
Algorithmic Data Analysis (ADA)
Spring 2025
Coding Assignment #1: Support vector machines and ensemble methods
Initial submission on 15.01.2025 at 23:59, then revisions weekly on Wednesdays

Please carefully read and follow the general instructions regarding coding assignments. Failing to meet the
requirements might lead to penalties. https://elearn.uef.fi/mod/page/view.php?id=248672

If you suspect that something is wrong with some task instructions, please contact the lecturer.
If you face persistent issues while working on a task, do ask for help, e.g. during a course meeting or by contacting

the lecturer via email.

Datasets

– iris from https://archive.ics.uci.edu/dataset/53/iris,
iris-SV-sepal.csv and iris-VV-length.csv contain variants of the dataset from the UCI data repos-
itory, as used in the lecture.

– credit from https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data,
creditDE.csv contains a variant of the dataset from the UCI data repository.

Tools

– classification_resources.py some code snippets, such as functions for implementing support vector
machines and evaluation measures.

! Imports of external libraries other than those that appear in the classification_resources.py file are
not allowed.

For this assignment, you are expected to submit three files:

• an edited version of the provided classification_resources.py file,
• a script file where you import the previous edited file as package and use the resources it contains to

define your own functions to solve the assignment tasks, and
• a report, explaining what you did and presenting the results of your experiments.

The code provided in classification_resources.py is written in such a way that you should be able to run
through some examples after uncommenting the last dozen lines, but the behavior is not quite correct. You can
find the spots where edits are needed by looking for dots (literally #…).

Only make changes to the provided classification_resources.py file as necessary to fill in the dots,
avoiding stylistic modifications, variables or library renaming, reordering of functions, and the like. This will
help distinguish the code that was provided from what you filled in (in the edited resource file), and from the
new code that you wrote (in the main script file).

The main script file should be such that running it replicates the experiments presented in the report, but it
should not be necessary for understanding the report.

Task 1. Fill in the dots in the provided code to get properly working implementations of the linear SVM
algorithmwith hard-margin and soft-margin variants. Apply them respectively to the irisSV and irisVV datasets.

That is, divide the irisSV dataset into training and test subsets in proportions 4/5–1/5 at random, i.e. assign
one fifth of instances, chosen at random, to the test dataset and the rest to the training dataset. Train a hard-
margin SVM on the training subset, and apply the resulting model to the test subset.

Write down the confusion matrix and compute the accuracy, recall and precision.
Give the equation of the separating hyperplane. Plot the separating hyperplane and highlight the support

vectors.
Do the same with soft-margin SVM on the irisVV dataset (setting c = 2, for example).

Task 2. Run an evaluation of the soft-margin SVM on the irisVV dataset with cross-validation.
That is, run 10 rounds of cross-validation with 5 folds on the irisVV dataset. Report the mean and variance

of the classifier’s accuracy across the successive rounds.

UEF//School of Computing 1/5 Last updated on 2025-01-17 09:35

https://elearn.uef.fi/mod/page/view.php?id=248672
https://archive.ics.uci.edu/dataset/53/iris
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data


Algorithmic Data Analysis (ADA)
Spring 2025
Coding Assignment #1: Support vector machines and ensemble methods
Initial submission on 15.01.2025 at 23:59, then revisions weekly on Wednesdays

Task 3. Implement the AdaBoost algorithm with instance weighting done via sampling. Apply it to the credit
dataset with linear SVM. Try using less aggressive weight updates, calculating the update factor as

αt ← β · ln((1− ϵt)/ϵt)/2

where 0 < β < 1. What happens if β = 0?

Task 4. Empirically compare the impact of boosting and bagging when combined to a linear SVM vs. to a SVM
with a RBF kernel on the credit dataset.

UEF//School of Computing 2/5 Last updated on 2025-01-17 09:35



Algorithmic Data Analysis (ADA)
Spring 2025
Coding Assignment #1: Support vector machines and ensemble methods
Initial submission on 15.01.2025 at 23:59, then revisions weekly on Wednesdays

Note on implementing a SVM using CVXOPT
Hard-margin SVM. Recall from the lecture that the dual problem for a hard-margin SVM, which we need to
solve to obtain the vector of Lagrange multipliers a, is as follows

maxLD =

j=n∑
j=1

aj −
1

2

j=n∑
j=1

i=n∑
i=1

ajaiyjyix
(j) · x(i)

s.t. 0 ≤ aj and
j=n∑
j=1

ajyj = 0 ∀j

where n is the number of training instances.
Letting H be a symmetric matrix such that Hi,j = yjyix

(j) · x(i) and denoting as 1 a vector size n full of
ones, we can write the optimization problem as

max
a

1Taj −
1

2
aTHa (4.1)

s.t. aj ≥ 0 ∀j (4.2)

yTa = 0 (4.3)

CVXOPT1 is a Python library for convex optimization. In particular, the qp function2 allows to solve quadratic
programs. Specifically

cvxopt.solvers.qp(P, q, G, h, A, b)

solves the quadratic program

min
x

1

2
xTPx+ qTx

s.t. Gx ≤ h

Ax = b

So, we need to bring our optimization problem into this form, which can be done by multiplying both the
objective (4.1) and the inequality (4.2) by minus one, turning the maximization into minimization in the former,
and reversing the direction of the inequality in the latter.
Thus we get

min
a

1

2
aTHa− 1Taj

s.t. − aj ≤ 0 ∀j
yTa = 0

which is in the form expected by the solver, identifying the variables as follows (qp parameters on the left, SVM
optimization problem variables on the right)

P = H a matrix of size n × n

q = −1 a vector of size n

G = −eye(n) a diagonal matrix of size n × n

h = 0 a vector of size n full of zeros

A = y a vector of size n

b = 0 a scalar

x = a a vector of size n, is the solution of the problem that we are looking for.

So, we can prepare the parameters for the solver and obtain the solution as follows

1https://cvxopt.org
2https://cvxopt.org/userguide/coneprog.html#quadratic-programming

UEF//School of Computing 3/5 Last updated on 2025-01-17 09:35

https://cvxopt.org
https://cvxopt.org/userguide/coneprog.html#quadratic-programming


Algorithmic Data Analysis (ADA)
Spring 2025
Coding Assignment #1: Support vector machines and ensemble methods
Initial submission on 15.01.2025 at 23:59, then revisions weekly on Wednesdays

P = cvxopt.matrix(numpy.outer(y, y) * numpy.dot(X, X.T))
q = cvxopt.matrix(-1 * numpy.ones(n_samples))
G = cvxopt.matrix(-1 * numpy.eye(n_samples))
h = cvxopt.matrix(numpy.zeros(n_samples))
A = cvxopt.matrix(numpy.array([y]), (1, n_samples))
b = cvxopt.matrix(0.0)

solution = cvxopt.solvers.qp(P, q, G, h, A, b)
return numpy.ravel(solution['x'])

Soft-margin SVM. Recall from the lecture that the dual problem for a soft-margin SVM, which we need to
solve to obtain the vector of Lagrange multipliers a, is as follows

maxLD =

j=n∑
j=1

aj −
1

2

j=n∑
j=1

i=n∑
i=1

ajaiyjyix
(j) · x(i)

s.t. 0 ≤ aj ≤ C and
j=n∑
j=1

ajyj = 0 ∀j

where n is the number of training instances.

So the optimization problem is very similar to the hard-margin case, adding the inequality constraint upper-
bounding a by parameter C .
It can rewritten as follows

min
a

1

2
aTHa− 1Taj

s.t. − aj ≤ 0 ∀j
aj ≤ C ∀j

yTa = 0

These inequality constraints can be added by concatenating the correspond rows to qp parametersthe solver
parameters G and h

G = [−eye(n), eye(n)]T a matrix of size 2n × n

h = [0,C]T a vector of size 2n

and the corresponding code, where the upper-bound parameter is denoted as c

P = cvxopt.matrix(numpy.outer(y, y) * numpy.dot(X, X.T))
q = cvxopt.matrix(-1 * numpy.ones(n_samples))
G = cvxopt.matrix(numpy.vstack((-1 * numpy.eye(n_samples),

numpy.eye(n_samples))))
h = cvxopt.matrix(numpy.hstack((numpy.zeros(n_samples),

numpy.ones(n_samples) * c)))
A = cvxopt.matrix(numpy.array([y]), (1, n_samples))
b = cvxopt.matrix(0.0)

solution = cvxopt.solvers.qp(P, q, G, h, A, b)
return numpy.ravel(solution['x'])

UEF//School of Computing 4/5 Last updated on 2025-01-17 09:35



Algorithmic Data Analysis (ADA)
Spring 2025
Coding Assignment #1: Support vector machines and ensemble methods
Initial submission on 15.01.2025 at 23:59, then revisions weekly on Wednesdays

Note on computing the bias of a soft-margin SVM

0 1

−1

0

1

2

x1

x
2

a)
0 1

−1

0

1

2

x1

x
2

b)
0 1

−1

0

1

2

x1

x
2

c)

Figure 1: Training instances and hyperplanes for a soft-margin SVM example

The graphs in Figure 1 show training instances from a two-dimensional dataset with two classes, with support
vectors marked as stars. Let S denote the set of support vectors (training points associated to a non-zero La-
grange multiplier), with S and S the support vectors from the blue and red classes, respectively.

Considering a hyperplane defined by weights w and bias b. Assume the red class is the positive class, and
the prediction is made such that points are predicted as positive if w · x + b > 0, negative otherwise. Let
θx = w · x+ b denote the (signed) distance from data point x to the hyperplane defined by weights w and bias
b.

Figure 1.a) shows the situation before adjusting the bias, when it is set to b = 0, by default. Values θx are
computed with this default value of the bias and used to adjust it to get the correct equation for the separating
hyperplane.

Figure 1.b) shows the situation where the bias is set as

b = −
(
max
x∈S

θx +min
x∈S

θx
)
/2

Figure 1.c) shows the situation where the bias is set as

b = −
(
max
x∈S

θx + min
x∈S

θx
)
/2

Note how in Figure 1.b) the hyperplane is placed in the middle between the support vectors furthest away,
i.e. having highest and lowest θ values respectively. However, the support vector furthest away on the left side
is actually a blue instance. It is not on the margin, it actually falls outside the margin, on the wrong side of
the decision boundary. It should not be used to determine the bias. Here, it results in the hyperplane being
incorrectly shifted to the left.

In Figure 1.c) instead the red support vector furthest on the left side and the blue support vector furthest on
the right side, i.e. furthest on their respective correct sides, are considered, allowing to correctly set the bias.

UEF//School of Computing 5/5 Last updated on 2025-01-17 09:35


