
Algorithmic Data Analysis

Esther Galbrun
Spring 2024

Last updated on 2023-12-28 11:06

Part I

Classification variants

UEF//School of Computing ADA:Classification 1/42

A simple example

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

A dataset with two classes

UEF//School of Computing ADA:Classification 2/42

A simple example

data points: Iris flowers
attributes: physical properties,

length of the petal and length of the sepal in cm
class: species, versicolor vs. virginica

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

versicolor virginica

petal

sepal

UEF//School of Computing ADA:Classification 3/42

A simple example

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

versicolor virginica

petal

sepal

UEF//School of Computing ADA:Classification 3/42

A simple example

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

?

Class information, i.e. species, is absent for some points
Can we use the available information to predict it?

UEF//School of Computing ADA:Classification 3/42

A simple example

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

?

classification aim to assign a class label to each instance

UEF//School of Computing ADA:Classification 3/42

A simple example

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

?

binary there are two classes to choose from

UEF//School of Computing ADA:Classification 3/42

A simple example

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

?

supervised labelled training instances are available

UEF//School of Computing ADA:Classification 3/42

A simple example

supervised labelled training instances are available
binary there are two classes to choose from

classification aim to assign a class label to each instance

A typical supervised binary classification problem

UEF//School of Computing ADA:Classification 4/42

Some notations

The data set, denoted as D, contains n data points and m
attributes, i.e. it is a n×m matrix

A data point is a m-dimensional vector x = ⟨x1, x2, . . . , xm⟩
We denote x(j) the jth data point of D, i.e. the jth row
Data points are sometimes called instances or examples

Class labels are arranged into a n-dimensional vector
y = ⟨y1, y2, . . . , yn⟩ ∈ Ln, where l = |L| is the number of classes
That is, yj is the class label associated with data point x(j)
In binary classification, class labels take value −1 or +1
(sometimes 0 or 1 instead), i.e. L = {−1,+1} (respectively
L = {0, 1}) and the two classes might be referred to as
negative and positive, respectively

UEF//School of Computing ADA:Classification 5/42

Different methods

A typical supervised binary classification problem
Various classification methods are available to tackle it

UEF//School of Computing ADA:Classification 6/42

Different methods

Look at the most similar data points
→ k nearest neighbors (k-NN)

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

majority class
among k nearest neighbors

UEF//School of Computing ADA:Classification 7/42

Different methods

Apply a sequence of tests on attributes’ values
→ classification tree

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60

UEF//School of Computing ADA:Classification 8/42

Different methods

Look at class probabilities conditioned on attributes’ values
→ Naive bayes

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h P(c | sl, sp) ∝ P(c) ·P(sl | c) ·P(sp | c)

P(• | sl, sp) > P(• | sl, sp)
P(• | sl, sp) ≤ P(• | sl, sp)

UEF//School of Computing ADA:Classification 9/42

Different methods

Look at the sign of a linear combination of the attributes
→ perceptron

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

0.671 · sl− 1.365 ·pl+ 2.39 < 0
0.671 · sl− 1.365 ·pl+ 2.39 ≥ 0

UEF//School of Computing ADA:Classification 10/42

Different methods

Look at the sign of a linear combination of the attributes
→ support vector machine (SVM)

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

sl − 4 · pl + 13.3 < 0
sl − 4 · pl + 13.3 ≥ 0

UEF//School of Computing ADA:Classification 11/42

Different methods

A typical supervised binary classification problem
Various classification methods are available to tackle it

k-NN decision tree naive Bayes perceptron SVM

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

UEF//School of Computing ADA:Classification 12/42

A simple example

A typical supervised binary classification problem
Various classification methods are available to tackle it

Problem variants

• What if there are more than two classes?
→ Multi-class learning

• What if the two classes are not equally represented?
→ Rare-class learning

Methods

• How about combining multiple classifiers?
→ Ensemble methods

UEF//School of Computing ADA:Classification 13/42

Multi-class learning

More irises

How about telling apart three species of irises?

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

UEF//School of Computing ADA:Classification 14/42

No adaptation needed

Some methods can handle multiple classes
→ k nearest neighbors (k-NN)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length
se
pa
lw
id
th

UEF//School of Computing ADA:Classification 15/42

No adaptation needed

Some methods can handle multiple classes
→ classification tree

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length
se
pa
lw
id
th

UEF//School of Computing ADA:Classification 15/42

No adaptation needed

Some methods can handle multiple classes
→ Naive bayes

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length
se
pa
lw
id
th

UEF//School of Computing ADA:Classification 15/42

Adaptations needed

Other methods, like the Perceptron and SVMs are naturally
designed for the binary scenario

Method-specific adaptations to the multi-class scenario exist

Generic, method-agnostic, meta-frameworks are helpful
Two main strategies

one-against-rest and one-against-one

UEF//School of Computing ADA:Classification 16/42

One-against-rest

Create a new binary classification problem for each class:
examples from that class are constitute positive examples
the rest are negative examples

vs.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

UEF//School of Computing ADA:Classification 17/42

One-against-rest

Create a new binary classification problem for each class:
examples from that class are constitute positive examples
the rest are negative examples

vs.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

UEF//School of Computing ADA:Classification 17/42

One-against-rest

Create a new binary classification problem for each class:
examples from that class are constitute positive examples
the rest are negative examples

vs.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

UEF//School of Computing ADA:Classification 17/42

One-against-rest

Predictions from the different problems are then combined

Might require tie-breaking,
using weighted rather than crisp votes can help

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

a
b
c
d
e
f

UEF//School of Computing ADA:Classification 18/42

One-against-rest

Predictions from the different problems are then combined

Might require tie-breaking,
using weighted rather than crisp votes can help

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

a
b
c
d ?
e ?
f

UEF//School of Computing ADA:Classification 18/42

One-against-rest

Predictions from the different problems are then combined
Might require tie-breaking,
using weighted rather than crisp votes can help

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

a
b
c
d
e
f

UEF//School of Computing ADA:Classification 18/42

One-against-rest

A k class problem maps to k binary models

Might require tie-breaking,
using weighted rather than crisp votes can help

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

a
b
c
d ?
e ?
f

UEF//School of Computing ADA:Classification 18/42

One-against-one

Create a new binary classification problem for each pair of
classes, considering only examples from these two classes

vs.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length
se
pa
lw
id
th

UEF//School of Computing ADA:Classification 19/42

One-against-one

Create a new binary classification problem for each pair of
classes, considering only examples from these two classes

vs.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length
se
pa
lw
id
th

UEF//School of Computing ADA:Classification 19/42

One-against-one

Create a new binary classification problem for each pair of
classes, considering only examples from these two classes

vs.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

UEF//School of Computing ADA:Classification 19/42

One-against-one

Predictions from the different problems are then combined

Might require tie-breaking,
using weighted rather than crisp votes can help

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

/ / /

a
b
c
d
e
f

UEF//School of Computing ADA:Classification 20/42

One-against-one

Predictions from the different problems are then combined

Might require tie-breaking,
using weighted rather than crisp votes can help

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

/ / /

a
b
c
d
e
f

UEF//School of Computing ADA:Classification 20/42

One-against-one

Predictions from the different problems are then combined
Might require tie-breaking,
using weighted rather than crisp votes can help

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

/ / /

a
b
c
d
e
f

UEF//School of Computing ADA:Classification 20/42

One-against-one

A k class problem maps to
(k
2
)
= k(k− 1)/2 binary models

More problems than one-against-rest, but smaller

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

/ / /

a
b
c
d
e
f

UEF//School of Computing ADA:Classification 20/42

One-against-one

A k class problem maps to
(k
2
)
= k(k− 1)/2 binary models

More problems than one-against-rest, but smaller

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

sepal length

se
pa
lw
id
th

a

b
c

d
e

f

/ / /

a
b
c
d
e
f

UEF//School of Computing ADA:Classification 20/42

Rare-class learning

Fraudulent banknotes detection

−5 0 5

−8

−6

−4

−2

0

2

image variance

im
ag
e
en
tro
py Normal banknotes

are much more common than
fraudulent banknotes

(343 to 37)

Under such class ratio in the test data, trivially predicting
everything as normal yields 90% accuracy

False negatives have higher consequences than false positives

Need to emphasize the greater importance of the rare class

UEF//School of Computing ADA:Classification 21/42

Rare-class scenario

−5 0 5

−8

−6

−4

−2

0

2

image variance

im
ag
e
en
tro
py Normal banknotes

are much more common than
fraudulent banknotes

(343 to 37)

It is important to achieve high accuracy on the rare class,
at the cost of reduced accuracy on the normal class

Associate different weights to the classes and try to maximize
the weighted accuracy

UEF//School of Computing ADA:Classification 21/42

Rare-class scenario

−5 0 5

−8

−6

−4

−2

0

2

image variance

im
ag
e
en
tro
py Normal banknotes
are much more common than

fraudulent banknotes
(343 to 37)

Two main strategies
example reweighting and example resampling

UEF//School of Computing ADA:Classification 21/42

Rare-class scenario

Example reweighting

• weights are associated to training examples according to
their missclassification cost

• algorithms require adaptations to handle these weights

Example resampling

• examples from rare class might be oversampled,
or examples from normal class be undersampled,
or a combination of both

• algorithms do not require any adaptation

UEF//School of Computing ADA:Classification 22/42

Rare-class scenario

Example reweighting with k nearest neighbors

Identify the k nearest neighbors, assign weights according to
their class when deciding majority

−5 0 5

−8

−6

−4

−2

0

2

image variance

im
ag
e
en
tro
py

−5 0 5

−8

−6

−4

−2

0

2

image variance

im
ag
e
en
tro
py

UEF//School of Computing ADA:Classification 23/42

Rare-class scenario with k nearest neighbors

original undersampling oversampling reweighting

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

acc = 0.90 acc = 0.90 acc = 1.00 acc = 1.00
wacc = 0.64 wacc = 0.93 wacc = 1.00 wacc = 1.00

UEF//School of Computing ADA:Classification 24/42

Rare-class scenario

Example reweighting with naives Bayes

Assign weights to instances when computing the classes prior
probabilities

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

UEF//School of Computing ADA:Classification 25/42

Rare-class scenario with Naive Bayes

original undersampling oversampling reweighting

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

−5 0 5

−8

−6

−4

−2

0

2

acc = 0.85 acc = 0.85 acc = 0.85 acc = 0.80
wacc = 0.61 wacc = 0.75 wacc = 0.75 wacc = 0.86

UEF//School of Computing ADA:Classification 26/42

Rare-class scenario

In effect, resampling and reweighting are almost equivalent
resampling can be understood as sampling examples in
proportion to their weights then treating them equally

Resampling is easier to combine with other approaches

Undersampling is more efficient (smaller datasets)

Resampling has greater randomness
Reweighting is more reliable

UEF//School of Computing ADA:Classification 27/42

Ensemble methods

Ensemble methods

Different classifiers might make different predictions on the
same data point due to their specific characteristics or their
sensitivity to random artifact in the training data

The aim of ensemble methods is to increase prediction
accuracy by combining the results of multiple classifiers

UEF//School of Computing ADA:Classification 28/42

Ensemble methods

For i = 1, . . . , ℓ, train modelM(i) on dataset D(i)

Combine the predictions of the different models into a single
robust prediction

Data-centered ensembles use a single algorithm on different
derivative datasets

Model-centered ensembles use different algorithms or
different parameter settings of the same
algorithm on a single dataset

UEF//School of Computing ADA:Classification 28/42

Bucket of models

It is often difficult to know beforehand which classifier will
work well on a particular dataset

The training dataset is divided into two subsets DA and DB
DA is used to train different models
DB is used to evaluate their performance
the best model is selected and retrained on the full dataset

Cross-validation can be used for evaluation instead of hold-out

The models can correspond to different algorithms or to
different parameter settings of the same algorithm

UEF//School of Computing ADA:Classification 29/42

Bucket of models

The performance of the bucket of models is only as good as
the best model in the bucket for a particular dataset
Over multiple datasets the approach is able to select the
model that is best suited to each case

UEF//School of Computing ADA:Classification 30/42

Bagging

If the variance of a single prediction is σ, the variance of the
average of ℓ independent and identically distributed (i.i.d.)
such predictions is reduced to σ2/ℓ

Derivative datasets are created using bootstrap sampling
D(i) is a subset of data points sampled uniformly with
replacement from D to approximately the same size as D

Report the majority vote among the predictions of the models
as the ensemble’s prediction

Bagging (a.k.a. bootstrapped aggregating) helps reduce
variance through aggregation
Individual models should be designed so as to reduce bias as
much as possible, even at the expense of variance

UEF//School of Computing ADA:Classification 31/42

Bagging

If the variance of a single prediction is σ, the variance of the
average of ℓ independent and identically distributed (i.i.d.)
such predictions is reduced to σ2/ℓ

If the predictors have pairwise correlation of ρ between them,
the variance of the average prediction is ρ · σ2 + (1− ρ)σ2/ℓ

where ρ · σ2 is invariant to the number of components in the
ensemble and limits the performance gains

UEF//School of Computing ADA:Classification 31/42

Bagging

If the variance of a single prediction is σ, the variance of the
average of ℓ independent and identically distributed (i.i.d.)
such predictions is reduced to σ2/ℓ

If the predictors have pairwise correlation of ρ between them,
the variance of the average prediction is ρ · σ2 + (1− ρ)σ2/ℓ

where ρ · σ2 is invariant to the number of components in the
ensemble and limits the performance gains

! When using bagging with decision trees, split choices at the
top levels likely remain invariant to bootstrapped sampling
→ resulting decision trees are correlated
→ error reduction from aggregation is curtailed

UEF//School of Computing ADA:Classification 31/42

Random forests

A random forest is an ensemble of decision trees where
randomness is added explicitely at the split selection to
reduce correlation between the components

During tree construction, each split selection is preceded by
the random selection of q attributes, among which the split
criterion is then chosen, rather than from the entire set of m
attributes

UEF//School of Computing ADA:Classification 32/42

Random forests

During tree construction, each split selection is preceded by
the random selection of q attributes, among which the split
criterion is then chosen, rather than from the entire set of m
attributes

Parameter q regulates the amount of randomness

small q leads to more randomness, less correlations
across components and more efficient tree growth

large q leads to more accurate individual components
q = log2(m) + 1 has been show to achieve good trade-off

q = 1 (i.e. totally random trees) can achieve good
accuracy in aggregation but requires a large
number of components

UEF//School of Computing ADA:Classification 32/42

Random forests

During tree construction, each split selection is preceded by
the random selection of q attributes, among which the split
criterion is then chosen, rather than from the entire set of m
attributes
This approach based on random input selection is referred to
as Forest-RI

When m is small this approach does not work well
Instead, generate a subset of q linear combinations of
attributes with random coefficients in [−1, 1]
This approach based on random linear combinations is
referred to as Forest-RC

UEF//School of Computing ADA:Classification 32/42

Random forests

During tree construction, each split selection is preceded by
the random selection of q attributes, among which the split
criterion is then chosen, rather than from the entire set of m
attributes

Each tree is grown without pruning, on a bootstrapped sample

Restricted split selection increases bias of individual
components and leads to problems when the fraction of
informative attributes is small

Aggregation provides variance reduction

Random forests are quite resistant to noise and outliers

UEF//School of Computing ADA:Classification 32/42

Boosting

weak learner a classifier that is only slightly correlated with
the ground truth, i.e. one that performs only
slightly better than random guessing

strong learner a classifier that is arbitrarily well correlated
with the ground truth, i.e. one of arbitrarily high
accuracy

Hypothesis boosting aims to turn a weak learner into a strong
learner

UEF//School of Computing ADA:Classification 33/42

Boosting

Successive modelsM(t) are built by applying the same
algorithm to weighted variants D(t) of the dataset

Weights associated to every training instance are adjusted so
that the model will focus more on previously missclassified
instances

The prediction of the ensemble is a weighted combination of
all the models’ predictions

Many boosting algorithms have been proposed
AdaBoost (short for Adaptive Boosting) is most popular

UEF//School of Computing ADA:Classification 34/42

AdaBoost

t← 1; w(t)
i ← 1/n, i = 1, . . . ,n

repeat
Train modelM(t) on D weighted by w(t)

ϵt ← corresponding training error rate
αt ← ln((1− ϵt)/ϵt)/2

w(t+1)
i ←

w
(t)
i e

−αt if instance i is correctly classified
w(t)
i e

αt otherwise

t← t+ 1; w(t) ← w(t)/
∑

i w
(t)
i

until t > T or ϵt−1 = 0 or ϵt−1 ≥ 0.5

UEF//School of Computing ADA:Classification 35/42

AdaBoost

The algorithm starts with equal weights for all instances

t← 1; w(t)
i ← 1/n, i = 1, . . . ,n

repeat
Train modelM(t) on D weighted by w(t)

ϵt ← corresponding training error rate
αt ← ln((1− ϵt)/ϵt)/2

w(t+1)
i ←

w
(t)
i e

−αt if instance i is correctly classified
w(t)
i e

αt otherwise

t← t+ 1; w(t) ← w(t)/
∑

i w
(t)
i

until t > T or ϵt−1 = 0 or ϵt−1 ≥ 0.5
UEF//School of Computing ADA:Classification 35/42

AdaBoost

Weights can be incorporated directly to the algorithm or via
sampling

t← 1; w(t)
i ← 1/n, i = 1, . . . ,n

repeat
Train modelM(t) on D weighted by w(t)

ϵt ← corresponding training error rate
αt ← ln((1− ϵt)/ϵt)/2

w(t+1)
i ←

w
(t)
i e

−αt if instance i is correctly classified
w(t)
i e

αt otherwise

t← t+ 1; w(t) ← w(t)/
∑

i w
(t)
i

until t > T or ϵt−1 = 0 or ϵt−1 ≥ 0.5
UEF//School of Computing ADA:Classification 35/42

AdaBoost

ϵt is the fraction of training instances missclassified byM(t)

t← 1; w(t)
i ← 1/n, i = 1, . . . ,n

repeat
Train modelM(t) on D weighted by w(t)

ϵt ← corresponding training error rate
αt ← ln((1− ϵt)/ϵt)/2

w(t+1)
i ←

w
(t)
i e

−αt if instance i is correctly classified
w(t)
i e

αt otherwise

t← t+ 1; w(t) ← w(t)/
∑

i w
(t)
i

until t > T or ϵt−1 = 0 or ϵt−1 ≥ 0.5
UEF//School of Computing ADA:Classification 35/42

AdaBoost

The weights of missclassified instances are increased

t← 1; w(t)
i ← 1/n, i = 1, . . . ,n

repeat
Train modelM(t) on D weighted by w(t)

ϵt ← corresponding training error rate
αt ← ln((1− ϵt)/ϵt)/2

w(t+1)
i ←

w
(t)
i e

−αt if instance i is correctly classified
w(t)
i e

αt otherwise

t← t+ 1; w(t) ← w(t)/
∑

i w
(t)
i

until t > T or ϵt−1 = 0 or ϵt−1 ≥ 0.5
UEF//School of Computing ADA:Classification 35/42

AdaBoost

The algorithm stops if perfect accuracy is achieved (ϵt = 0)
or accuracy is worse than random guessing (ϵt = 0.5)
or maximum number of iterations T has been reached

t← 1; w(t)
i ← 1/n, i = 1, . . . ,n

repeat
Train modelM(t) on D weighted by w(t)

ϵt ← corresponding training error rate
αt ← ln((1− ϵt)/ϵt)/2

w(t+1)
i ←

w
(t)
i e

−αt if instance i is correctly classified
w(t)
i e

αt otherwise

t← t+ 1; w(t) ← w(t)/
∑

i w
(t)
i

until t > T or ϵt−1 = 0 or ϵt−1 ≥ 0.5
UEF//School of Computing ADA:Classification 35/42

AdaBoost

The label for given test instance x is predicted according to

sign
(∑

t
αt fMt(x)

)
i.e. aggregates the weighted predictions of all the models

In some versions of the algorithm, weights are reset to 1/n
whenever ϵt ≥ 0.5

In other versions, ϵt is allowed to increase beyond 0.5 but the
predictions of the corresponding models are effectively
inverted by applying negative weights

UEF//School of Computing ADA:Classification 36/42

Boosting

Boosting primarily focuses on reducing bias
It aims to combine many weak learners into a strong learner
The approach should be used with simple models having high
bias but low variance

When re-weighting is done via sampling, it can also help
reduce variance

The approach is vulnerable to noise
It assumes that error is caused by bias, in the presence of
noise it will overtrain on low-quality portions of the data

Typically superior to bagging when noise is not excessive

UEF//School of Computing ADA:Classification 37/42

Stacking

The training dataset is divided into two subsets DA and DB
DA is used to train ℓ models, the ensemble components
DB is used to train a second-level classifier that combines the
predictions of the ensemble components

UEF//School of Computing ADA:Classification 38/42

Stacking

DB is mapped to a ℓ-dimensional space where each dimension
represents the predictions of one ensemble component

original feature space transformed feature space

training data

DB, n×m matrix D′
B, n× ℓ matrix

training instance

(xi, yi) (⟨fM1(xi), . . . , fMℓ
(xi)⟩, yi)

A second-level classifier is trained on the transformed training
data D′

B, learning to predict class labels from the predictions
of the ensemble components

UEF//School of Computing ADA:Classification 39/42

Stacking

The ensemble components can be obtained in various ways,
e.g. using ℓ bootstrapped samples DA (bagging), ℓ rounds of
boosting on DA, a bucket of ℓ models trained on DA, etc.

Class probabilities can be used as features instead of the
predictions from the ensemble components
Original attributes are often retained in the transformed data

UEF//School of Computing ADA:Classification 40/42

Stacking

Stacking can be combined with m-fold cross-validation

A new representation is obtained for each instance of the
training data, where the features are obtained from the ℓ

first-level classifiers trained on the (m− 1) folds that do not
contain that instance

The second-level classifier is trained on this dataset
representing all training instances

The first-level classifiers are re-trained on the full training data

UEF//School of Computing ADA:Classification 41/42

Stacking

By learning from the errors of the ensemble components
stacking allows to reduce both bias and variance

The power of stacking comes from the flexible learning
approach of the combiner
Many other ensemble methods can be seen as special cases
using less flexible, data-independent, combination procedures
such as voting

UEF//School of Computing ADA:Classification 42/42

	Classification
	Multi-class learning
	Rare-class learning
	Ensemble methods

