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Abstract 
 

We propose a statistical filter using a context tree 
modeling. The idea of context tree is to perform 
selective context expansion including only those 
pixel combinations that really appear in the image. 
This makes it possible to use much larger spatial 
neighborhood. The proposed context tree filtering is 
evaluated for a set of indexed-color raster map 
images corrupted with generated impulsive and 
content-dependent noise. The objective evaluation 
shows improvement of 15% for content-dependent 
noise and up to 30% for impulsive noise comparing 
to the closest competitor. Visual comparisons show 
that the spatial structures are preserved better than 
by vector median, morphological and peer group 
averaging filter. 
 

1. Introduction 
 
Geographical map images are typically present in 

two fundamentally different formats: raster and 
vector. Vector format is more suitable for large 
databases providing excellent flexibility and 
compression even though vector processing can be 
computationally expensive. Raster images are easier 
to process and this format is more suitable for final 
client-side processing for delivery, local archive 
storage and web-publishing. Typically, vector-to-
raster conversion does not affect the quality of the 
raster image presented to the user. However, cases 
when the original vector data is not available are 
common. Raster image can be degraded by noise 
caused by transformations and lossy compression. 
Distortion also appears when a printed map is 
digitized. In these cases, the presence of noise can 
corrupt the spatial structures in the image. 

A great variety of noise removal techniques are 
known for color image processing [1][2][3]. 
However, map images require some restrictions to be 
set. Firstly, the image should not be smoothed and it 
should remain readable. Secondly, the number of 
colors is typically small in a map image and 

  

Figure 1. Examples of complicated structures that are 
treated as noise by most filters. 

preferably it should not be increased. Thirdly, the 
spatial structures in the image should be preserved 
since they have distinctive meaning. Linear filtering 
methods cannot be effectively applied to map images 
because of their smoothing effect, which cannot be 
tolerated in map images. Among popular non-linear 
filtering there are methods such as morphological 
filters [4]; directional vector filters [5]; a class of 
weighted median filters [6]; its vector extension 
referred as vector median filter (VM) [7] and the 
adaptive variant referred as adaptive vector median 
filter (AVM) [8]. Peer group analysis (PGA) [9] is 
an edge-preserving smoothing technique based on 
finding a group of pixels similar to the current one in 
a local neighborhood. In case there is such group, the 
pixel is replaced with the average of its peer group. 

However, existing filtering methods are mostly 
designed for continuous-tone images and they do not 
apply well for map images, web graphics and similar. 
This kind of images include complicated spatial 
structures such as one-pixel thin lines, textured areas, 
dashed and dotted lines, text and symbols. False 
filtering of this kind of structures is typical for most 
filters designed for photographic imagery since they 
tend to consider noise as a local intensity variation 
without taking into consideration the repeated 
patterns in the globally in the image. On the other 
hand, high variance does not necessarily identify the 
noise. The regions with written text or textured 
background are far from being uniform but their 
presence is vital for the usability of the map. 

The examples of such structures are illustrated in 
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Figure 1. The area consisting of isolated black pixels 
on the map represents sand field in nature. Single 
pixels and thin lines are considered as noise by most 
of the existing filters, and thus, they are filtered 
erasing important geographical information. 
Morphological filtering would be a natural choice to 
consider for this kind of imagery. However, the 
drawback of morphological filtering is the concept of 
structural element, defining the preferred 
configuration of local patterns where domination of 
some pixels over the others is emphasized. It is clear 
that the variety of patterns in a map image is great 
and one or even a set of structural elements is not 
able to describe it accurately. Moreover, color 
morphology is a generalization of gray-scale 
morphology made by reduced ordering, i.e. the 
‘domination’ relationship is defined on color vectors 
analogously to gray-scale intensity values. However, 
it seems that in color map images no color can be 
considered prevailing over the others just by its 
vector characteristics like energy and intensity. 

In this paper, we introduce a statistical filter based 
on conditional probability estimation allowing the 
preservation of detailed structures in map images. 
The proposed filter consists of two stages: analysis 
and filtering stage. In the analysis stage, local 
conditional probabilities are estimated within the 
image by gathering statistics of how often each 
particular color appears within the same local 
neighborhood, called context. The size of the context 
is then optimized by using a context tree. The 
analysis stage does not consider any a priori 
knowledge about the imposed noise characteristics. 
In the filtering stage, all pixels that have color of low 
probability in its context, are considered as noise and 
replaced by the most probable color. In this way, the 
repetition of local patterns can be discovered within 
the image. Patterns that appear frequently enough are 
considered belonging to the image structure and 
preserved. Pixels that are unlikely to appear in their 
neighborhood are considered to be noise and filtered 
out. This property allows the filter to preserve 
borders and structures independently of their size or 
variance. Preliminary version of the work has been 
presented in [10]. Similar filter was considered in 
[11][12], where context modeling and filtering 
decision is made in assumption that probabilistic 
characteristics of noisy channel are known. 

The rest of the paper is organized as follows: the 
proposed filter is described in Section 2; noise 
models are considered in Section 3; the results of 
experiments are presented in Section 4; and 
conclusions drawn in Section 5. 

 

2. Context Tree filter 
 
2.1 Context-based statistical filtering  

 
Consider an image I as a rectangular grid of pixels 

I(x,y), where (x,y) is a position of a pixel and I(x,y) is 
its value, or color. Let I(x,y) ∈ {1, …, k}, ∀(x,y), 
where k is the number of colors in the image. We 
assume that k is small enough to allow the storage of 
the image in palette-indexed format. We define a 
context c = { I(x1,y1), …, I(xn,yn) } as a set of n 
pixels, where n is denoted as the a size of the context 
c. The positions of the pixels in a context 
(x1,y1), …, (xn,yn) are defined as a set of offsets to the 
position of the current pixel, and is referred as a 
context template. In Figure 2, A illustrates a sample 
20-pixel context template where the position of the 
current pixel is marked with ‘×’. The context B 
illustrates a sample context for a binary case, i.e. 
I(x,y) ∈ {background, foreground}, ∀(x,y), and C 
illustrates similar example with more colors 
available. 
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Figure 2. Template used by context tree (A) and sample 
contexts for the case of binary (B) and color (C) images.  

The context defines the configuration of 
neighboring pixels and the same configuration can 
repeat in the image on different positions. When the 
neighborhood of the current pixel I(x,y) equals to a 
context c we say that pixel I(x,y) appears in a context 
c, and denote it as I(x,y)∈c. Note that the current 
pixel value is excluded from the context, meaning 
that different pixel values can appear in the same 
context. We associate each context c with a vector 
pc = (pc

1, …, pc
k) called a vector of statistics, where 

pc
i represents a number of times the pixel of color i 

appeared in a context c in the image. After the 
vectors of statistics have been gathered for every 
context of the image, the conditional probability of 
every pixel to appear in its context can be estimated 
as  

1..

( ( , ) | ( , ) )
c

j

c
i

i k

p
p I x y j I x y c

p
=

= ∈ =
∑

 

(1) 

We denote this probability as p(I(x,y)|c). 
After the statistics have been gathered, the actual 

filtering is performed requiring a separate pass over 
the image. The main idea of the proposed filter is 
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based on the assumption of statistical consistency of 
the image data. We expect that patterns appear in the 
image frequently enough, i.e. conditional probability 
p(I(x,y)|c) of a pixel is higher than a predefined 
threshold for most of the pixels. Otherwise, the pixel 
is considered as noise and filtered out. As a 
replacement strategy we consider to replace the noisy 
pixels with the most probable color in the context. 
Formally, the algorithm can be outlined as follows: 
Analysis stage: 
For each ( x, y) do 
 C = { I( x1, y1), …, I( xn, yn)}; 
 pcI(x,y)  = pcI(x,y)  +1; 
For each C do 

Calculate P( I=j| C) ∀j ∈[1, k]  as (1) 
 
Filtering stage: 
For each ( x, y) do 
 If p( I( x, y)| c) < Threshold 

1..
( , ) arg max( ( ( , ) | ( , ) ))

j k
I x y p I x y j I x y c

=
= = ∈  

The concept is illustrated in Figure 3 for image 
consisting of three unique colors. For simplicity we 
consider context tree filtering within 3×3 
neighborhood, and two sample contexts (A and B). In 
the same context, some pixel values are less probable 
than the others, e.g. black pixel is much less likely to 
appear than white pixel in Context A, and vice versa, 
white pixel is much less probable than black pixel in 
Context B. The probability of these pixels falls below 
the threshold, and therefore, the pixels are filtered by 
replacing with the values of the most probable ones. 
Three examples of contexts and their corresponding 
probability distributions obtained in experiments with 
5-color images are presented in Figure 4. There is a 
clear domination of the most probable color over the 
others. 
 
2.2 Context Tree modeling 
 

Gathering pixel occurrence statistics requires one 
pass over the image and allocating memory for as 
much as there are different contexts in the image. 
This number is upper bounded by the number of 
pixels in the image. In order to optimize the memory 
allocation we organize the storage of statistics as a 
tree structure called context tree (CT). Similar 
structures have been used for probability estimation 
in binary image compression [13] and indexed color 
image compression [14]. 

In context tree, a context is sequentially 
constructed pixel-by-pixel, or to say more precisely, 
position-by-position according to a predefined 
ordered context template such as the one in Figure 2. 

Each node stores a vector of statistics for its 
context: fW for the number of white pixels and fB for 

 
Figure 3. Example of statistical filtering. Two sample 

contexts are marked by A and B. The filtered less probable 
pixels are pointed by arrows. 
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Figure 4. Sample contexts and the statistical distribution of 

the colors in a 5-color map image. 

the number of black pixels in Figure 5. Statistics are 
gathered only for those contexts that really appear in 
the image. The principle is illustrated in Figure 5 and 
Figure 6 for the case of binary and a 4-color images, 
respectively. Every node of the tree represents a 
particular combination of the template pixels. 

The deeper the tree grows the larger context 
model is used. Usually the image is processed pixel-
by-pixel. For every pixel, the tree is traversed down 
to the desired depth, and by updating all pixel 
counters for the corresponding nodes along the path 
from the root to a leaf. When a context appears first 
time in the image and the corresponding node tree 
does not exist in the context tree, it must then be 
created dynamically at this moment. 

Potentially, the final level of the tree can contain 
kn nodes, where n is the size of the template. 
However, since not all possible contexts are present 
in the image, some nodes will never be constructed 
and, therefore, memory will be allocated only for 
existing pixel combinations. For the case of color 
image (see Figure 6), the construction of the tree 
proceeds in the same manner as in the case of binary 
image, expect that there can potentially be as many  
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Figure 5. Construction of context tree for a binary image. 
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Figure 6. Construction of context tree for a color image. 

child pointers and frequency counters as there are 
colors in the image. The frequency counters 
(components of the statistics vector) are denoted here 
as f1, f2, … fk. With a large context size and large 
number of colors, however, it is unlikely that all 
colors will appear in a particular node. Our 
experiments show that for a 25-color image and 15-
pixel template, the proportion of non-appearing 
children pointers and frequency counters can be up to 
90% of all memory allocation if linear arrays were 
used. It is therefore essential to store the children 
pointers and the frequency vectors as linked lists to 
optimize memory consumption. 
 
2.3 Pruning the Context Tree 
 

Larger context size allows analyzing of larger 
structures of the images. However, larger patterns 
repeat less than smaller patterns and if the size is 
increased too much, most of the contexts will 
eventually appear only once or twice. Larger context 
size tends to make the distribution of the colors in a 
context more flat. Without enough statistics and clear 
statistical dominance of one color, the filter is unable 
to make reliable guess about whether given pixel is 
noisy, and by which color it could be replaced. 

We overcome this drawback by using a pruning 
technique. Consider a node with the corresponding 
context cP, and its children nodes c1, …, ck. Denote 
the number of times the context cP appears in the 
image as N(cP). By definition of CT 
N(cP) = N(c1) + … + N(ck). When a particular context 
does not appear frequently enough, it should not be 
used in filtering. We realize this by applying a simple 

pruning criterion: if the frequency of a given context 
falls below a predefined pruning threshold (∃ i : 
N(ci)≤Treshold ), the corresponding node is pruned 
out from the context tree.  

By definition of CT, all pixels that appear in a 
child context ci appear also in their parent context cp: 
∀ I(x,y) ∈ ci holds I(x,y) ∈ cP. When the child 
context ci is pruned, traversal in the tree will stop on 
its parent node, which by definition appears more 
frequently (or equally frequent in case of only one 
child) as its child context. The use of pruning 
criterion guarantees that every context appears in the 
image frequently enough to be a valid criterion of 
filtering. 

Empirical results support the usefulness of the 
pruning. Popularity of contexts of size 20 in a sample 
test image is illustrated in Figure 7. The histogram 
shows that without pruning most of the contexts 
(118941) appear only once or twice in the image, and 
majority of the remaining contexts (21253 + 8971) 
less frequently than 8 times. Only 6 % of the contexts 
(about 10000 out of 150000) appear more than 10 
times. This means that most of the contexts have too 
sparse distribution in order to be used for reliable 
filtering.  

Figure 8 illustrates how many pixels are actually 
filtered in these contexts (filtering with probability 
threshold 20 %). The less populated contexts 
(appearing less frequently than 8 times) do not make 
significant contribution to the filtering. The effect of 
the pruning is demonstrated in Figure 9 and Figure 
10. From Figure 9 one can see that no contexts 
appearing less than 8 times remain in the tree and 
Figure 10 shows that the contexts of smaller sizes 
significantly increase their contribution to the 
filtering. 

 

3. Noise Models 
 
3.1 Displacement noise 
 

Typically, the map image obtained from a digital 
scanner is corrupted with specific type of noise. In 
order to reduce the influence of acquisition device as 
well as to decrease overall redundancy, that image 
usually goes through color quantization process. 
Though pixels of uniform areas are quantized well 
and are mapped to the same color values, border 
pixels can be easily mapped to a closer but different 
color value corrupting the contours of the objects. 
We refer this kind of noise as displacement noise.  

We model this type of noise by considering a 
probability of misplacing the current pixel in a local 
3×3 neighborhood. Consider the source image 
Source; the noisy image Dest is modeled as follows: 

- 470 -



 

 

3699622671
55408971

21253

118941

214 98 123 95 11 7 0 1 0 1 1
0

20000

40000

60000

80000

100000

120000

140000

2 4 8 16 32 64 128 256 512 1024 2048 4096 8K 16K 32K 65K 131K 262K  
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image. The graph represents the number of unique contexts 
(Y axis) appearing in the image within a given frequency 
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For each Dest(x,y) do 
 If rand() < Treshold Then 
// do misplacing 
  DirX = rand(-1,0,+1) 
  DirY = rand(-1,0,+1) 
 Dest(x,y)=Source(x+DirX,y+DirY) 
 Else 
  Dest(x,y) = Source(x,y) 
 End If 
End For 

 
3.2 Impulsive noise 
 
Impulsive noise typically originates from noisy 
transmitting channels of acquisition devices 
randomly affecting whole image independently of the 
region. When the noise level is high, color 
quantization maps pixels to wrong colors 
independently of the location of the pixel, and noisy 
pixels can appear anywhere in the image and can be 
of any color available in the color palette. We refer 
this noise as impulsive noise. Consider the source 
image Source; the noisy image Dest is modeled as 
follows: 
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pruning out contexts appearing less frequently than 8 
times. 
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9. 

For each Dest(x,y) do 
 If rand() < Treshold Then 
Dest(x,y)=rnd(1,…,NumberOfColors) 
 Else 
  Dest(x,y) = Source(x,y) 
 End If 
End For 

 

4. Experiments 
 

We evaluate the proposed Context Tree filter 
(referred as CT) on a set of six map images chosen 
from Finnish National Land Survey database [15]. 
Two of them (images #1 and #4) are topographic and 
the rest are road maps. The images are of different 
spatial resolution and some of them (images #5 and 
#6) are affected by quantization noise. In addition to 
this, we corrupt all images with the noise of two 
types as described in Section 3. 

 
4.1 Objective evaluation 
 

The proposed filter (CT) is applied with context 
size 20, probability threshold level 5% and pruning 
threshold of 128. We compare CT with vector 
median (VM) [7], adaptive vector median (AVM) 
[8], morphological (MM) [4] and PGA [9] filters. 
The efficiency of the filters is evaluated using mean  
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Table 3. The efficiency of MM, VM, AVM and CT filters measured as ∆E distance to the original image for 20% content-
dependent (CD) and 5% impulsive noise (I).  

 Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 
 CD I CD I CD I CD I CD I CD I 

MM 23.52 24.37 29.66 30.28 27.75 28.33 14.10 14.48 4.54 8.68 30.45 31.11 
VM 3.16 2.51 8.50 7.73 8.58 7.37 3.27 2.46 1.99 1.66 7.81 6.67 

AVM 2.51 1.70 4.60 2.46 5.05 3.12 2.18 1.18 1.33 1.15 5.07 3.10 
PGA 2.51 1.50 5.48 3.71 5.76 3.79 2.24 1.32 1.75 1.56 5.90 4.02 
CT 2.14 0.89 3.95 2.89 3.96 2.44 1.70 0.94 1.19 1.18 3.86 2.94 
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Figure 11. Efficiency of MM, VM, AVM, PGA and CT 

filters for content-dependent noise. 

color distance ∆E between the original (noiseless) 
and the filtered images defined by 

∑∆=∆ *1
abE

N
E  

as the normalized sum over all image pixels, where 
∆E*

ab is the Euclidean distance between the two color 
samples in L*a*b* (CIELAB) uniform color space 
[16] and is measured as 

2*2*2** )()()( baLEab ∆+∆+∆=∆ . 

However, objective distance measure cannot be 
considered completely relevant for evaluation of the 
performance because pixelwise measurement does 
not represent the visual quality. For example when 
thin and detailed structures are filtered out, this does 
but it is clearly visible and it corrupts the semantic 
structures in the map. We therefore present also 
visual examples of filtered map for subjective 
evaluation in order to emphasize the ability to 
preserve repetitive patterns independent of their size. 

For content-dependent noise we vary the noise 
level from 5% to 50% with step of 5%. The results 
are illustrated in Figure 11. One can see that the 
proposed filter provides better objective results for 
all nose levels. On average, the filter outperforms its 
closest competitor (AVM) by 15%. For impulsive 
noise we vary the noise level from 5 to 20% with step 
of 5%; the results are illustrated in Figure 12. The 
proposed filter outperforms AVM for noise levels 
higher than 5% noise. On average, CT outperforms 
AVM up to 30%. Table 3 summarizes the objective 
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Figure 12. Efficiency of MM, VM, AVM, PGA and CT 

filters for impulsive noise. 

measurements for all filters for 20% content-
dependent (CD) and for 5% impulsive (I) noise. The 
measurements are averages over the test set. 
 
4.2 Subjective evaluation 

 
Visual comparisons are presented in Figure 13 for 
three sample image fragments for 20% content-
dependent (CD) and 5% impulsive (I) noise. The VM 
and AVM filters tend to preserve edges with no 
blurring. However, thin details of the original data 
are extensively filtered out since the filters are based 
on quantitative domination which underlies the 
median concept. The MM filter is a generalization of 
gray-scale morphological filter to a color space, and 
it is based on qualitative dominance. The 
generalization is considered using reduced ordering 
technique, when an order relation is defined on a 
vector space by reducing a multivariate object to a 
single value. For MM filter this order relation is 
based on a luminance of the color sample [4]. In this 
way the filter assumes that brighter colors ‘dominate’ 
the darker or vice versa. Also, the structuring element 
defining the operation of the filter is fixed and 
therefore unable to perform relevant filtering in 
different areas of the map which have very different 
structure. All this makes MM filter to perform worst 
on the selected imagery both by the objective as well 
as by the subjective comparisons. 

The PGA filter performs rather well on impulsive 
noise. Although some impulses are still visible after 
one iteration of the filter, they will be removed after 
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Figure 13. Visual comparison of the competitive filters. 

few iterations. However, PGA mostly does not filter 
the content-dependent noise. This happens because, 
by its definition, peer group is formed of the 
neighbor pixels whose color is closest to the 
processed pixel. In case of content dependent noise, 
noisy pixels have pixels of the similar (or exactly the 
same) color in their neighborhood, which makes the 
peer group averaging ineffective. 

In contrary with the competitors, the proposed CT 

filter deals with statistical domination instead of 
quantitative or qualitative domination, or distance-
based grouping. The filter considers a local pattern to 
be preserved if it is repeated in the image frequently 
enough. However, irregular areas (the dotted area in 
the third example) or patterns not repeated frequently 
enough are filtered out. This property makes the 
proposed filter sensitive to the original image data. 
On the other hand, following the statistical 
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assumptions, the filter is able to restore corrupted 
structures such as smooth distorted lines and borders. 
The major condition for the filter to be effective is 
the statistical consistency of the image; it is therefore 
mostly suitable for indexed-color palette images and 
images consisting of computer-generated graphics. 

 
4.3 Processing time 
 

We measure the processing time of the proposed 
filter (CT) for four selected content-dependent noise 
levels. The measurement is taken as the average over 
the test set, and the results are summarized in Table 
4. The MM and PGA filters are implemented in 
Matlab and presented the worst performance, which 
however originates mostly from the chosen 
implementation environment. The proposed filer is 
computationally expensive and its performance 
depends also on how complicated are the structures 
in the image.  

 
Table 4. Processing time of the filters under evaluation. 

Filter 
CT, 
C++ 

VM, 
C++ 

AVM, 
C++ 

MM, 
Matlab 

PGA, 
Matlab 

Time, 
sec. 

15.80 1.34 2.29 20.09 74.14 

 

5. Conclusion 
 

We proposed a statistical filter based on a context 
tree modeling. The proposed filter is based on a local 
probability estimation followed by a thresholding 
replacing less probable patterns with the most 
probable ones. The filter aims at preserving the 
repetitive structures of the image, which is an 
essential property for raster map images. The filter is 
implemented using a memory efficient management 
of context tree modeling allowing larger local 
neighborhood and color depth to be utilized. The size 
of the context template is dynamically optimized by 
considering a simple and efficient tree pruning 
technique.  

The performance is compared to vector median, 
adaptive vector median, color morphological and 
peer group averaging edge-preserving non-linear 
filters. The experiments show that the proposed filter 
outperforms these competitors both in objective and 
subjective comparisons.  

The proposed filter, however, has some limitations 
of its applicability caused by extensive memory 
consumption of the algorithm. The filter is 
considered to be practical for color-indexed palette 
images when the number of colors is less than or 
equal to 256, but does not generalize well to true-
color images as such. Larger irregular patterns are 

also not captured very well in case of high noise 
levels. Nevertheless, the main idea of statistical 
modeling of repeated structures is more general than 
relying only statistics within a local neighborhood as 
done in morphological and peer group filtering. 
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