Algorithmic Data Analysis

Esther Galbrun

Spring 2024

Consider a matrix A and its rank-k truncated singular value decomposition (SVD) $U\Sigma V^{T}$

A has size $n \times m$ Σ has size $k \times k$

i) What is the size of U? ii) What is the size of V?

Consider the three collections of points below

- i) Which one has the largest median?
- ii) Which one has the largest mean?
- iii) Which one has the largest variance?

Consider the three collections of points below

one is sampled from a uniform distribution on [3,9], i.e. $\mathcal{U}(3,9)$ one from a Gaussian distribution

with mean $\mu = 0$ and variance $\sigma^2 = 1$, i.e. $\mathcal{N}(0,1)$ one from a Gaussian distribution

with mean $\mu = 5$ and variance $\sigma^2 = 9$, i.e. $\mathcal{N}(5,9)$

Which one is which?

Q0a.4: Bells and bricks

```
What is P(x \le 5)?

i) Assuming P \sim U(3,9)

ii) Assuming P \sim \mathcal{N}(0,1)

iii) Assuming P \sim \mathcal{N}(5,9)
```


Consider the following sentence:

Kaikki ihmiset syntyvät vapaina ja tasavertaisina arvoltaan ja oikeuksiltaan. Heille on annettu järki ja omatunto, ja heidän on toimittava toisiaan kohtaan veljeyden hengessä.

Fill in the contingency table

	а	ā	
y Ţ			

a word contains 'a'

 $\bar{a}\,$ word does not contain 'a'

y word contains 'y'

 \bar{y} word does not contain 'y'

Q0a.6: Co-occurring letters

	а	ā	
У īv	0 14	2	2 21
у	14	9	23

- a : word contains 'a'
- \bar{a} : word does not contain 'a'
- y : word contains 'y'
- $ar{y}$: word does not contain 'y'

- i) What is $P(a \land y)$ estimated from the counts?
- ii) What is $P(a \land y)$ estimated under the assumption that *a* and *y* are independent?

A bag contains 10 marbles, 2 of which are red. The event that we draw a red marble constitutes a success. We draw 3 times, and denote as $Y_i \in \{0, 1\}$ the outcome of the *i*th draw.

Is it more less likely that the third draw is a success, knowing that the first two draws failed?

$$P(Y_3 = 1 | Y_1 = 0, Y_2 = 0) \stackrel{?}{\leq} P(Y_3 = 1)$$

A bag contains 10 marbles, 2 of which are red. The event that we draw a red marble constitutes a success. We draw 3 times, and denote as *X* the number of successes.

Compute P(X = k) for $k \in \{0, 1, 2, 3\}$ both with and without replacement Given the multiset $X = \{1, 2, 4, 7, 9, 12, 14\}$.

What can you say about $x \in \mathbb{N}$ if you know ...

- i) $mean(X \cup \{x\}) = 8$? ii) $median(X \cup \{x\}) = 8$?
- iii) mean $(X \cup \{x\}) = 10$? iv) median $(X \cup \{x\}) = 10$?
- v) mean $(X \cup \{x\}) = 6.5$? vi) median $(X \cup \{x\}) = 6.5$?

Planes are armored, to prevent them from getting shot down by enemy fighters. But armor makes planes heavier, less manoeuverable and less fuel-efficient. The table below summarizes statistics of hits on American planes coming back from engagements over Europe during World War II

Section of the plane	hits/sq.ft.
Engine	1.11
Fuel system	1.73
Fuselage	1.55

To which section do you recommend to add armor?