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Abstract 

Background To reduce risk of death in acute ST‑segment elevation myocardial infraction (STEMI), patients must 
reach a percutaneous coronary intervention (PCI) within 120 min from the start of symptoms. Current hospital loca‑
tions represent choices made long since and may not provide the best possibilities for optimal care of STEMI patients. 
Open questions are: (1) how the hospital locations could be better optimized to reduce the number of patients resid‑
ing over 90 min from PCI capable hospitals, and (2) how this would affect other factors like average travel time.

Methods We formulated the research question as a facility optimization problem, which was solved by clustering 
method using road network and efficient travel time estimation based on overhead graph. The method was imple‑
mented as an interactive web tool and tested using nationwide health care register data collected during 2015–2018 
in Finland.

Results The results show that the number of patients at risk for not receiving optimal care could theoretically be 
reduced significantly from 5 to 1%. However, this would be achieved at the cost of increasing average travel time 
from 35 to 49 min. By minimizing average travel time, the clustering would result in better locations leading to a slight 
decrease in travel time (34 min) with only 3% patients at risk.

Conclusions The results showed that minimizing the number of patients at risk alone can significantly improve this 
single factor but, at the same time, increase the average burden of others. A more appropriate optimization should 
consider more factors. We also note that the hospitals serve also for other operators than STEMI patients. Although 
optimization of the entire health care system is a very complex optimization problems goal, it should be the aim of 
future research.
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Background
Although the number of patients with ischemic heart 
disease has decreased in Finland cardiovascular disease 
remains the most common cause of death [1]. From the 

health care service system point of view, patients with ST 
segment elevation myocardial infarction (STEMI) type 
of cardiovascular disease present challenges as they need 
to be treated within a given time limit in a  facility with 
capabilities for invasive treatment or face potentially fatal 
consequences [2–4]. Patients living closer to a percuta-
neous coronary intervention (PCI) capable cardiac unit 
(henceforth PCI cardiac unit) have higher chance of sur-
vival than those who live far away [5]. Current health care 
system is under pressure to cut costs and optimize the 
health care services better. This may lead to reducing the 
number of hospitals including those that provide acute 
treatment for myocardial infarction patients.
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The optimization of distance from place of residence 
to appropriate care is critical when a delay means loss 
of function or even death [4]. This time dependency is 
apparent in vascular emergencies such as acute coro-
nary syndrome, and particularly in STEMI, where the 
electrocardiogram findings show specific signs of immi-
nent heart muscle necrosis. The guidelines for STEMI 
treatment currently call for invasive PCI within 120 min 
from symptom onset [4, 6]. These lifesaving procedures 
can only be performed in dedicated PCI cardiac units by 
experienced specialized cardiologists.

In Finland, PCI cardiac units (n = 22) exist in larger 
hospitals of all mainland hospital districts, but only 
the five university hospitals have capability to pro-
vide PCIs on a 24/7 basis. Other hospitals, health cent-
ers, and ambulance services can provide thrombolysis 
when primary PCI is not immediately available. How-
ever, pre-hospital diagnosis (e.g., obtained by utilizing 
telemedicine) and early transfer to PCI is the preferred 
option as it reduces delay and results in better outcomes 
[4, 7]. The locations of PCI capable hospitals are relevant 
for care of other urgent medical conditions as well and 
can be considered to represent the “backbone” of optimal 
acute hospital network.

Studies focusing on prehospital delays have assumed 
that health care systems are expected to treat patients 
with PCI within 90  min from the first medical contact 
when initial point of care is at a PCI cardiac unit [5]. 
Other travel times to PCI cardiac units (such as 60 min) 

have also been used [8]. The definition of the threshold 
for transport time may vary when in-facility delays (door-
to-balloon-time) are taken into consideration [2] yet it 
remains a significant determinant of patient outcomes.

In this paper, we perform theoretical study how the 
location of the hospitals would change if they were opti-
mized by minimizing the patients at risk of residing over 
90 min from the PCI capable hospital in 2015–2018. We 
assess optimized hospital locations with an interactive 
web tool built for this purpose, that optimizes the loca-
tion by clustering algorithm with real patient data and 
their location. The optimization result is shown visually 
on map using the Web-tool described in [9], see Fig. 1.

Methods
Data
To analyze a specific group with critical time-depend-
ency, we identified Finnish population with diagnosed 
ST-elevation myocardial infarctions in 2015–2018 from 
Finnish Care Register for Health Care. This register is 
maintained by Finnish Institute of Health and Welfare 
and includes practically all hospital discharges from 
both public and private hospitals. STEMIs were defined 
as hospitalizations with ICD-10 codes I21.0-I21.3. Thus, 
we excluded other myocardial infarctions requiring less 
urgent invasive care (classified either as a non-ST-ele-
vation infarction or of an unspecified type). Every indi-
vidual with at least single hospitalization for STEMI 
in 2015–2018 was included, 17,563 in total. Those with 

Fig. 1 Average travel time from postal code areas to both current and the optimized locations of cardiac units capable of percutaneous coronary 
intervention (named health centers in the Web‑tool)
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location information were selected; eventually forming a 
study population of 17,346 adults.

For every individual in our study population, we 
obtained postal code area of residence using the person-
alized ID codes provided by the respective authorities. 
There are 3038 postal codes in Finland which are larger 
in sparsely populated areas. To have more accurate home 
locations of the individuals, we applied a 1  km × 1  km 
population density grid information from the National 
Land Survey of Finland and converted the postal code 
areas to a set of randomized GPS coordinates as follows. 
We first calculated weighted average of the center points 
of all grid cells located within a single postal code area. 
We then allocated number of individuals with STEMI 
to the GPS coordinates for their respective postal code 
areas.

Secondary and tertiary care hospitals with PCI car-
diac units (n = 22) were identified with their corre-
sponding coordinates based on the addresses. In the 
Web-tool, these units are named health centers, as the 
tool is designed to be general and not limited only to 
STEMI patients. We also identified the five university 
hospitals as they have 24/7 capability for providing PCIs.

Travel times between GPS coordinates of postal code 
areas and PCI cardiac units were calculated applying 
open street data. We define individuals with travel time 

of 90  min or more to the nearest PCI cardiac unit at 
risk for not receiving PCI in case of STEMI (henceforth 
patients at risk). These individuals are presented in the 
Web tool with red color, while those whose travel time 
remain under the threshold of 90 min are depicted blue; 
see Fig. 2.

Clustering method
The optimization is defined as a clustering problem 
where the input is the home locations of the patients, 
and the output is the locations of the optimized health 
centres. The process includes three main components 
(Fig. 3): clustering algorithm, travel time estimation, and 
mathematical function that provides the objective for the 
clustering algorithm.

K-means is by far the most common clustering algo-
rithm and would be applicable as such since the data is 
numeric. Furthermore, the data contains a reasonably 
small number of clusters (22 at most) of which most are 
not isolated from the others. Thus, the data would fit 
rather well for k-means especially if repeated multiple 
times [10]. However, we do not want to compromise the 
quality and use improved variant called random swap, 
which is shown to find the best clustering structure 
even in cases when k-means would fail [11]. High-speed 

Fig. 2 Choice of the cost function has significant impact on the optimization result. Three hospital allocations are shown: the current (left), 
optimized for minimal travel‑time (middle), and optimized for minimum number of patients at risk (right)
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scalable variant of random swap is also available if faster 
processing time would be needed [12].

While the choice of the algorithm matters for the pre-
cision, the choice of the cost function is much more 
important for the application. We consider two choices: 
(1) minimizing for travel time, and (2) minimizing for 
the patients at risk. They are mathematically defined 
as follows. Optimizing for travel time is simply a linear 
function which increases with the time. The further the 
patient is from the hospital, the higher the travel time 
and the higher its cost in the model.

Minimizing the patients at risk is a bit trickier. In prin-
ciple, a simple thresholding would assign cost 0 for every 
patient reaching the hospital within the limit (90  min), 
and cost 1 for others. However, binary threshold tends to 
reduce the flexibility of k-means type of algorithms and 
often lead to inferior optimization result [13]. For this 
reason, we soften the threshold by using Sigmoid func-
tion. The effect is the same as with the linear function: 
shorter travel times have smaller cost, but there is rapid 
increase around the threshold value. The benefit of the 
smoother curve is to avoid possible pitfalls of the algo-
rithm in the optimization.

The effect of these two cost functions is demonstrated 
in Fig.  4. In case of Euclidean distance, optimal loca-
tion for the centre would be the geometric average of all 
patients which happens to be in the middle of the blue 
points. The same typically happens when optimizing for 
travel time as it is directly dependent on the distance. 
Optimizing for risk, however, tend to move the hospital 
locations closer to the border of the blue points to reach 
more of the red points within the time limit.

Travel time estimation
Standard k-means operates with numerical data uses 
Euclidean distance. However, we use travel distance cal-
culated using road network because simple Euclidean 
(Bird’s) distance can cause major inaccuracies. It may 
work well in flat areas with extensive road network [14] 
but large errors were reported in [15] of about 30% with 
SiunSote data in North Karelia, Finland, in the region of 
many lakes and rivers. Travel time is then estimated from 
the travel distance. The use of travel distance instead of 
Euclidean can also have significant impact on the cluster-
ing, see Fig.  5. Other affecting factors are speed limita-
tions and traffic congestions.

The drawback of travel distance is that it is time con-
suming to compute. The shortest path itself can be easily 
calculated using road network in linear time but the opti-
mization process may require millions of such operations 
and the location of the centres are dynamically changing 
during the process. Fortunately, we do not need to know 
the actual path but only its length, and more importantly, 
the length of every path does not need to be exact. It is 
enough we have their expected length with reasonable 
accuracy, but we want to have it fast.

To keep the optimization efficient, we therefore use 
the overhead graph method in [15] to provide rapid esti-
mation for both travel-distance and travel-time. This 
method has two stages. First, a pre-processed graph is 
built using the data (patient) locations and the road net-
work to identify most important traffic points, which 
will be the nodes of the graph. Second, rapid calcula-
tion of any travel time (or distance) during the optimi-
zation process is done using a look-up table and simple 

Fig. 3 Main components of the clustering include the clustering algorithm, travel time estimation, and the objective (cost function) for the 
clustering
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multiplication of the Euclidean distance and an overhead 
(detour index) provided by the graph.

The effect of the graph is that the processing time of 
the optimization is reduced from 1.2 h to only 2.9 s per 
iteration (up to 10,000) in case of SiunSote data in North 
Karelia using a graph with 512 nodes. The huge speed-up 
is achieved at the cost of 2% inaccuracy in the distance 
estimation using memory for 512 × 512 = 0.25 MB look-
up for the graph [15]. The process and two sample graphs 
are shown in Fig. 6.

Implementation
The optimization is implemented as a Web tool. The 
data is pre-calculated and stored within the system, 
and all the reported combination in this paper have 

been pre-calculated. The system allows testing also new 
parameter combinations; see Fig. 7. These include differ-
ent risk thresholds (30, 45, 60, 75, 90 min), different opti-
mization functions (Euclidean distance, travel distance, 
travel time, patients at risk), different methods for dis-
tance estimation (Euclidean, estimated by the overhead 
graph, actual travel distance), different graph sizes (16, 
32, 64, 128, 256, 512, 1024). The system also allows user 
to select the number of iterations (50, 100, 2000, 10000) 
with reporting the estimated processing times varying 
from 20 s (50 iterations) to 20 min (10000 iterations).

The number of health centres can also be changed 
either by adding new ones on map, or by removing any 
existing centre. The location of any centre can be manu-
ally changed by drag-and-drop. User can lock certain 

Fig. 4 Two cost functions implementing the two different objectives: linear function minimizing travel time (left), and Sigmoid function minimizing 
patients at risk

Fig. 5 The effect of the distance function on the clustering: Euclidean distance (left), nearest centre according to travel distance (middle), effect on 
the final clustering (right)
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health centres and optimize only the location of the oth-
ers. The optimization always starts from the current set 
of locations shown on map after the manual operations. 
The algorithm is not sensitive to the initialization and 
only the locking and the number of centres has signifi-
cant effect to the outcome of the optimization.

The solutions are visualized on map by showing either 
the original locations or optimization locations (or both), 
possibility to show coloured points (heat map) so that 
red dot indicates patients at risk. Numerical summary 
is provided by reporting various statistics including 

the number of patients, the number of patients at risk, 
average travel time and distance. These are reported as 
averages of all population, and for each unit separately. 
However, the visualisation on the map is the easiest way 
to analyse the optimization result.

The front end of the Web system is implemented by 
HTML and CSS (styling) and Javascript (interactive ele-
ments). The pre-optimized centre locations are stored in 
MariaDB database, which is a free and open-source com-
munity fork of MySQL. Server-side backend is mostly 
implemented by with PHP but also some parts with Java, 

Fig. 6 Fast travel time estimation using overhead graph [15]. The two‑stage process is shown (left), and two example graphs (right) optimized for 
Finland (1024 nodes) and for North Karelia region (256 nodes)

Fig. 7 Control parameters for the optimization include risk threshold, distance function, and graph size. Pre‑calculations selections are also listed in 
the optimization goals for faster analysis
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Python and few critical parts in C including travel time 
estimations and the core clustering functions. The system 
runs on a Centos 7 Linux server with 16 Xeon W-2255 
processing cores an 512 GB memory. It is accessible by all 
stakeholders via passwords.

Results
Table  1 summarizes the main results of the optimiza-
tion. The numbers are the averages over all patient loca-
tions. We first observe that the results are always the best 
for the same measure that was used as the optimization 
function. For example, if we want to minimize travel 
distance, the best result (34.7  km on average) would be 
achieved by using travel distance as the cost function in 
the clustering. The second observation is that the num-
ber of patients at risk can be improved significantly. 
With 90 min risk threshold, the number patients at risk 
reduces from 832 (5%) to 135 (1%) when optimizing for 
the patients at risk using the corresponding optimization 
function (Sigmoid). The difference is remarkable.

Effect of the road network
The effect of using road network is demonstrated fur-
ther in Fig.  8. There are five university hospitals in Fin-
land (Helsinki, Turku, Tampere, Kuopio, Oulu). If we 
map every patient to the nearest university hospital, we 
will get the division shown by the black lines if Euclidean 
distance is used. The difference when using travel dis-
tance seems marginal in this example but when applied 
in the optimization algorithm, the effect becomes signifi-
cant. The optimized locations in many cases are close to 
their current locations in cities like Vaasa, Seinäjoki and 
Kokkola when the road network is used. However, with 
Euclidean distance hospitals would be located into arbi-
trarily places like Jumisko and Tervola in Lapland, or 
island in Alajärvi lake.

Effect of optimization function
Results when optimization for the patients at risk are 
further demonstrated in Fig. 9 with three risk thresholds 
(30 min, 60 min and 90 min). Reducing the risk threshold 

Table 1 Average travel time, distances, and the number of patients at risk when optimized for different cost functions

Optimization function Euclidean distance Travel distance Travel time Patients at risk

Original locations 29.0 km 36.6 km 35.3 min 832 (5%)

Euclidean distance 27.9 km 36.1 km 36.2 min 792 (5%)

Travel distance 28.4 km 34.7 km 34.1 min 519 (3%)

Travel time 29.8 km 36.8 km 34.0 min 488 (3%)

Patients at risk 44.3 km 54.9 km 48.6 min 135 (1%)

Fig. 8 Accessibility of the hospitals depends on the road network. The division by the five university hospitals are presented by the black borders 
(Euclidean distance) and by colouring the patient locations (travel distance). They look quite similar but their effect on the optimization is significant
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from 90 to 60 min would reach the same level (5%) as the 
current location with 90 min threshold. This means that 
the same number of people can reach the hospital in 1 h 
time with optimized locations compared to 1 h 30 min.

We can also see that that many optimized centre loca-
tions would move to sparsely population especially in 
North Finland. The reason is that most patients in south 
are safe when considering the higher 90  min threshold, 
which leads the optimization algorithm trying to catch 
the remaining patients at risk. This optimization, how-
ever, comes at a cost of increasing the average travel time 
of all patients. The optimization does not care if people 
need to travel 49 min (on average) instead of 35 min, as 
long as the time is below 90 min, see Table 1.

Detailed effect in Central and South Finland are also 
demonstrated in Fig.  10 for the 90  min threshold. The 
optimization in Jyväskylä and Joensuu area are under-
standable from the logistics point of view, but the South 
Finland situation shows the effect of this optimiza-
tion function. The optimized centre now in Mäntsälä is 
reached by all patients within 90  min. However, their 
original average travel time increases from 13, 22, 32 
(Helsinki), 26 (Lahti) and 31 (Hämeenlinna) to 46  min 
(Mäntsälä). This does not make much sense. The results 
with 30  min threshold cause fewer radical changes but 
the patient at risk as such seems unsuitable cost function.

Travel distance or travel time as the optimization goal 
can also provide better locations and reduce those attrib-
utes, but the difference is less significant. Optimizing 

travel distance reduced the average distance from 
36.6 km to 34.7 km (-5%), whereas optimizing travel time 
reduced average time from 35.3 min to 34.0 min (-3.7%). 
This would also reduce the number of patients at risk 
from 832 to 519 (when optimized for distance) and 488 
(when optimized for time), respectively, and seems more 
suitable for patient at risk as well.

How many hospitals?
Currently there is considerations to optimize the 
resources by cutting out some of the hospitals. We there-
fore study next how the reduction of the number of hos-
pitals would affect the measures. Figure 11 shows that we 
could remove several hospitals without big change if the 
locations were optimized. We could still reach patients 
at risk at 1% level even if the number of hospitals was 
reduced from 22 to 19. Further reduction to 14 would 
still achieve better than the original 5% after which the 
proportion of patients at risk starts to increase radically.

In real-life, we cannot relocate the hospitals just like 
that, and a more realistic question would be which PCI 
would be least harmful to cut-off? The two most specu-
lated ones have been the two smallest, Savonlinna and 
Länsi-Pohja (Kemi), which urges us to test what would 
happen if they were removed. The results in Fig. 12 and 
Table 2 show their removal would have remarkable 20% 
increase in the patients at risk (from 832 to 1,117) which 
can be seen the red points in those regions. The algo-
rithm would re-optimize the remaining 20 hospitals so 

Fig. 9 Results of the optimization with three different thresholds. The colours of the locations are red for the patients at risk when using 30 min 
(left), 60 min (middle) and 90 min (right) thresholds
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that Savonlinna and Kemi would retain their own PCI 
units.

Optimizing the travel time
Optimizing for the travel time seems more meaning-
ful than optimizing for patients at risk. Let us therefore 
study this optimization result in more detail. The opti-
mized locations are shown in Fig. 13. The main obser-
vation is that most optimized locations are very close to 
the original locations. It shows that they are roughly at 
the places they should be, and well optimized from the 
STEMI patient point of view. The average travel time is 

Fig. 10 Optimizing patient at risk has many dubious side effects. Jyväskylä and Joensuu hospital would be moved to logistically better locations at 
Tikkakoski and Kontiolahti. South Finland reconstruction would leave only one hospital in Helsinki area and far away in Mäntsälä

Fig. 11 Effect of the number of hospitals when optimized for 
patients at risk (90 min)
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35  min and was reduced only by about 1  min by bet-
ter optimization. The number of patients at high risk 
(90  min threshold) would be reduced more; from 5 to 
3%.

The optimization algorithm kept most locations 
almost intact. Even logistics tuning in Jyväskylä and 
Joensuu would not happen when minimizing the aver-
age travel time instead of the patients at risk (targeting 
to reduce the worst cases). There are few changes the 
algorithm makes though as shown in Fig. 13.

1. Rovaniemi and Hämeenlinna are removed.

2. Capital area would have only two units instead of 
three, and one of them would be in Lohja.

3. The released resources would be allocated to Åland, 
Nivala and Kuusamo.

4. Mikkeli and Savonlinna would be merged and re-
located in Juva in the middle.

The reason of putting one hospital in Åland is merely 
an artefact of it being island. The number of STEMI cases 
in the data was just 37. Their distance to Turku hospi-
tal is only 160 km but it takes about 6 h by ferry. These 
cumulate and causes a creation of a new PCI unit there. 
Turku hospital itself serves for 1,395 patients with an 
average distance of 28 km. In real-life, the few critically ill 
patients receive mostly care in Sweden due to the auton-
omous governance of the Åland islands and the proxim-
ity to Sweden.

Main result is that most hospitals are at excellent loca-
tions considering the STEMI patients already.

The other changes were caused by the optimization. 
The joint volume in Mikkeli (428) and Savonlinna (221) 
were about at the same as those of its surrounding hospi-
tals Joensuu (602), Kuopio (787) and Jyväskylä (720). The 
merge is therefore as expected. Hämeenlinna (719) had 
similar volume but it is within < 1 h highway connection 
to Tampere, and likely therefore removed. New locations 
in Nivala (352) and in Kuusamo (123) are in areas without 

Fig. 12 Effect of removing two hospitals (20 remaining). Savonlinna and Kemi (those most speculated to be axed) are removed in the middle. 
Re‑optimizing the remaining 20 hospitals are shown on right

Table 2 The effect of removing two selected hospitals, and if 
only university hospitals were retained. Total patients: 17,346

a Trip to nearest hospital > 90 min
b All hospitals except Savonlinna and Länsipohja

Average travel:

Test case Hospitals At riska Time Distance

All hospitals 22 832 (5%) 35 min 37 km

Two  removedb 20 1,117 (6%) 37 min 39 km

Optimized n = 20 20 183 (1%) 46 min 51 km

University hospitals 5 7,332 (42%) 88 min 101 km

Optimized n = 5 5 5,023 (29%) 98 min 113 km
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any major cities, and hospital, nearby. For minimizing the 
average travel time, the algorithm decided to allocate one 
PCI facility for both. It also considered Sodankylä more 
beneficial location for PCI unit than Rovaniemi due to 
long distances in the North.

Detailed statistics of the original and optimization 
locations are summarized in Tables 3 and 4. The current 
hospital locations in the Capital area follow the munici-
pality borders as all three are in different municipality 
(Helsinki 13  min; Vantaa 22  min; Espoo 33  min). After 
optimization, only one remains in Helsinki (Tapanin-
vainio) roughly halfway between Helsinki downtown and 

Vantaa. The average travel time of patients to this loca-
tion is clearly the shortest (22 min) among all optimized 
hospital locations. The second Capital hospital location is 
in Lohja (42 min). It covers large portion of the less dense 
areas from Hanko to Forssa, including also the westmost 
parts of Espoo (Finn).

The volumes of the centres have somewhat changed 
due to the merges and by creating new centres in the 
sparsely populated areas. First, the volume of the smallest 
units in Kemi (263) and Savonlinna (221) have increased. 
The first one is moved slightly to North at Keminmaa 
(443) and covers now also Rovaniemi which increased its 

Fig. 13 Optimization result using average travel time as the cost function
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volume. The new centre at Juva (625) also has higher vol-
ume serving for both Savonlinna and Mikkeli. The three 
new centres are all small: Nivala (352), Sodankylä (189) 
and Kuusamo (123). From accessibility point of view, 
they are all well motivated but whether such low volumes 
would be economically feasible considering the overall 
health care services of the hospitals, is an open question.

Discussion
We have analysed how optimizing hospital locations 
could improve patient access in diseases with critical 
time-dependency. To achieve this, we used Web tool 
designed to optimize spatial locations of PCI capable 
hospitals to promote timely access for STEMI patients. 
Three optimization goals were applied: 1) number of 
STEMI patients at risk to reside in areas with travel time 
of 90 min or over, 2) average travel distance, and 3) aver-
age travel time. For each of these goals, we observed the 
results of the optimized models against those of the cur-
rent locations of PCI capable hospitals.

Our findings suggest that the network of PCI capable 
hospitals in Finland is rather well distributed along the 
country but could be still fine-tuned for better access. 

The results also suggest that possible closure of two 
smallest units (Savonlinna and Kemi) would increase 
the number of STEMI patients with travel time to PCI 
capable hospitals over the 90  min threshold by 34% 
(from 832 to 1,117).

Regarding optimization of travel times, the opti-
mization result suggested several changes to the cur-
rent hospital network. The removal of Hämeenlinna, 
the merging of two smaller units (Mikkeli and Savon-
linna) into a new facility location at Juva, relocation 
of Rovaniemi to better serve the Northern parts. The 
optimization, however, did not consider the treat-
ment capacity of the hospital and their emergency care 
services.

Accessibility may also be hampered furthermore by 
factors such as congested traffic or cultural factors caus-
ing delays in seeking care. Further studies should take 
into consideration factors such as regional variation of 
cardiovascular diseases and the population projections 
regarding ageing and internal migration. Despite consid-
erable improvements in cardiovascular health, the popu-
lation in Northern and Eastern parts of Finland still is 
burdened by these diseases more than the Southwestern 
parts.

Table 3 Statistics of the current hospitals

Average:

Location: Patients At risk Time Distance

Vantaa 1 511 0 22 min 23 km

Turku 1 485 70 42 min 37 km

Tampere 1 270 0 26 min 25 km

Helsinki 1 075 0 13 min 8,0 km

Lahti 1 043 0 26 min 25 km

Espoo 1 020 55 32 min 34 km

Pori 966 0 35 min 37 km

Seinäjoki 919 43 45 min 48 km

Kuopio 802 15 41 min 45 km

Jyväskylä 772 52 42 min 44 km

Oulu 761 83 42 min 46 km

Kokkola 750 65 44 min 50 km

Hämeenlinna 719 0 31 min 34 km

Kotka 682 0 35 min 37 km

Joensuu 672 70 39 min 42 km

Kajaani 596 151 60 min 73 km

Lappeenranta 493 0 23 min 24 km

Vaasa 455 0 29 min 29 km

Rovaniemi 443 219 90 min 104 km

Mikkeli 428 0 37 min 39 km

Kemi 263 9 22 min 26 km

Savonlinna 221 0 32 min 28 km

TOTAL 17,346 832 35 min 37 km

Table 4 Statistics of the new locations optimized for travel time

Average:

Location: Patients At risk Time Distance

Helsinki 3 271 0 22 min 23 km

Tampere 1 571 1 32 min 35 km

Turku 1 395 23 27 min 28 km

Lahti 1 210 0 26 min 29 km

Pori 984 3 35 min 38 km

Seinäjoki 892 4 43 min 44 km

Jyväskylä 752 34 41 min 44 km

Kuopio 727 24 37 min 41 km

Lohja 717 0 42 min 45 km

Joensuu 686 61 40 min 43 km

Kotka 685 0 30 min 32 km

Oulu 655 11 28 min 29 km

Juva 625 15 54 min 54 km

Kokkola 568 0 30 min 33 km

Lappeenranta 534 20 27 min 30 km

Kajaani 467 13 53 min 61 km

Vaasa 455 0 28 min 29 km

Keminmaa 447 84 57 min 61 km

Nivala 352 7 48 min 53 km

Sodankylä 189 114 102 min 115 km

Kuusamo 123 46 60 min 68 km

Åland 41 4 26 min 14 km

TOTAL 17,346 464 34 min 36 km



Page 13 of 15Fränti et al. BMC Health Services Research          (2023) 23:415  

The web tool provides a visual interface in which the 
effects of the abovementioned factors and different polit-
ical decisions can be tested. The optimized models used 
in this study were restricted to a few selected parameter 
combinations but could be extended to consider more 
parameters such as lower and upper limits for the volume 
for the PCI units. One promising direction would be to 
optimize locations of other disease groups beyond the 
acute STEMI patients and finding disease combinations 
that would be most efficiently treated in the hospitals 
with similar service provision profiles.

The hospital network in Finland is predominantly pub-
licly financed and its facilities constructed in the decades 
succeeding WWII as in other Western countries, but in 
early 2000s the network was considered outdated. Several 
efforts at centralization of these functions led to mergers 
and closures of secondary care facilities after 2013 [16]. 
However, the population projections show that further 
actions are needed as the number of elderly people is 
rapidly increasing, internal migration to larger cities con-
tinues, and shortage of health care workforce is common 
in sparsely populated regions. Specialized secondary and 
highly specialized tertiary care constitute the largest sin-
gle cost component of the national health budget. Fur-
ther consolidation of the hospital network would yield 
considerable returns but may be life-threatening in cer-
tain clinical conditions as the extended distances in the 
sparsely populated Finnish rural areas present consider-
able challenges.

Finland is not alone in the health care services reform 
as thorough restructuring of Danish hospital network 
began in 2007. This reform changed the hospital network 
structure of 40 public hospitals in 82 locations (2007) 
to 21 hospitals in 68 locations (2016) according to [17]. 
The restructuring took place in a democratic process 
subject to central guidelines and requirements including 
the central planning of specialties [18]. The permission 
to perform highly specialized treatments, such as PCI, 
is governed centrally. This reform has been deemed suc-
cessful in terms of improved quality of care [19] due to 
stable costs and increased productivity [17].

Most of the studies on hospital network optimization 
have focused on geographic accessibility [20, 21]. These 
studies are prevalent also in the context of acute cardio-
vascular care [8] also in case of remote, sparsely popu-
lated regions [22, 23]. The Cardiac ARIA is a road time 
and distance based geographic model that determines 
what are the minimal services and resources required for 
the management of a cardiac event in any urban, rural, 
or remote population locations in Australia [22]. Some 
studies have focused on reorganizing their hospital net-
work based on simulations on health care centralization 
[24] and some studies have aimed to reorganize the entire 

service system based on location-allocation models [25]. 
Huotari et al. have studied the Finnish hospital network 
based on accessibility if the number of maternity hospi-
tals were reduced [26].

In Finland, municipalities with varying population base 
have been in principle responsible for organizing and 
financing health and social services for their residents 
[16]. Various attempts at health care and social welfare 
reform have been attempted in vain during the last two 
decades, but now a complete overhaul has been initi-
ated and the new structures for organization and financ-
ing enters into force on Jan  1st, 2023. Currently no major 
plans have been initiated to further consolidate the hos-
pital network, but as some of the new wellbeing services 
counties will most probably have difficulties in providing 
services for their residents, financial realities may neces-
sitate these changes.

Strengths and limitations
All the components of optimization have been carefully 
chosen based on the long-term experience of the authors 
in their respective research areas. Every single com-
ponent from the clustering, travel time estimation and 
designing the cost function are well thought. The Web 
tool is also well designed, carefully programmed and 
reasonably flexible to allow testing new combinations if 
wanted. We have not seen anything similar developed 
elsewhere.

One limitation of the system is that the optimiza-
tion algorithm was mainly tuned for the patients at risk 
criterion, which turned out to be not feasible. Some 
pre-optimized results were also run for other criterion 
with selected parameter combinations, but entirely new 
results cannot be currently run for the other criterion 
(travel time and distance) without some re-programming.

The study was limited to all the hospitals having a 
PCI unit even if only the five university hospitals have 
24/7 capability. Pre-optimized results were run also for 
these but testing entirely new parameter combination is 
restricted to the same patients at risk criterion as above. 
Considering recent findings that differentiating STEMI 
from other types of myocardial infarction may be unre-
liable based on Finnish register data [27]. It is therefore 
possible that we were unable to identify all STEMIs – and 
that our study population may have also included some 
infarctions with less time-dependency (non-ST-elevation 
myocardial infarction I21.4 or unspecified myocardial 
infarction I21.9).

The travel time was estimated based on estimated road 
network distance without considering rush hours. More 
accurate result could be theoretically obtained by consid-
ering the time of the day in these calculations. However, 
we expect it would have just a minor fine-tuning effect 
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due to the strong averaging effect of the optimization. 
One might also ask if the optimized locations would be 
different during rush hours. However, this bares very 
little relevance to the facility optimization unless some-
one plans the operations so that the PCI units could be 
dynamically re-located in certain times (rush hours). 
Until then, having heart-attack during the rush hours is 
just counted as bad luck.

The data selection included patients in Åland islands 
which is not even part of the Finland health care system; 
the patients were actually dealt in Stockholm (closer than 
Turku). The algorithm allocated unnecessarily one hospi-
tal to Åland, and effectively, removed one hospital from 
the mainland. The good side is that this data revealed 
how such artefact may affect the result and can be taken 
into account in future studies if such special situations 
are wanted to avoid.

The patient data have also other limitations. First, the 
postal code precision is a bit rough but good enough in 
this scenario as the errors from the estimation are minor 
compared to the 90-min hospital accessibility thresh-
old. Second, the data represent the past demography in 
2015–2018 and optimization might be better off using 
predicted future population. Clever predictor might even 
include factors like age and socio-economic status; or 
whichever factors increase the likelihood for heart attack.

Conclusion
To answer the main question of the paper: yes, optimiz-
ing the locations of hospital by minimizing patients at 
risk can of course be done but we do not recommend 
doing so. It can theoretically reduce the patients at risk 
from 5 to 1% using the 90 min cutoff threshold. This itself 
is a good goal but it would also increase the average travel 
time of others. A somewhat better optimization function 
would be the average travel time itself as it would also 
reduce the number of patients at risk from 5 to 3% as a 
side result.

In real-life, we cannot simply re-locate hospitals into 
arbitrary locations. The web tool has demonstrated its 
power to provide important insight for the decision mak-
ers. It can reveal deficiencies of the current hospital net-
work and indicate potential improvements. One main 
observation is that most hospitals are already well located 
for the STEMI patients’ point of view and only few were 
re-located by the optimization.

It seems that future attention should be targeted for 
better overall organization of the health care services 
rather than crude re-planning of their locations. STEMI 
cases are integrated into the other operations of hos-
pitals and less likely to be operated as standalone units 
anywhere. The optimization of the entire healthcare sys-
tem remains as a future goal but also a very challenging 

one. Nothing prevents to formulate it as an optimization 
problem as well, but it would be a very complex to define 
[28].
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