and reconnection
possibilities and selects the best pair.

Figure 1. Minimum spanning tree (MST) (left) and open loop travelling salesman problem (TSP)
solutions (right) for the same problem instance. The branching nodes are shown by blue, and the
links that are different in the two solutions have thicker black line. In addition to the branches, there
are only two other places (red circles) where the two solutions differ. Among all links, 29/37 = 78%
are the same in both solutions.

MST has also been used to estimate lower limit for the optimal TSP solution in [5],
and to estimate the difficulty of a TSP instance by counting the number of branches [6].
Prim’s and Kruskal’s algorithms can also been modified to obtain sub-optimal solutions
for TSP. Class of insertion algorithms were studied in [7]. They iteratively add new nodes to
the current path. The variant that adds a new node to either end of the existing path can be
seen as modification of the Prim’s algorithm where additions are allowed only to the ends
of the path. Similarly, algorithm called Kruskal-TSP [8] modifies Kruskal’s algorithm so
that it allows to merge two spanning trees (paths in case of TSP) only by their end points.

In this paper, we introduce a more sophisticated approach to utilize the minimum
spanning tree to obtain solution for travelling salesman problem. The algorithm, called
MST-to-TSP, creates a minimum spanning tree using any algorithm such as Prim or Kruskal.
However, instead of adding redundant links like Chirstofides, we detect branching nodes
and eliminate them by a series of link swaps, see Figure 2. Branching node is a node
that connects more than two other nodes in the tree [6]. We introduce two strategies.
First, a simple greedy variant removes the longest of all links connecting to any of the
branching nodes. The resulting sub-trees are then reconnected by selecting the shortest
link between leaf nodes. The second strategy, all-pairs, considers all possible removal and
reconnection possibilities and selects the best pair.

We test the algorithm with two datasets consisting of open loop problem instances
with known ground truth: O-Mopsi [2] and Dots [9]. Experiments show that the all-pairs
variant provide average gaps of 1.69% (O-Mopsi) and 0.61% (Dots). These are clearly better
than those of the existing MST-based variants including Christofides (12.77% and 9.10%),
Prim-TSP (6.57% and 3.84%), and Kruskal-TSP (4.87% and 2.66%). Although sub-optimal,
the algorithm is useful to provide reasonable estimate for the TSP solution. It is also not
restricted to complete graphs with triangular inequality like Christofides. In addition,
we also test repeated randomized variant of the algorithm. It reaches results very close to
the optimum; averages of 0.07% (O-Mopsi) and 0.02% (Dots).

Appl. Sci. 2021, 11, 177 3 of 17Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 17

Figure 2. Idea of the MST-to-TSP algorithm. Branching points and the attached links are first de-
tected. At every step, one of these links is removed and the separated trees are merged by connect-
ing two selected leaf nodes. In this example, two steps are needed to reach the solution of the
open-loop TSP.

We test the algorithm with two datasets consisting of open loop problem instances
with known ground truth: O-Mopsi [2] and Dots [9]. Experiments show that the all-pairs
variant provide average gaps of 1.69% (O-Mopsi) and 0.61% (Dots). These are clearly bet-
ter than those of the existing MST-based variants including Christofides (12.77% and
9.10%), Prim-TSP (6.57% and 3.84%), and Kruskal-TSP (4.87% and 2.66%). Although sub-
optimal, the algorithm is useful to provide reasonable estimate for the TSP solution. It is
also not restricted to complete graphs with triangular inequality like Christofides. In ad-
dition, we also test repeated randomized variant of the algorithm. It reaches results very
close to the optimum; averages of 0.07% (O-Mopsi) and 0.02% (Dots).

One of the main motivations for developing heuristics algorithms earlier has been to
have a polynomial time approximation algorithm for TSP. Approximation algorithms
guarantee that the gap between the heuristic and optimal results has a proven upper limit
but these limits are usually rather high: 67% [10], 62% [11], 50% [4], 50%-ε [12], and 40%
[13]. The variant in [14] was speculated to have limit as low as 25% based on empirical
observations. The results generalize to the open-loop case so that if there exists α-approx-
imation for the closed-loop TSP there exists α+ε approximation for the open-loop TSP
[15,16]. However, for practical purpose, all of these are high. Gaps between 40% to 67%
are likely to be considered insufficient for industrial applications.

The second motivation for developing heuristic algorithms is to provide initial solu-
tion for more complex algorithms. For example, the efficiency of local search and other
metaheuristics highly depends on the initial solution. Starting from a poor-quality solu-
tion can lead to much longer iterations, or even prevent reaching a high-quality solution
with some methods. Optimal algorithms like branch-and-cut also strongly depend on the
quality of initialization. The better the starting point, the more can be cut out by branch-
and-cut. One undocumented rule of thumb is that the initial solution should be as good
as ~1% gap in order to achieve significant savings compared to exhaustive search.

The rest of the paper is organized as follows. Section 2 reviews the existing algo-
rithms focusing on the those based on minimum spanning tree. The new MST-to-TSP al-
gorithm is then introduced in Section 3. Experimental results are reported in Section 4 and
conclusions drawn in Section 5.

Figure 2. Idea of the MST-to-TSP algorithm. Branching points and the attached links are first detected.
At every step, one of these links is removed and the separated trees are merged by connecting two
selected leaf nodes. In this example, two steps are needed to reach the solution of the open-loop TSP.

One of the main motivations for developing heuristics algorithms earlier has been
to have a polynomial time approximation algorithm for TSP. Approximation algorithms
guarantee that the gap between the heuristic and optimal results has a proven upper
limit but these limits are usually rather high: 67% [10], 62% [11], 50% [4], 50%-ε [12],
and 40% [13]. The variant in [14] was speculated to have limit as low as 25% based on
empirical observations. The results generalize to the open-loop case so that if there exists
α-approximation for the closed-loop TSP there exists α+ε approximation for the open-loop
TSP [15,16]. However, for practical purpose, all of these are high. Gaps between 40% to
67% are likely to be considered insufficient for industrial applications.

The second motivation for developing heuristic algorithms is to provide initial solu-
tion for more complex algorithms. For example, the efficiency of local search and other
metaheuristics highly depends on the initial solution. Starting from a poor-quality solution
can lead to much longer iterations, or even prevent reaching a high-quality solution with
some methods. Optimal algorithms like branch-and-cut also strongly depend on the quality
of initialization. The better the starting point, the more can be cut out by branch-and-cut.
One undocumented rule of thumb is that the initial solution should be as good as ~1% gap
in order to achieve significant savings compared to exhaustive search.

The rest of the paper is organized as follows. Section 2 reviews the existing algorithms
focusing on the those based on minimum spanning tree. The new MST-to-TSP algorithm is
then introduced in Section 3. Experimental results are reported in Section 4 and conclusions
drawn in Section 5.

2. Heuristic Algorithms for TSP

We review the common heuristic found in literature. We consider the following
algorithms:

• Nearest neighbor [17,18].
• Greedy/Prim-TSP [17,18].
• Kruskal-TSP [8].
• Christofides [3,4].
• Cross removal [19].

Appl. Sci. 2021, 11, 177 4 of 17

Nearest neighbor (NN) is one of the oldest heuristic methods [17]. It starts from random
node and then constructs the tour stepwise by always visiting the nearest unvisited node
until all nodes have been reached. It can lead to inferior solutions like 25% worse than
the optimum in the example in Figure 3. The nearest neighbor strategy is often applied
by human problem solvers in real-world environment [6]. A variant of nearest neighbor
in [18] always selects the shortest link as long as new unvisited nodes are found. After that,
it switches to the greedy strategy (see below) for the remaining unvisited nodes. In [9],
the NN-algorithm is repeated N times starting from every possible node, and then selecting
the shortest tour of all n alternatives. This simple trick would avoid the poor choice shown
in Figure 3. In [14], the algorithm is repeated using all possible links as the starting point
instead of all possible nodes. This increases the number of choices up to n*(n-1) in case of
complete graph.

Greedy method [17,18] always selects the unvisited node having shortest link to the
current tour. It is similar to the nearest neighbor except that it allows to add the new node
to both ends of the existing path. We call this as Prim-TSP because it constructs the solution
just like Prim except it does not allow branches. In case of complete graphs, nodes can also
be added in the middle of the tour by adding a detour via the newly added node. A class
of insertion methods were studied in [7] showing that the resulting tour is no longer than
twice of the optimal tour.

Kruskal-TSP [8] also constructs spanning tree like Prim-TSP. The difference is that
while Prim operates on a single spanning tree, Kruskal operates on a set of trees (spanning
forest). It therefore always selects the shortest possible link as long as they merge to
different spanning trees. To construct TSP instead of MST, it also restricts the connections
only to the end points. However, while Prim-TSP has only two possibilities for the next
connection, Kruskal-TSP has potentially much more; two for every spanning tree in the
forest. It is therefore expected to make fewer sub-optimal selections, see Figure 4 for
an example. The differences between NN, Prim-TSP, and Kruskal-TSP are illustrated
in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 17

2. Heuristic Algorithms for TSP
We review the common heuristic found in literature. We consider the following al-

gorithms:
• Nearest neighbor [17,18].
• Greedy/Prim-TSP [17,18].
• Kruskal-TSP [8].
• Christofides [3,4].
• Cross removal [19].

Nearest neighbor (NN) is one of the oldest heuristic methods [17]. It starts from ran-
dom node and then constructs the tour stepwise by always visiting the nearest unvisited
node until all nodes have been reached. It can lead to inferior solutions like 25% worse
than the optimum in the example in Figure 3. The nearest neighbor strategy is often ap-
plied by human problem solvers in real-world environment [6]. A variant of nearest
neighbor in [18] always selects the shortest link as long as new unvisited nodes are found.
After that, it switches to the greedy strategy (see below) for the remaining unvisited nodes.
In [9], the NN-algorithm is repeated N times starting from every possible node, and then
selecting the shortest tour of all n alternatives. This simple trick would avoid the poor
choice shown in Figure 3. In [14], the algorithm is repeated using all possible links as the
starting point instead of all possible nodes. This increases the number of choices up to
n*(n-1) in case of complete graph.

Greedy method [17,18] always selects the unvisited node having shortest link to the
current tour. It is similar to the nearest neighbor except that it allows to add the new node
to both ends of the existing path. We call this as Prim-TSP because it constructs the solu-
tion just like Prim except it does not allow branches. In case of complete graphs, nodes
can also be added in the middle of the tour by adding a detour via the newly added node.
A class of insertion methods were studied in [7] showing that the resulting tour is no longer
than twice of the optimal tour.

Kruskal-TSP [8] also constructs spanning tree like Prim-TSP. The difference is that
while Prim operates on a single spanning tree, Kruskal operates on a set of trees (spanning
forest). It therefore always selects the shortest possible link as long as they merge to dif-
ferent spanning trees. To construct TSP instead of MST, it also restricts the connections
only to the end points. However, while Prim-TSP has only two possibilities for the next
connection, Kruskal-TSP has potentially much more; two for every spanning tree in the
forest. It is therefore expected to make fewer sub-optimal selections, see Figure 4 for an
example. The differences between NN, Prim-TSP, and Kruskal-TSP are illustrated in Fig-
ure 5.

Figure 3. Nearest neighbor algorithm easily fails if unlucky with the selection of starting point. Figure 3. Nearest neighbor algorithm easily fails if unlucky with the selection of starting point.

Appl. Sci. 2021, 11, 177 5 of 17Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17

Figure 4. TSP-Kruskal [8] selected optimal choice for the first eight merges but the ninth merge
ends up to sub-optimal result. Overall, only one sub-optimal choice is included, and in this case, it
could be fixed by simple local search operations like 2-opt or link swap [9].

Figure 5. Differences between the Nearest Neighbor, Greedy, and Kruskal-TSP after the fourth
merge. Nearest neighbor continues from the previously added point. Prim-TSP can continue from
both ends. Kruskal has several sub-solutions that all can be extended further.

Classical Christofides algorithm [3,4] includes three steps: (1) Create MST, (2) add
links and create Euler tour, and (3) remove redundant paths by shortcuts. Links are added
by detecting nodes with odd degree and creating new links between them. If there are n
nodes with odd degree (odd nodes), then n/2 new links are added. To minimize the total
length of the additional links, perfect matching can be solved by Blossom algorithm, for
instance [20]. Example of Christofides is shown in Figure 6. In [12], a variant of Chris-
tofides was proposed by generating alternative spanning tree that has higher cost than
MST but fewer odd nodes. According to [21], this reduces the number of odd nodes from
36–39% to 8–12% in case of TSPLIB and VLSI problem instances.

Figure 6. Christofides operates by adding links so that Euler tour can be achieved. However, the quality of the result
depends on the order in which the links are travelled. In this case, it achieves optimal choice for closed loop solution but
not for the open loop case.

After 9 merges After 14 merges Final result Optimum

MST Added links Closed loop

1

3

11

Open loop
Remove longest

Open loop
Pseudo node

Figure 4. TSP-Kruskal [8] selected optimal choice for the first eight merges but the ninth merge ends up to sub-optimal
result. Overall, only one sub-optimal choice is included, and in this case, it could be fixed by simple local search operations
like 2-opt or link swap [9].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17

Figure 4. TSP-Kruskal [8] selected optimal choice for the first eight merges but the ninth merge
ends up to sub-optimal result. Overall, only one sub-optimal choice is included, and in this case, it
could be fixed by simple local search operations like 2-opt or link swap [9].

Figure 5. Differences between the Nearest Neighbor, Greedy, and Kruskal-TSP after the fourth
merge. Nearest neighbor continues from the previously added point. Prim-TSP can continue from
both ends. Kruskal has several sub-solutions that all can be extended further.

Classical Christofides algorithm [3,4] includes three steps: (1) Create MST, (2) add
links and create Euler tour, and (3) remove redundant paths by shortcuts. Links are added
by detecting nodes with odd degree and creating new links between them. If there are n
nodes with odd degree (odd nodes), then n/2 new links are added. To minimize the total
length of the additional links, perfect matching can be solved by Blossom algorithm, for
instance [20]. Example of Christofides is shown in Figure 6. In [12], a variant of Chris-
tofides was proposed by generating alternative spanning tree that has higher cost than
MST but fewer odd nodes. According to [21], this reduces the number of odd nodes from
36–39% to 8–12% in case of TSPLIB and VLSI problem instances.

Figure 6. Christofides operates by adding links so that Euler tour can be achieved. However, the quality of the result
depends on the order in which the links are travelled. In this case, it achieves optimal choice for closed loop solution but
not for the open loop case.

After 9 merges After 14 merges Final result Optimum

MST Added links Closed loop

1

3

11

Open loop
Remove longest

Open loop
Pseudo node

Figure 5. Differences between the Nearest Neighbor, Greedy, and Kruskal-TSP after the fourth merge.
Nearest neighbor continues from the previously added point. Prim-TSP can continue from both ends.
Kruskal has several sub-solutions that all can be extended further.

Classical Christofides algorithm [3,4] includes three steps: (1) Create MST, (2) add
links and create Euler tour, and (3) remove redundant paths by shortcuts. Links are added
by detecting nodes with odd degree and creating new links between them. If there are
n nodes with odd degree (odd nodes), then n/2 new links are added. To minimize the
total length of the additional links, perfect matching can be solved by Blossom algorithm,
for instance [20]. Example of Christofides is shown in Figure 6. In [12], a variant of
Christofides was proposed by generating alternative spanning tree that has higher cost
than MST but fewer odd nodes. According to [21], this reduces the number of odd nodes
from 36–39% to 8–12% in case of TSPLIB and VLSI problem instances.

Most of the above heuristics apply both to the closed-loop and open-loop cases. Prim
and Kruskal are even better suited for the open-loop cases as the last link in the closed loop
case is forced and is typically a very long, sub-optimal choice. Christofides, on the other
hand, was designed strictly for the closed-loop case due to the creation of the Euler tour. It
therefore does not necessarily work well for the open-loop case, which can be significantly
worse.

There are two strategies how to create open-loop solution from a closed-loop solution.
A simple approach is to remove the longest link, but this does not guarantee an optimal
result; see Figure 7. Another strategy is to create additional pseudo node, which has equal
(large) distance to all other nodes [9]. Any closed-loop algorithm can then be applied,
and the optimization will be performed merely based on the other links except those two
that will be connecting to the pseudo node which are all equal. These two will be the start
and end nodes of the corresponding open-loop solution. If the algorithm provides optimal
solution for the closed-loop problem, it was shown to be optimal also for the corresponding
open-loop case [1].

Appl. Sci. 2021, 11, 177 6 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17

Figure 4. TSP-Kruskal [8] selected optimal choice for the first eight merges but the ninth merge
ends up to sub-optimal result. Overall, only one sub-optimal choice is included, and in this case, it
could be fixed by simple local search operations like 2-opt or link swap [9].

Figure 5. Differences between the Nearest Neighbor, Greedy, and Kruskal-TSP after the fourth
merge. Nearest neighbor continues from the previously added point. Prim-TSP can continue from
both ends. Kruskal has several sub-solutions that all can be extended further.

Classical Christofides algorithm [3,4] includes three steps: (1) Create MST, (2) add
links and create Euler tour, and (3) remove redundant paths by shortcuts. Links are added
by detecting nodes with odd degree and creating new links between them. If there are n
nodes with odd degree (odd nodes), then n/2 new links are added. To minimize the total
length of the additional links, perfect matching can be solved by Blossom algorithm, for
instance [20]. Example of Christofides is shown in Figure 6. In [12], a variant of Chris-
tofides was proposed by generating alternative spanning tree that has higher cost than
MST but fewer odd nodes. According to [21], this reduces the number of odd nodes from
36–39% to 8–12% in case of TSPLIB and VLSI problem instances.

Figure 6. Christofides operates by adding links so that Euler tour can be achieved. However, the quality of the result
depends on the order in which the links are travelled. In this case, it achieves optimal choice for closed loop solution but
not for the open loop case.

After 9 merges After 14 merges Final result Optimum

MST Added links Closed loop

1

3

11

Open loop
Remove longest

Open loop
Pseudo node

Figure 6. Christofides operates by adding links so that Euler tour can be achieved. However, the quality of the result
depends on the order in which the links are travelled. In this case, it achieves optimal choice for closed loop solution but not
for the open loop case.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 17

Most of the above heuristics apply both to the closed-loop and open-loop cases. Prim
and Kruskal are even better suited for the open-loop cases as the last link in the closed
loop case is forced and is typically a very long, sub-optimal choice. Christofides, on the
other hand, was designed strictly for the closed-loop case due to the creation of the Euler
tour. It therefore does not necessarily work well for the open-loop case, which can be sig-
nificantly worse.

There are two strategies how to create open-loop solution from a closed-loop solu-
tion. A simple approach is to remove the longest link, but this does not guarantee an op-
timal result; see Figure 7. Another strategy is to create additional pseudo node, which has
equal (large) distance to all other nodes [9]. Any closed-loop algorithm can then be ap-
plied, and the optimization will be performed merely based on the other links except those
two that will be connecting to the pseudo node which are all equal. These two will be the
start and end nodes of the corresponding open-loop solution. If the algorithm provides
optimal solution for the closed-loop problem, it was shown to be optimal also for the cor-
responding open-loop case [1].

However, when heuristic algorithm is applied, the pseudo node strategy does may
not always work as expected. First, if the weights to the pseudo node are small (e.g., ze-
ros), then algorithms like MST would links all nodes to the pseudo node, which would
make no sense for Christofides. Second, if we choose large weights to the pseudo node, it
would be connected to MST last. However, as the weights are all equal, the choice would
be arbitrary. As a result, the open loop case will not be optimized any better if we used
the pseudo node than just removing the longest link. Ending up with a good open-loop
solution by Christofides seems merely a question of luck. Nevertheless, we use the pseudo
node strategy as it is the de facto standard due to it guaranteeing optimality for the opti-
mal algorithm at least.

MST + added links Euler tour

1
2

3

4
5

6

7
8

After shortcuts

11

10

9

Ps
eu

do
no

de
(C

hr
is

to
fid

es
)

Figure 7. Two strategies for applying closed-loop algorithms for the open-loop cases. First strategy (top) simply removes
the longest link, but this does not guarantee optimality even if the closed-loop solution is optimal. Second strategy adds
pseudo node with equal distance to all other nodes. The consequence is that there are two long links connected to the
pseudo node that can be omitted from the closed-loop solution. This does not affect the optimization at all due to the equal
weights. The nodes linked to the pseudo node will become the start and end nodes of the open-loop solution.

However, when heuristic algorithm is applied, the pseudo node strategy does may
not always work as expected. First, if the weights to the pseudo node are small (e.g., zeros),
then algorithms like MST would links all nodes to the pseudo node, which would make no
sense for Christofides. Second, if we choose large weights to the pseudo node, it would be
connected to MST last. However, as the weights are all equal, the choice would be arbitrary.
As a result, the open loop case will not be optimized any better if we used the pseudo
node than just removing the longest link. Ending up with a good open-loop solution
by Christofides seems merely a question of luck. Nevertheless, we use the pseudo node

Appl. Sci. 2021, 11, 177 7 of 17

strategy as it is the de facto standard due to it guaranteeing optimality for the optimal
algorithm at least.

The existing MST-based algorithms take one of the two approaches: (1) Modify the
MST solution to obtain TSP solution [3,4]; (2) modify the existing MST algorithm to design
algorithm for TSP [7,8,16,17]. In this paper, we follow the first approach and take the
spanning tree as our starting point.

Among other heuristics we mention local search. It aims at improving an existing
solution by simple operators. One obvious approach is Cross removal [19], which is based
on the fact that optimal tour cannot cross itself. The heuristic simply detects any cross
along the path, and if found, eliminates it by re-connecting the links involved as shown
in Figure 8. It can be shown that the cross removal is a special case of the more general
2-opt heuristic [22]. Another well-known operator is relocation that removes a node from
the path and reconnects it to another part of the path. The efficiency of several operators
has been studied in [9] within an algorithm called Randomized mixed local search.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 17

Figure 7. Two strategies for applying closed-loop algorithms for the open-loop cases. First strategy
(top) simply removes the longest link, but this does not guarantee optimality even if the closed-
loop solution is optimal. Second strategy adds pseudo node with equal distance to all other nodes.
The consequence is that there are two long links connected to the pseudo node that can be omitted
from the closed-loop solution. This does not affect the optimization at all due to the equal weights.
The nodes linked to the pseudo node will become the start and end nodes of the open-loop solu-
tion.

The existing MST-based algorithms take one of the two approaches: (1) Modify the
MST solution to obtain TSP solution [3,4]; (2) modify the existing MST algorithm to design
algorithm for TSP [7,8,16,17]. In this paper, we follow the first approach and take the span-
ning tree as our starting point.

Among other heuristics we mention local search. It aims at improving an existing so-
lution by simple operators. One obvious approach is Cross removal [19], which is based on
the fact that optimal tour cannot cross itself. The heuristic simply detects any cross along
the path, and if found, eliminates it by re-connecting the links involved as shown in Figure
8. It can be shown that the cross removal is a special case of the more general 2-opt heuristic
[22]. Another well-known operator is relocation that removes a node from the path and
reconnects it to another part of the path. The efficiency of several operators has been stud-
ied in [9] within an algorithm called Randomized mixed local search.

While local search is still the state-of-the-art and focus has been mainly on operators
such as 2-opt and its generalized variant k-opt [23,24], other metaheuristics have been also
considered. These include tabu search [25], simulated annealing and combined variants [26–
28], genetic algorithm [29,30], ant colony optimization [31], and harmony search [32].

Figure 8. Cross removal heuristic to improve an existing tour. The four end points involved in the
cross are re-organized by swapping the end point of the first link with the start point of the second
link.

3. MST-to-TSP Algorithm
The proposed algorithm resembles Christofides as it also generates minimum span-

ning tree to give first estimate of the links that might be needed in TSP. Since we focus on
the open-loop variant, it is good to notice that the TSP solution is also a spanning tree,
although not the minimum one. However, while Christofides adds redundant links to
create Euler tour, which are then pruned by shortcuts, we do not add anything. Instead,
we change existing links by a series of link swaps. In specific, we detect branches in the
tree and eliminate them one by one. This is continued until the solution becomes a TSP
path; i.e., spanning tree without any branches. Pseudo codes of the variants are sketched
in Algorithm1 and Algorithm2.

Algorithm 1: Greedy variant
MST-to-TSP(X) → TSP:
 T ← GenerateMST(X);
 WHILE branches DO
 e1 ← LongestBranchLink(T);

Links
removed

Cross
detected

Links
added

Figure 8. Cross removal heuristic to improve an existing tour. The four end points involved in
the cross are re-organized by swapping the end point of the first link with the start point of the
second link.

While local search is still the state-of-the-art and focus has been mainly on oper-
ators such as 2-opt and its generalized variant k-opt [23,24], other metaheuristics have
been also considered. These include tabu search [25], simulated annealing and combined
variants [26–28], genetic algorithm [29,30], ant colony optimization [31], and harmony search [32].

3. MST-to-TSP Algorithm

The proposed algorithm resembles Christofides as it also generates minimum span-
ning tree to give first estimate of the links that might be needed in TSP. Since we focus
on the open-loop variant, it is good to notice that the TSP solution is also a spanning tree,
although not the minimum one. However, while Christofides adds redundant links to
create Euler tour, which are then pruned by shortcuts, we do not add anything. Instead,
we change existing links by a series of link swaps. In specific, we detect branches in the
tree and eliminate them one by one. This is continued until the solution becomes a TSP
path; i.e., spanning tree without any branches. Pseudo codes of the variants are sketched in
Algorithm 1 and Algorithm 2.

Algorithm 1: Greedy variant

MST-to-TSP(X)→ TSP:
T← GenerateMST(X);
WHILE branches DO
e1 ← LongestBranchLink(T);
e2 ← ShortestConnection(T);
T← SwapLink(T, e1, e2);
RETURN(T);

Appl. Sci. 2021, 11, 177 8 of 17

Algorithm 2:All-pairs variant

MST-to-TSP(X)→ TSP:
T← GenerateMST(X);
WHILE branches DO
e1, e2← OptimalPair(T);
T← SwapLink(e1, e2);
RETURN(T);

Both variants start by generating minimum spanning tree by any algorithm such as
Prim and Kruskal. Prim grows the tree from scratch. In each step, it selects the shortest
link that connects a new node to the current tree while Kruskal grows a forest by selecting
shortest link that connects two different trees. Actually, we do not need to construct mini-
mum spanning tree, but some sub-optimal spanning tree might also be suitable [33]. For
Christofides, it would be beneficial to have a tree with fewer nodes with odd degree [12].
In our algorithm, having spanning tree with fewer branches might be beneficial. How-
ever, to keep the algorithm simple, we do not study this possibility further in this paper.

Both variants operate on the branches, which can be trivially detected during the
creation of MST simply by maintaining the degree counter when links are added. Both al-
gorithms also work sequentially by resolving the branches one by one. They differ only
in the way the two links are selected for the next swap; all other parts of the algorithm
variants are the same. The number of iterations equals the number of branches in the
spanning tree. We will next study the details of the two variants.

3.1. Greedy Variant

The simpler variant follows the spirit of Prim and Kruskal in a sense that it is also
greedy. The selection is split into two subsequent choices. First, we consider all links
connecting to any branching node, and simply select the longest. This link is then removed.
As a result, we will have two disconnected trees. Second, we reconnect the trees by
considering all pairs of leaf nodes so that one is from the first subtree and the other from
the second subtree. The shortest link is selected.

Figure 10 demonstrates the algorithm for a graph with n = 10 nodes. In total, there are
two branching nodes and six links attached to them. The first removal creates subtrees
of size n1 = 9 (3 leaves) and n2 = 1 (1 leaf) providing 3 possibilities for the re-connection.
The second removal creates subtrees of size n1 = 6 (2 leaves) and n2 = 4 (2 leaves). The result
is only slightly longer than the minimum spanning tree.

3.2. All-Pairs Variant

The second variant optimizes the removal and addition jointly by considering all pairs
of links that would perform a valid swap. Figure 9 demonstrates the process. There are 6
removal candidates, and they each have 3–6 possible candidates for the addition. In total,
we have 27 candidate pairs. We choose the pair that increases the path length least.
Most swaps increase the length of the path but theoretically it is possible that some swap
might also decrease the total path; this is rare though.

The final result is shown in Figure 11. With this example, the variant finds the same
solution as the as the greedy variant. However, the parallel chains example in Figure 12
shows situation where the All-pairs variant works better than the greedy variant. Figure
13 summarizes the results of the main MST-based algorithms. Nearest neighbor works
poorly because it depends on the arbitrary start point. If considered all possible start
points, it would reach the same result as Prim-TSP, Kruskal-TSP and the greedy variant of
MST-to-TSP. In this example, the all-pairs variant of MST-to-TSP is the only heuristic that
finds the optimal solution, which includes the detour in the middle of the longer route.

Appl. Sci. 2021, 11, 177 9 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17

Figure 9. Example of the greedy variant of MST-to-TSP. At each step, the longest remaining branch link is removed. The
two trees are then merged by selecting the shortest of all pairwise links across the trees.

3.2. All-Pairs Variant
The second variant optimizes the removal and addition jointly by considering all

pairs of links that would perform a valid swap. Figure 10 demonstrates the process. There
are 6 removal candidates, and they each have 3–6 possible candidates for the addition. In
total, we have 27 candidate pairs. We choose the pair that increases the path length least.
Most swaps increase the length of the path but theoretically it is possible that some swap
might also decrease the total path; this is rare though.

The final result is shown in Figure 11. With this example, the variant finds the same
solution as the as the greedy variant. However, the parallel chains example in Figure 12
shows situation where the All-pairs variant works better than the greedy variant. Figure
13 summarizes the results of the main MST-based algorithms. Nearest neighbor works
poorly because it depends on the arbitrary start point. If considered all possible start
points, it would reach the same result as Prim-TSP, Kruskal-TSP and the greedy variant
of MST-to-TSP. In this example, the all-pairs variant of MST-to-TSP is the only heuristic
that finds the optimal solution, which includes the detour in the middle of the longer
route.

Figure 10. All possible removal-addition pairs. Figure 9. All possible removal-addition pairs.Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17

Figure 9. Example of the greedy variant of MST-to-TSP. At each step, the longest remaining branch link is removed. The
two trees are then merged by selecting the shortest of all pairwise links across the trees.

3.2. All-Pairs Variant
The second variant optimizes the removal and addition jointly by considering all

pairs of links that would perform a valid swap. Figure 10 demonstrates the process. There
are 6 removal candidates, and they each have 3–6 possible candidates for the addition. In
total, we have 27 candidate pairs. We choose the pair that increases the path length least.
Most swaps increase the length of the path but theoretically it is possible that some swap
might also decrease the total path; this is rare though.

The final result is shown in Figure 11. With this example, the variant finds the same
solution as the as the greedy variant. However, the parallel chains example in Figure 12
shows situation where the All-pairs variant works better than the greedy variant. Figure
13 summarizes the results of the main MST-based algorithms. Nearest neighbor works
poorly because it depends on the arbitrary start point. If considered all possible start
points, it would reach the same result as Prim-TSP, Kruskal-TSP and the greedy variant
of MST-to-TSP. In this example, the all-pairs variant of MST-to-TSP is the only heuristic
that finds the optimal solution, which includes the detour in the middle of the longer
route.

Figure 10. All possible removal-addition pairs.

Figure 10. Example of the greedy variant of MST-to-TSP. At each step, the longest remaining branch
link is removed. The two trees are then merged by selecting the shortest of all pairwise links across
the trees.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17

There are (2∙3) + (1∙3) + (2∙3) + (2∙3) + (1∙3) + (1∙3) = 27 candidates in total.

Figure 11. Results of the various algorithms for the toy example.

Figure 12. Example of the Greedy and All-pairs variants. Greedy removal leads to the same sub-
optimal result as TSP-Kruskal while allowing to remove shorter link, the optimal solution can be
easily reached.

Figure 13. Parallel chains where only MST-to-TSP (All-pairs variant) finds the optimal path.

3.3. Randomized Variant
The algorithm can be further improved by repeating it several times. This improve-

ment is inspired by [34] where k-means clustering algorithm was improved significantly
by repeating it 100 times. The only requirement is that the creation of the initial solution
includes randomness so that it produces different results every time. In our randomized
variant, the final solution is the best result out of the 100 trials. The idea was also applied
for the Kruskal-TSP and called Randomized Kruskal-TSP [8].

There are several ways how to randomize the algorithm. We adopt the method from
[8] and randomize the creation of MST. When selecting the next link for the merge, we
randomly choose one out of the three shortest links. This results in sub-optimal choices.
However, as we have a complete graph, it usually has several virtually as good choices.

Figure 11. Results of the various algorithms for the toy example.

Appl. Sci. 2021, 11, 177 10 of 17

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17

There are (2∙3) + (1∙3) + (2∙3) + (2∙3) + (1∙3) + (1∙3) = 27 candidates in total.

Figure 11. Results of the various algorithms for the toy example.

Figure 12. Example of the Greedy and All-pairs variants. Greedy removal leads to the same sub-
optimal result as TSP-Kruskal while allowing to remove shorter link, the optimal solution can be
easily reached.

Figure 13. Parallel chains where only MST-to-TSP (All-pairs variant) finds the optimal path.

3.3. Randomized Variant
The algorithm can be further improved by repeating it several times. This improve-

ment is inspired by [34] where k-means clustering algorithm was improved significantly
by repeating it 100 times. The only requirement is that the creation of the initial solution
includes randomness so that it produces different results every time. In our randomized
variant, the final solution is the best result out of the 100 trials. The idea was also applied
for the Kruskal-TSP and called Randomized Kruskal-TSP [8].

There are several ways how to randomize the algorithm. We adopt the method from
[8] and randomize the creation of MST. When selecting the next link for the merge, we
randomly choose one out of the three shortest links. This results in sub-optimal choices.
However, as we have a complete graph, it usually has several virtually as good choices.

Figure 12. Example of the Greedy and All-pairs variants. Greedy removal leads to the same sub-
optimal result as TSP-Kruskal while allowing to remove shorter link, the optimal solution can be
easily reached.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17

There are (2∙3) + (1∙3) + (2∙3) + (2∙3) + (1∙3) + (1∙3) = 27 candidates in total.

Figure 11. Results of the various algorithms for the toy example.

Figure 12. Example of the Greedy and All-pairs variants. Greedy removal leads to the same sub-
optimal result as TSP-Kruskal while allowing to remove shorter link, the optimal solution can be
easily reached.

Figure 13. Parallel chains where only MST-to-TSP (All-pairs variant) finds the optimal path.

3.3. Randomized Variant
The algorithm can be further improved by repeating it several times. This improve-

ment is inspired by [34] where k-means clustering algorithm was improved significantly
by repeating it 100 times. The only requirement is that the creation of the initial solution
includes randomness so that it produces different results every time. In our randomized
variant, the final solution is the best result out of the 100 trials. The idea was also applied
for the Kruskal-TSP and called Randomized Kruskal-TSP [8].

There are several ways how to randomize the algorithm. We adopt the method from
[8] and randomize the creation of MST. When selecting the next link for the merge, we
randomly choose one out of the three shortest links. This results in sub-optimal choices.
However, as we have a complete graph, it usually has several virtually as good choices.

Figure 13. Parallel chains where only MST-to-TSP (All-pairs variant) finds the optimal path.

There are (2 · 3) + (1 · 3) + (2 · 3) + (2 · 3) + (1 · 3) + (1 · 3) = 27 candidates in total.

3.3. Randomized Variant

The algorithm can be further improved by repeating it several times. This improve-
ment is inspired by [34] where k-means clustering algorithm was improved significantly
by repeating it 100 times. The only requirement is that the creation of the initial solution
includes randomness so that it produces different results every time. In our randomized
variant, the final solution is the best result out of the 100 trials. The idea was also applied
for the Kruskal-TSP and called Randomized Kruskal-TSP [8].

There are several ways how to randomize the algorithm. We adopt the method
from [8] and randomize the creation of MST. When selecting the next link for the merge,
we randomly choose one out of the three shortest links. This results in sub-optimal choices.
However, as we have a complete graph, it usually has several virtually as good choices.
Furthermore, the quality of the MST itself is not a vital for the overall performance of the
algorithm; the branch elimination plays a bigger role than the MST. As a result, we will
get multiple spanning trees producing different TSP solutions. Out of the 100 repeats, it is
likely that one provides better TSP than using only the minimum spanning tree as starting
point.

4. Experimental Results
4.1. Datasets and Methods

We use two open loop datasets: O-Mopsi [2] and Dots [35]; see Figure 14. Both
can be found on web: http://cs.uef.fi/o-mopsi/datasets/. O-Mopsi are 147 instances

http://cs.uef.fi/o-mopsi/datasets/

Appl. Sci. 2021, 11, 177 11 of 17

of mobile orienteering game played in real-world. Haversine distance is used with the
constant 6356.752 km for the earth radius. The dots are 6449 computer-generated problem
instances designed for humans to solve on computer screen. Euclidean distance is used.
Optimal ground truth solutions are available for all problem instances.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17

Furthermore, the quality of the MST itself is not a vital for the overall performance of the
algorithm; the branch elimination plays a bigger role than the MST. As a result, we will
get multiple spanning trees producing different TSP solutions. Out of the 100 repeats, it is
likely that one provides better TSP than using only the minimum spanning tree as starting
point.

4. Experimental Results
4.1. Datasets and Methods

We use two open loop datasets: O-Mopsi [2] and Dots [35]; see Figure 14. Both can
be found on web: http://cs.uef.fi/o-mopsi/datasets/. O-Mopsi are 147 instances of mobile
orienteering game played in real-world. Haversine distance is used with the constant
6356.752 km for the earth radius. The dots are 6449 computer-generated problem instances
designed for humans to solve on computer screen. Euclidean distance is used. Optimal
ground truth solutions are available for all problem instances.

Table 1 summarizes the properties of the datasets. On average, the datasets have only
a few branches (1.90 in O-Mopsi; 1.48 in Dots). This means that that the MST-to-TSP algo-
rithm needs to run only a few iterations. Even the most difficult Dots instance has only 11
branches to be broken. The total number of link swaps need are 280 for the O-Mopsi games
and 9548 for the Dots games.

Table 2 shows the methods used in the experiments. We include all the main MST-
based algorithms including nearest neighbor, Prim-TSP (greedy), Kruskal-TSP, and the
proposed MST-to-TSP. Randomized variants are included from Kruskal-TSP and MST-to-
TSP with 100 repeats. Among the local search heuristics, we include 2-opt [22] and the
randomized mixed local search [9]. The performance is evaluated by gap, which is relative
difference of the algorithm and optimal solutions: ݃ܽ = หܮ − ௧ܮ௧หܮ (1)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17

Figure 14. Examples of the O-Mopsi (above) and Dots (below) datasets.

Table 1. Datasets used in the experiments.

 Branches:
Dataset Reference Distance Instances N Min Average Max
O-Mopsi [2] Haversine 147 4-27 0 1.90 5

Dots [35] Euclidean 6449 4-31 0 1.48 11

Table 2. Accuracy comparison of the algorithms (gap) for the two series of datasets.

Algorithm Reference
Average Worst

O-Mopsi Dots O-Mopsi Dots
Christofides [3,4] 12.77% 9.10% 35.41% 39.21%

Nearest neighbor [17] 20.00% 9.25% 66.57% 48.06%
Nearest neighbor+ [9] 3.47% 1.49% 21.01% 22.80%

Prim-TSP [17] 6.57% 3.84% 32.95% 35.23%
Kruskal-TSP [8] 4.87% 2.66% 28.59% 28.40%

Kruskal-TSP (100r) [8] 0.77% 0.26% 7.13% 13.46%
MST-to-TSP (greedy) (proposed) 4.81% 2.93% 21.98% 28.40%

MST-to-TSP (all-pairs) (proposed) 1.69% 0.61% 16.32% 15.46%
MST-to-TSP (all-pairs 100r) (proposed) 0.07% 0.02% 1.98% 2.42%

2-opt [22] 1.72% 1.35% 15.53% 22.86%
Random Mix Local Search [9] 0.00% 0.01% 0.27% 2.59%

4.2. Results
Table 2 also shows the average results with the O-Mopsi and Dots data. From these

we can learn a few things.
First, while the greedy variant of MST-to-TSP provides similar results to that of Krus-

kal-TSP (4.81% and 2.93%), the all-pairs variant is significantly better (1.69% and 0.61%)
and the randomized version reaches near-optimal results (0.07% and 0.02%). In other

Figure 14. Examples of the O-Mopsi (above) and Dots (below) datasets.

Table 1 summarizes the properties of the datasets. On average, the datasets have
only a few branches (1.90 in O-Mopsi; 1.48 in Dots). This means that that the MST-to-TSP
algorithm needs to run only a few iterations. Even the most difficult Dots instance has only

Appl. Sci. 2021, 11, 177 12 of 17

11 branches to be broken. The total number of link swaps need are 280 for the O-Mopsi
games and 9548 for the Dots games.

Table 1. Datasets used in the experiments.

Branches:
Dataset Reference Distance Instances N Min Average Max

O-Mopsi [2] Haversine 147 4-27 0 1.90 5
Dots [35] Euclidean 6449 4-31 0 1.48 11

Table 2 shows the methods used in the experiments. We include all the main MST-
based algorithms including nearest neighbor, Prim-TSP (greedy), Kruskal-TSP, and the
proposed MST-to-TSP. Randomized variants are included from Kruskal-TSP and MST-to-
TSP with 100 repeats. Among the local search heuristics, we include 2-opt [22] and the
randomized mixed local search [9]. The performance is evaluated by gap, which is relative
difference of the algorithm and optimal solutions:

gap =

∣∣L− Lopt
∣∣

Lopt
(1)

Table 2. Accuracy comparison of the algorithms (gap) for the two series of datasets.

Algorithm Reference
Average Worst

O-Mopsi Dots O-Mopsi Dots

Christofides [3,4] 12.77% 9.10% 35.41% 39.21%
Nearest neighbor [17] 20.00% 9.25% 66.57% 48.06%

Nearest neighbor+ [9] 3.47% 1.49% 21.01% 22.80%
Prim-TSP [17] 6.57% 3.84% 32.95% 35.23%

Kruskal-TSP [8] 4.87% 2.66% 28.59% 28.40%
Kruskal-TSP (100r) [8] 0.77% 0.26% 7.13% 13.46%

MST-to-TSP (greedy) (proposed) 4.81% 2.93% 21.98% 28.40%
MST-to-TSP (all-pairs) (proposed) 1.69% 0.61% 16.32% 15.46%

MST-to-TSP (all-pairs 100r) (proposed) 0.07% 0.02% 1.98% 2.42%
2-opt [22] 1.72% 1.35% 15.53% 22.86%

Random Mix Local Search [9] 0.00% 0.01% 0.27% 2.59%

4.2. Results

Table 2 also shows the average results with the O-Mopsi and Dots data. From these
we can learn a few things.

First, while the greedy variant of MST-to-TSP provides similar results to that of
Kruskal-TSP (4.81% and 2.93%), the all-pairs variant is significantly better (1.69% and
0.61%) and the randomized version reaches near-optimal results (0.07% and 0.02%). In other
words, it is clearly superior to the existing MST-based heuristics and very close to the more
sophisticated local search (0.00% and 0.01%).

Second, by comparing the greedy we can see that the more options the algorithm has
for the next merge, the better its performance. Nearest neighbor performs worst as it has
only one possibility to continue from the previously added node. Prim-TSP always has
two choices and performs better. Kruskal-TSP has often more options for the merge and
is the best among these. Randomized Kruskal-TSP is already more competitive but still
inferior to MST-to-TSP.

Third, Christofides reaches average values of 12.77% (O-Mopsi) and 9.10% (Dots),
which are clearly the worst among all tested algorithms. Its advantage is that it is the
only algorithm that provides guarantee (50%) for the worst case. However, with these
datasets this is merely theoretical as most other heuristics never get worse than 50% anyway.

Appl. Sci. 2021, 11, 177 13 of 17

The only advantage of Christofides is that this 50% upper limit is theoretically proven.
For practice, MST-to-TSP is clearly better choice.

The dependency on the number of nodes is demonstrated in Figure 15. We can see
that the gap tends to increase with the problem size. This is as expected but it remains an
open question whether the gap value would converge to certain level with this type of
2-dimensional problem instances.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17

words, it is clearly superior to the existing MST-based heuristics and very close to the
more sophisticated local search (0.00% and 0.01%).

Second, by comparing the greedy we can see that the more options the algorithm has
for the next merge, the better its performance. Nearest neighbor performs worst as it has
only one possibility to continue from the previously added node. Prim-TSP always has
two choices and performs better. Kruskal-TSP has often more options for the merge and
is the best among these. Randomized Kruskal-TSP is already more competitive but still
inferior to MST-to-TSP.

Third, Christofides reaches average values of 12.77% (O-Mopsi) and 9.10% (Dots),
which are clearly the worst among all tested algorithms. Its advantage is that it is the only
algorithm that provides guarantee (50%) for the worst case. However, with these datasets
this is merely theoretical as most other heuristics never get worse than 50% anyway. The
only advantage of Christofides is that this 50% upper limit is theoretically proven. For
practice, MST-to-TSP is clearly better choice.

The dependency on the number of nodes is demonstrated in Figure 15. We can see
that the gap tends to increase with the problem size. This is as expected but it remains an
open question whether the gap value would converge to certain level with this type of 2-
dimensional problem instances.

Figure 15. Results for the O-Mopsi and Dots as a function of the problem size.

Table 3 shows how the link swaps increase the length of the path when converting
the spanning tree to TSP path. Out of the 147 O-Mopsi games, 19 (12%) have no branches
and the minimum spanning tree is the optimal solution for TSP as such. Most other games
have only one (31%) or two (25%) branches, which shows that the task of converting MST

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0 5 10 15 20 25 30

GA
P

Nodes

All-pairs

O-Mopsi

Randomized
All-pairs

Greedy

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0 5 10 15 20 25 30

GA
P

Nodes

All-pairs

Dots

Randomized
All-pairs

Greedy

Figure 15. Results for the O-Mopsi and Dots as a function of the problem size.

Table 3 shows how the link swaps increase the length of the path when converting
the spanning tree to TSP path. Out of the 147 O-Mopsi games, 19 (12%) have no branches
and the minimum spanning tree is the optimal solution for TSP as such. Most other games
have only one (31%) or two (25%) branches, which shows that the task of converting MST
to TSP is not too difficult in most cases. Only about 10% of the games require more than
two swaps.

Table 3. Cost of the link swaps (meters) in MST-to-TSP during the algorithm with O-Mopsi data.

Swap 1 2 3 4 5

Max 1074 1192 497 1126 681
Average 108 155 145 227 381

Min 1 1 1 13 134
Count 130 84 47 16 3

% 31% 25% 21% 9% 2%

Appl. Sci. 2021, 11, 177 14 of 17

Statistics for the Dots games are similar; see Table 4. Branch eliminations also increase
the cost (5.65 on average) but it does not vary much during the iterations; only the 9th and
10th swap are somewhat more costly. In some cases, the swaps can also decrease the path
length of the Dots instances. This happens rarely though; only 14 times with Dots instances
but never with the O-Mopsi instances.

Table 4. Cost of the link swaps in MST-to-TSP during the algorithm with Dots data.

Swap 1 2 3 4 5 6 7 8 9 10

Max 30.62 25.75 29.18 42.99 35.55 29.42 27.46 29.68 26.49 15.41
Average 5.65 5.98 5.95 5.94 6.74 6.83 6.71 6.60 10.76 11.01
Min 0.00 −4.12 −5.84 −6.43 0.00 0.00 0.04 0.00 1.90 3.26

Count 4525 2374 1169 622 341 171 87 43 17 6
% 33% 19% 8% 4% 3% 2% 1% 0.4% 0.2% 0.1%

Figure 16 shows more demanding O-Mopsi game instances. Only thr3ee games require
5 swaps, while 13 games require 4 swaps. Kruskal-TSP suffers from the sub-optimality of
the last selected links. In case of Odense, the last link goes all the way from the northmost
to the southmost node. Christofides works reasonably well with this example but contains
too many random-like selections in the tour. MST-to-TSP is the only algorithm that does
not produce any crosses, and it also manages to find at least one starting point correctly in
all three cases.

Appl. Sci. 2021, 11, 177 15 of 17Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 17

Figure 16. Examples of Christofides, Kruskal-TSP, and MST-to-TSP (greedy variant) with the three
more challenging O-Mopsi games. Barcelona Grand Tour and Turku City 2.2.2015 have four
branches while Odense has five. None of the algorithms finds the optimal solution.

5. Conclusions
We have introduced heuristic algorithm that takes minimum spanning tree as input

and converts it to open-loop TSP solution by eliminating all branches from the tree one by
one. The randomized version of the proposed MST-to-TSP algorithm clearly outperforms
Christofides and other MST-based heuristics. With the O-Mopsi and Dots datasets it
reaches near-optimal results not far from more sophisticated local search algorithm. The
proposed algorithm has educational value by showing the connection between two prob-
lems, MST and TSP, of which one can be solved optimally using greedy heuristics while
the other is known to be NP hard problem. The result of the algorithm can also be used as
initial solution for local search heuristic or optimal algorithms like branch-and-cut to im-
prove the efficiency of the search [36,37].

Author Contributions: Conceptualization, P.F. and T.N.; implementation, T.N. and M.Y.; experi-
ments, T.N. and M.Y.; writing, P.F. All authors have read and agreed to the published version of
the manuscript.

Funding: No funding to report.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Figure 16. Examples of Christofides, Kruskal-TSP, and MST-to-TSP (greedy variant) with the three
more challenging O-Mopsi games. Barcelona Grand Tour and Turku City 2.2.2015 have four branches
while Odense has five. None of the algorithms finds the optimal solution.

For O-Mopsi and Dots datasets, all the algorithms work in real-time (<1 s). Theoretical
time complexities are as follows. Christofides requires O(N3) time due to the perfect
matching by Blossom. MST-based variants require O(N2) to O(N2logN) depending on the
data structure. The proposed algorithm takes O(N3) due to the search of the leaf nodes but
there are probably more efficient ways to implement it. Random mix local search is fast,
O(IR), where I and R are the number iterations and repeats, respectively. The operations
themselves are O(1) due to random choices.

5. Conclusions

We have introduced heuristic algorithm that takes minimum spanning tree as input
and converts it to open-loop TSP solution by eliminating all branches from the tree one
by one. The randomized version of the proposed MST-to-TSP algorithm clearly outper-
forms Christofides and other MST-based heuristics. With the O-Mopsi and Dots datasets
it reaches near-optimal results not far from more sophisticated local search algorithm.
The proposed algorithm has educational value by showing the connection between two
problems, MST and TSP, of which one can be solved optimally using greedy heuristics
while the other is known to be NP hard problem. The result of the algorithm can also be
used as initial solution for local search heuristic or optimal algorithms like branch-and-cut
to improve the efficiency of the search [36,37].

Appl. Sci. 2021, 11, 177 16 of 17

Author Contributions: Conceptualization, P.F. and T.N.; implementation, T.N. and M.Y.; experiments,
T.N. and M.Y.; writing, P.F. All authors have read and agreed to the published version of the
manuscript.

Funding: No funding to report.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets are publicly available: http://cs.uef.fi/o-mopsi/datasets/.

Acknowledgments: The authors want to thank Lahari Sengupta and Zongyue Li for helping in the
experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Papadimitriou, C.H. The Euclidean Travelling Salesman Problem is NP-Complete. Theor. Comput. Sci. 1977, 4, 237–244. [CrossRef]
2. Fränti, P.; Mariescu-Istodor, R.; Sengupta, L. O-Mopsi: Mobile orienteering game for sightseeing, exercising and education.

ACM Trans. Multimed. Comput. Commun. Appl. 2017, 13, 1–25. [CrossRef]
3. Christofides, N. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem; Report 388; Graduate School of Industrial

Administration, CMU: Pittsburgh, PA, USA, 1976.
4. Goodrich, M.T.; Tamassia, R. 18.1.2 The Christofides Approximation Algorithm. In Algorithm Design and Applications; Wiley: Hobo-

ken, NJ, USA, 2015; pp. 513–514.
5. Valenzuela, C.L.; Jones, A.J. Estimating the Held-Karp Lower Bound for the Geometric TSP. Eur. J. Oper. Res. 1997, 102, 157–175.

[CrossRef]
6. Sengupta, L.; Fränti, P. Predicting difficulty of TSP instances using MST. In Proceedings of the IEEE Int. Conf. on Industrial

Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; pp. 847–852. [CrossRef]
7. Rosenkrantz, J.; Stearns, R.E.; Lewis, P.M., II. An analysis of several heuristics for the travelling salesman problem. SIAM J. Comput.

1997, 6, 563–581. [CrossRef]
8. Fränti, P.; Nenonen, H. Modifying Kruskal algorithm to solve open loop TSP. In Proceedings of the Multidisciplinary International

Scheduling Conference (MISTA), Ningbo, China, 12–15 December 2019; pp. 584–590.
9. Sengupta, L.; Mariescu-Istodor, R.; Fränti, P. Which local search operator works best for open loop Euclidean TSP. Appl. Intell.

2019, 9, 3985.
10. Hoogeveen, J.A. Analysis of Christofides’ heuristic: Some paths are more difficult than cycles. Oper. Res. Lett. 1991, 10, 291–295.

[CrossRef]
11. An, H.-C.; Kleinberg, R.; Shmoys, D.B. Improving Christofides’ Algorithm for the s-t Path TSP. J. ACM 2015, 34, 1–28. [CrossRef]
12. Gharan, S.O.; Saberi, A.; Singh, M. A randomized rounding approach to the traveling salesman problem. In Proceedings of the

IEEE Annual Symposium on Foundations of Computer Science, Palm Springs, CA, USA, 22–25 October 2011; pp. 550–559.
13. Sebo; Vygen, J. Shorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-

connected subgraphs. Combinatorica 2012, 34. [CrossRef]
14. Verma, M.; Chauhan, A. 5/4 approximation for symmetric TSP. arXiv 2019, arXiv:1905.05291.
15. Traub, V.; Vygen, J. Approaching 3/2 for the s-t-path TSP. J. ACM 2019, 66, 14. [CrossRef]
16. Traub, V.; Vygen, J.; Zenklusen, R. Reducing path TSP to TSP. In Proceedings of the Annual ACM SIGACT Symposium on Theory

of Computing, New York, NY, USA, 22–26 June 2020.
17. Appligate, D.L.; Bixby, R.E.; Chavatal, V.; Cook, W.J. The Travelling Salesman Problem, a Computational Study; Princeton Univesity

Press: Princeton, NJ, USA, 2006.
18. Kizilateş, G.; Nuriyeva, F. On the Nearest Neighbor Algorithms for the Traveling Salesman Problem, Advances in Computational Science,

Engineering and Information Technology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 225.
19. Pan, Y.; Xia, Y. Solving TSP by dismantling cross paths. In Proceedings of the IEEE Int. Conf. on Orange Technologies, Xi’an,

China, 20–23 September 2014.
20. Edmonds, J. Paths, trees, and flowers. Can. J. Math. 1965, 17, 449–467. [CrossRef]
21. Genova, K.; Williamson, D.P. An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman

problem. Algorithmica 2017, 78, 1109–1130. [CrossRef]
22. Croes, G.A. A Method for solving traveling-salesman problems. Oper. Res. 1958, 6, 791–812. [CrossRef]
23. Lin, S.; Kernighan, B.W. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 1973, 21, 498–516.

[CrossRef]
24. Helsgaun, K. An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 2000, 126, 106–130.

[CrossRef]
25. Glover, F. Tabu search-Part, I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
26. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]

http://cs.uef.fi/o-mopsi/datasets/
http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1145/3115935
http://dx.doi.org/10.1016/S0377-2217(96)00214-7
http://dx.doi.org/10.1109/INDIN41052.2019.8972232
http://dx.doi.org/10.1137/0206041
http://dx.doi.org/10.1016/0167-6377(91)90016-I
http://dx.doi.org/10.1145/2818310
http://dx.doi.org/10.1007/s00493-014-2960-3
http://dx.doi.org/10.1145/3309715
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1007/s00453-017-0293-5
http://dx.doi.org/10.1287/opre.6.6.791
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1126/science.220.4598.671

Appl. Sci. 2021, 11, 177 17 of 17

27. Chen, S.M.; Chien, C.Y. Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with
particle swarm optimization techniques. Expert Syst. Appl. 2011, 38, 14439–14450. [CrossRef]

28. Ezugwu, A.E.S.; Adewumi, A.O.; Frîncu, M.E. Simulated annealing based symbiotic organisms search optimization algorithm for
traveling salesman problem. Expert Syst. Appl. 2017, 77, 189–210. [CrossRef]

29. Singh, S.; Lodhi, E.A. Study of variation in TSP using genetic algorithm and its operator comparison. Int. J. Soft Comput. Eng.
2013, 3, 264–267.

30. Akshatha, P.S.; Vashisht, V.; Choudhury, T. Open loop travelling salesman problem using genetic algorithm. Int. J. Innov. Res.
Comput. Commun. Eng. 2013, 1, 112–116.

31. Bai, J.; Yang, G.K.; Chen, Y.W.; Hu, L.S.; Pan, C.C. A model induced max-min ant colony optimization for asymmetric traveling
salesman problem, Appl. Soft Comput. 2013, 13, 1365–1375. [CrossRef]

32. Boryczka, U.; Szwarc, K. An effective hybrid harmony search for the asymmetric travelling salesman problem. Eng. Optim. 2020,
52, 218–234. [CrossRef]

33. Vygen, J. Reassembling trees for the traveling salesman. SIAM J. Discret. Math. 2016, 30, 875–894. [CrossRef]
34. Fränti, P.; Sieranoja, S. How much k-means can be improved by using better initialization and repeats? Pattern Recognit. 2019,

93, 95–112. [CrossRef]
35. Sengupta, L.; Mariescu-Istodor, R.; Fränti, P. Planning your route: Where to start? Comput. Brain Behav. 2018, 1, 252–265.

[CrossRef]
36. Costa, L.; Contardo, C.; Desaulniers, G. Exact branch-price-and-cut algorithms for vehicle routing. Trans. Sci. 2019, 53, 917–1212.
37. Homsi, G.; Martinelli, R.; Vidal, T.; Fagerholt, K. Industrial and tramp ship routing problems: Closing the gap for Real-scale

instances. arXiv 2018, arXiv:1809.10584. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2011.04.163
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1016/j.asoc.2012.04.008
http://dx.doi.org/10.1080/0305215X.2019.1579804
http://dx.doi.org/10.1137/15M1010531
http://dx.doi.org/10.1016/j.patcog.2019.04.014
http://dx.doi.org/10.1007/s42113-018-0018-0
http://dx.doi.org/10.1016/j.ejor.2019.11.068

	Introduction
	Heuristic Algorithms for TSP
	MST-to-TSP Algorithm
	Greedy Variant
	All-Pairs Variant
	Randomized Variant

	Experimental Results
	Datasets and Methods
	Results

	Conclusions
	References

