Algorithmic Data Analysis

Esther Galbrun

Spring 2024

会

Q4.1: Data characteristics (i)

Associate characteristics to the datasets
univariate vs. multivariate regularly vs. irregularly sampled
sequential data vs. time-series real vs. symbolic values

ii)

Q4.2: Distances (i)

We consider discrete sequences of items.
The distance between two sequence elements is defined as $d\left(s, s^{\prime}\right)=0$ if and only if $s=s^{\prime}, 1$ otherwise.

Given two sequences S and S^{\prime}, we denote
DTW $\left(S, S^{\prime}\right)$ the Dynamic Time Warping (DTW) distance, $\operatorname{DTW}_{w}\left(S, S^{\prime}\right)$ the DTW distance with window constraint w,
i.e. matching elements no further than w positions apart $\mathrm{E}\left(S, S^{\prime}\right)$ the Edit distance with insertion and deletion operations such that $c_{\text {ins }}=1$ and $c_{\text {del }}=0.5$,
$\mathrm{H}\left(S, S^{\prime}\right)$ the Hamming distance,
$L\left(S, S^{\prime}\right)$ the length of the Longest contiguous common subsequence.

Q4.2: Distances (i)

S_{A} and S_{B} are two sequences of length 10 such that $L\left(S_{A}, S_{B}\right)=5$ and S_{C} is a third sequence obtained by deleting the first and the last elements of S_{A}.

What can you say about the following statements?
i) $H\left(S_{A}, S_{B}\right) \leq H\left(S_{C}, S_{B}\right)+2$
ii) $\operatorname{DTW}_{3}\left(S_{A}, S_{B}\right)<\operatorname{DTW}\left(S_{A}, S_{B}\right)$
iii) $\operatorname{DTW}\left(S_{A}, S_{B}\right) \leq H\left(S_{A}, S_{B}\right)$
iv) $E\left(S_{A}, S_{B}\right) \leq H\left(S_{A}, S_{B}\right)$
v) $E\left(S_{A}, S_{B}\right)<8$
vi) $E\left(S_{A}, S_{C}\right) \leq 1$
vii) E is a metric
viii) H is a metric
ix) L is a metric

Q4.3: Frequent sequences

We want to mine frequent sequences from a long sequence of itemsets, with minimum support threshold set to 4

The frequent sequences of length 3 , with their support, are

$$
\begin{array}{rlll}
\{a, b, c\}: 7 & \{a, b\}\{a\}: 4 & \{a, b\}\{c\}: 5 & \{a\}\{a, b\}: 6 \\
\{a\}\{a, c\}: 8 & \{a\}\{b, c\}: 6 & \{b\}\{a, c\}: 5 & \{b\}\{b, c\}: 4
\end{array}
$$

Provide the tightest possible upper bound on the support of each of the following sequences of length 4

$$
\begin{array}{r}
\operatorname{supp}(\{a, b\}\{a, c\}) \leq ? \\
\operatorname{supp}(\{a, b\}\{b, c\}) \leq ? \\
\operatorname{supp}(\{a\}\{a, b, c\}) \leq ? \\
\operatorname{supp}(\{a\}\{a, c\}\{a\}) \leq ?
\end{array}
$$

Q4.4: Markov models

Associate each model to its name and to the size of the corresponding transition and/or emission matrices

Markov Chain Hidden Markov Model first/second order

Q4.5: Markov unchained

At each time step, \mathcal{R} turns either left (L) or right (R) then rolls forward by one unit of distance. The path followed during one run, starting and ending at the gray the dot, facing up, is shown on the right.

From which of the Markov chains below did it possibly arise?

Q4.6: Markov unchained (continued)

The path can be represented as sequence $S=$ LLRLLRLLRLLR
From which of the Markov chains below did it most likely arise?
a)

$$
\begin{array}{rlrl}
\mathrm{LL} & \mathrm{LR} & \mathrm{RL} & \mathrm{RR} \\
\pi_{a}=\left(\begin{array}{ccc}
0.25 & 0.25 & 0.25 \\
0.25
\end{array}\right) & \pi_{c}=\left(\begin{array}{ccc}
\mathrm{LL} & \mathrm{LR} & \mathrm{RL} \\
0.35 & 0.15 & 0.15 \\
\hline & 0.35
\end{array}\right) \\
A_{a}=\left(\begin{array}{cccc}
0.90 & 0.10 & 0.00 & 0.00 \\
0.00 & 0.00 & 1.00 & 0.00 \\
1.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.90 & 0.10
\end{array}\right) & A_{c}=\left(\begin{array}{cccc}
0.25 & 0.75 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.40 & 0.60 \\
0.45 & 0.55 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.25 & 0.75
\end{array}\right)
\end{array}
$$

Q4.7: HMM problems

Match tasks, solutions and algorithms

Tasks
Evaluation
Explanation
Training

Solutions

$$
\begin{aligned}
& P_{\mathcal{M}}(O) \\
& \arg \max _{X \in \mathcal{X}} P_{\mathcal{M}}(X, O) \\
& \arg \max _{\mathcal{M} \in \mathcal{H}} P_{\mathcal{M}}(O)
\end{aligned}
$$

Algorithms
Backward algorithm
Baum-Welch algorithm
Forward algorithm
Viterbi algorithm

