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Part V

Mining Time-Series
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Data Preparation



Interpolation

Time-series might contain missing values
When data is collected from independent sensors, the values
might not be synchronized

Linear interpolation can be used to produce a time-series with
equally spaced, synchronized values, easier to manipulate

If xi and xj are values at timestamps ti and tj respectively,
the value for timestamp t, such that ti ≤ t ≤ tj, is estimated as

x = xi +
t− ti
tj − ti

· (xj − xi)
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Interpolation

Time-series might contain missing values
When data is collected from independent sensors, the values
might not be synchronized

Linear interpolation can be used to produce a time-series with
equally spaced, synchronized values, easier to manipulate

More complex methods such as polynomial interpolation or
spline interpolation can also be used
They require more data points for the estimation and often do
not provide significantly improved results
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Interpolation

Time-series might contain missing values
When data is collected from independent sensors, the values
might not be synchronized

Linear interpolation can be used to produce a time-series with
equally spaced, synchronized values, easier to manipulate

The result is a time-series SX = ⟨x1, x2, . . . , xn⟩, with values at
each of n equally spaced timestamps t1, . . . , tn

i.e. such that ti= t1 + (i− 1) δ
for i= 2, . . . ,n and some time step δ
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Example

time

0

10

20

0 5 10 15 20 25

⟨(0, 7), (2, 15), (8, 13), (14, 4), (15, 6), (17, 4), (25, 10)⟩

Linear interpolation, for equally spaced time points
⟨0, 5, 10, 15, 20, 25⟩

⟨(0, 7), (5, 14), (10, 10), (15, 6), (20, 6.25), (25, 10)⟩

UEF//School of Computing ADA:Mining Time-Series 3/58



Noise removal

Sensors used to collect data can be noise-prone
Noise removal aims to remove short-term fluctuations

The distinction between noise and interesting outliers can be
difficult to make, in general
Outliers result from fluctuations during data generation
Noise are caused by artifacts of the data collection process

Noise removal approaches include binning and smoothing
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Binning

Consider a time-series SX = ⟨x1, x2, . . . , xn⟩, with values at each
of n equally spaced timestamps t1, . . . , tn

Binning, a.k.a. piecewise aggregate approximation (PAA),
divides the time-series into time intervals of size k,
i.e. into intervals [t1, tk], [tk+1, t2k], . . . , [t(⌊n/k⌋−1)k+1, t⌊n/k⌋k]
Binned values are averages of values within each interval

yi =
1
k

k∑
r=1

x(i−1)k+r for i = 1, . . . , ⌊n/k⌋

Instead of average, it is possible to take the median, which is
more robust to the presence of outlier values

Binning is lossy, reduces the number of points by a factor of k
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Original time-series

time

170

200
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Binning, k = 3

time

170

200
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Binning, k = 5

time

170

200
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Data preparation

time
0

10

20

30

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Binning, window of width 4

⟨22, 11.5, 11, 6⟩
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Moving-average smoothing

Consider a time-series SX = ⟨x1, x2, . . . , xn⟩, with values at each
of n equally spaced timestamps t1, . . . , tn

Moving-average smoothing uses overlapping bins of size k,
i.e. intervals [t1, tk], [t2, tk+1], . . . , [tn−k+1, tn]
Smoothed values are averages of values within each interval

yi =
1
k

k−1∑
r=0

xi+r for i = 1, . . . ,n− k+ 1

In real-time applications, the smoothed value becomes
available after the last timestamp in the interval, creating a lag
Wider intervals lead to increased smoothing and lag
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Moving-average smoothing

Consider a time-series SX = ⟨x1, x2, . . . , xn⟩, with values at each
of n equally spaced timestamps t1, . . . , tn

Moving-average smoothing uses overlapping bins of size k,
i.e. intervals [t1, tk], [t2, tk+1], . . . , [tn−k+1, tn]
Smoothed values are averages of values within each interval

yi =
1
k

k−1∑
r=0

xi+r for i = 1, . . . ,n− k+ 1

Because of the lag, the smoothed time-series might contain
uptrends where the original data contains downtrends and
vice-versa, causing misleading interpretations of recent trends
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Moving-average smoothing, k = 3

time

170

200
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Moving-average smoothing, k = 5

time

170

200

UEF//School of Computing ADA:Mining Time-Series 9/58



Example

IBM stock prices from Sept. 2013 to Sept. 2014
Moving-average smoothing, k = 9

time

170

200
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Data preparation

time
0

10

20

30

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Moving average smoothing, window of width 4

⟨22, 21.25, 16, 12.5, 11.5, 11.25, 10.5, 11.75, 11, 9.75, 9.5, 6.75, 6⟩
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Exponential smoothing

Consider a time-series SX = ⟨x1, x2, . . . , xn⟩, with values at each
of n equally spaced timestamps t1, . . . , tn

In exponential smoothing, the current smoothed value is
defined as a linear combination of the current original value
and the previous smoothed value

For smoothing parameter α ∈ [0, 1] and letting y1 = x1

yi = α · xi + (1− α) · yi−1 for i = 2, . . . ,n
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Exponential smoothing

Consider a time-series SX = ⟨x1, x2, . . . , xn⟩, with values at each
of n equally spaced timestamps t1, . . . , tn

For smoothing parameter α ∈ [0, 1] and letting y1 = x1
yi = α · xi + (1− α) · yi−1 for i = 2, . . . ,n

The smoothed values can be expressed as an exponentially
decayed sum of the original values, giving more importance to
recent values

The smoothing parameter α regulates the decay factor
Setting α = 1 means there is no smoothing, the resulting series
is identical to the original
Setting α = 0 results in smoothing the whole series to the
constant value of x1
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Exponential smoothing, α = 0.75

time

170

200
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Exponential smoothing, α = 0.25

time

170

200
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Data preparation

time
0

10

20

30

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Exponential smoothing, α = 0.6

⟨13.00, 23.80, 23.92, 21.57, 14.63, 11.85, 10.74, 13.90, 10.96,
8.58, 12.43, 12.77, 7.51, 6.60, 5.04, 8.02⟩
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Normalization

When multiple time-series containing values that are
measured on different scales are analysed simultaneously,
they might need to be normalized to allow meaningfully
comparing relative trends rather than absolute values

Given a time-series SX = ⟨x1, x2, . . . , xn⟩, taking values in a
bounded range [vmin, vmax], range-based normalization maps
the original time-series values to new values in the range [0, 1]

yi =
xi − vmin

vmax − vmin
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Normalization

When multiple time-series containing values that are
measured on different scales are analysed simultaneously,
they might need to be normalized to allow meaningfully
comparing relative trends rather than absolute values

Given a time-series SX = ⟨x1, x2, . . . , xn⟩, with mean µ and
standard deviation σ, standardization maps the original
time-series values to new values

yi =
xi − µ

σ

! No guaranteed specific range for the resulting values
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Example

IBM, Cisco and Apple stock prices from Sept. 2013 to Sept. 2014
Original time-series

time
0

100

200
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Example

IBM, Cisco and Apple stock prices from Sept. 2013 to Sept. 2014
Range-based normalized time-series

time
0

1
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Example

IBM, Cisco and Apple stock prices from Sept. 2013 to Sept. 2014
Standardized time-series

time

−1

0

1
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Data preparation

time
0

10

20

30

0

1

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Range-based normalization

⟨0.33, 1.00, 0.74, 0.59, 0.22, 0.22, 0.22, 0.44, 0.19,
0.11, 0.41, 0.33, 0.00, 0.07, 0.00, 0.22⟩
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Data preparation

time
0

10

20

30

0
1

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Standardization

⟨0.05, 2.59, 1.60, 1.04,−0.37,−0.37,−0.37, 0.48,−0.51,
−0.79, 0.34, 0.05,−1.22,−0.93,−1.22,−0.37⟩
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Discretization

Time-series can be converted into discrete sequences by
discretizing the behavioral attributes

Transform time-point values into interval-based
representation

value abstraction (absolute)
dividing the range of a variable into bins
e.g. {low,medium,high}

trend abstraction (relative)
looking at the local behavior of the variable
e.g. {decreasing,stable,increasing}
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Discretization

Symbolic aggregate approximation (SAX)

1. Average values over successive equally spaced windows,
i.e. compute piecewise aggregate approximation (PAA)

2. Convert the resulting continuous values to a small number
of discrete values

Select breakpoints such that symbols have approximately
equal occurrence frequencies
Use Gaussian distribution assumption for long time-series or
in the streaming setting

SAX is a lower-bounding approach, i.e. it allows distance
measures to be defined on the symbolic representation that
lower-bounds the distance in the original representation
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Original time-series

time

170

200
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Binning, k = 5

time

170

200
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Discretizing

time

170

200

cddcbbaaabbbaaabcccbaabbbcbcdddddddcbcbbbccdddccdd

a

b

c

d
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Transforms



Transforms

Transforms map the data into a different representation space

More convenient representation for evaluating similarity

The dimensionality of the data can be reduced while retaining
most of the information by selecting a subset of the
dimensions of the new representation space
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Transforms: an analogy

If we want to analyse different vegetable soups

A drop by drop comparison of soups is difficult

Instead we convert the soup to its recipe, i.e. proportions of
the different vegetables it contains

Recipes are easier to analyse, modify and compare

• Simplify a soup by keeping only the main vegetables
• Compare soups by comparing the proportions of different
vegetables in their respective recipes
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Transforms: an analogy

How to find the recipe?
Imagine we have filters corresponding to different vegetables
i.e. we have a potato filter, a carrot filter, an onion filter, etc.

Pour a soup into a filter to extract the associated vegetable

How to reconstruct the soup?
Simply blend the ingredients back together
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Transforms: an analogy

• Filters must be complete, there must be a dedicated filter
for every ingredient possibly involved

• Filters must be independent, modifying the amount of one
vegetable should affect the result of the associated filter
but not the results of other filters

• Separating and combining the ingredients in any order
must always give the same result
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Discrete wavelet transform (DWT)

Annual copper prices during the early 19th century

time
0

2

4
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Discrete wavelet transform (DWT)

Adjacent values in the time-series are often very similar,
storing all the values is wasteful, redundant

time
0

2

4
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Discrete wavelet transform (DWT)

The average value alone provides a very crude representation
of the time-series, without any information about variations

time
0

2

4

1.26

1.26
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Discrete wavelet transform (DWT)

Adding the difference between first and second half allows to
reconstruct the average values during both halves

time
0

2

4

1.13
1.39

1.26

−0.13
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Discrete wavelet transform (DWT)

Adding the difference between first and second quarter as well
as between third and fourth quarter…

time
0

2

4

0.82

1.44

0.33

2.45

1.26

−1.06−0.31
−0.13
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Discrete wavelet transform (DWT)

This process can be applied recursively…

time
0

2

4

1.26

−1.06
0.55

−0.31
−0.13

−0.17−0.10 −0.02
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Discrete wavelet transform (DWT)

This process can be applied recursively…

time
0

2

4

1.26

−1.06

−1.23
0.55

−0.31

0.54

−0.13

−0.35−0.24
−0.17

−0.21
−0.10

0.09−0.06 −0.04
−0.02
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Discrete wavelet transform (DWT)

This process can be applied recursively…

time
0

2

4

1.26

−1.06

−1.23
0.55

−0.96

−0.31

0.54
−0.57

−0.13

−0.50
−0.35

−0.470.37
−0.24

−0.17
−0.21

0.27

−0.10

−0.13
0.09

0.12 0.110.10
−0.06

0.08 −0.07
−0.04

0.05−0.05

−0.02

−0.03 0.01
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Discrete wavelet transform (DWT)

This process can be applied recursively…

time
0

2

4

1.26

−1.06

−1.23
0.55

−0.96

−0.31

0.54

0.
91

−0.57

−0.13

−0.50
−0.35

−0.47

0.
60

−
0.
56

0.37
−0.24

−0.17

0.
47

−
0.
45

−
0.
45

−
0.
44

−0.21
0.27

0.
34 0.
33

0.
32

0.
29

−
0.
29

0.
28

−0.10

0.
21

−
0.
19

−0.13

−
0.
19

0.
18

0.
18

0.09

−
0.
18

−
0.
17

0.12 0.11

0.
14

0.10
−0.06

0.08 −0.07

−
0.
07

−0.04

0.
07

0.05−0.05

−0.02

0.
04

−0.03

−
0.
04

0.
04

−
0.
02

−
0.
02

0.01

0.
02

−
0.
02

−
0.
01

0.
00
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Discrete wavelet transform (DWT)

For simplicity, assume the length n of the series is a power of 2

The decomposition defines 2k−1 weights of order k, for
k = 1, . . . , log2(n)

Let Ψ(k, i) be the ith weight of order k, corresponding to the
segment of the time-series between positions

(i− 1) · n
2k−1

+ 1 and i · n
2k−1

Let Φ(k, i) be the average value of this segment

Ψ(k, i) = Φ(k+ 1, 2i− 1)− Φ(k+ 1, 2i)
2

Φ(1, 1) is the global average
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Discrete wavelet transform (DWT)

This process decomposes the time-series into a collection of
wavelets with different widths, offsets and weights

Φ(1, 1)
Ψ(1, 1)
Ψ(2, 2)
Ψ(2, 1)
Ψ(3, 4)
Ψ(3, 3)
Ψ(3, 2)
Ψ(3, 1)

Ψ(4, 2)
Ψ(4, 1)

Ψ(5, 6)

Ψ(6, 8)
Ψ(6, 7)

Ψ(6, 1)
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Discrete wavelet transform (DWT)

This process decomposes the time-series into a collection of
wavelets with different widths, offsets and weights

time
0

2

4

0.72

0.
60

−0.24

−
0.
19

0.08−0.05

0.
04

0.
00

0.72
−0.24
0.08

−0.05
0.60
0.04
0.00

−0.19
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Discrete wavelet transform (DWT)

The original time-series can be reconstructed by summing all
the weighted wavelets

time
0

2

4

0.72

0.
60

−0.24

−
0.
19

0.08−0.05

0.
04

0.
00

0.72
−0.24
0.08

−0.05
0.60
0.04
0.00

−0.19
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Discrete wavelet transform (DWT)

Each row of matrix W contains a basis vector, i.e. a wavelet
Vector a contains the weights for the different wavelets

time
0

2

4

0.72

0.
60

−0.24

−
0.
19

0.08−0.05

0.
04

0.
00

0.72
−0.24
0.08

−0.05
0.60
0.04
0.00

−0.19
a = W =

−0.19
0.00
0.04
0.60

−0.05
0.08

−0.24
0.72





1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1


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Discrete wavelet transform (DWT)

The original time-series can be reconstructed as aT ·W

a = W =

−0.19
0.00
0.04
0.60

−0.05
0.08

−0.24
0.72





1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1


aT ·W =[
0.24 0.62 0.53 0.53 1.08 1.00 1.48 0.28

]
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Discrete wavelet transform (DWT)

The original time-series can be reconstructed as aT ·W

S = aT ·W =
n∑
i=1

aiw(i) =
n∑
i=1

ai
∥∥∥w(i)

∥∥∥ w(i)∥∥w(i)
∥∥

ai
∥∥w(i)∥∥ are the normalized weights

w(i)/
∥∥w(i)∥∥ are the normalized basis vectors
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Discrete wavelet transform (DWT)

The original time-series can be reconstructed as aT ·W

S = aT ·W =
n∑
i=1

aiw(i) =
n∑
i=1

ai
∥∥∥w(i)

∥∥∥ w(i)∥∥w(i)
∥∥

Dropping some weights reduces the dimensionality of the
representation
The sum of squared normalized weights is the energy retained
in the approximated time-series
Retaining the weights with largest normalized values allows to
minimize the reconstruction error

UEF//School of Computing ADA:Mining Time-Series 26/58



Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error

time
0

2

4

E = 0.9952
1.26

−1.06

−1.23
0.55

−0.96

−0.31

0.54

0.
91

−0.57

−0.13

−0.50
−0.35

−0.47

0.
60

−
0.
56

0.37
−0.24

−0.17

0.
47

−
0.
45

−
0.
45

−
0.
44

−0.21
0.27

0.
34 0.
33

0.
32

0.
29

−
0.
29

0.
28

−0.10

0.
21
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error

time
0

2

4

E = 0.9695
1.26

−1.06

−1.23
0.55

−0.96

−0.31

0.54

0.
91

−0.57

−0.13

−0.50
−0.35

−0.47

0.
60

−
0.
56

0.37
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error

time
0

2

4

E = 0.9429
1.26

−1.06

−1.23
0.55

−0.96

−0.31

0.54

0.
91

−0.57

−0.13
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error

time
0

2

4

E = 0.8898
1.26

−1.06

−1.23
0.55

−0.96
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error

time
0

2

4

E = 0.8689
1.26

−1.06

−1.23
0.55
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error

time
0

2

4

E = 0.8416
1.26

−1.06

−1.23
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error
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Example

time
0

10

20

30

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Discrete wavelet transform (DWT), keeping 1/4 of dimensions

⟨13.0, 31.0, 22.0, 22.0, 11.5, 11.5, 11.5, 11.5,
8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5⟩

energy retained = 95.55%

UEF//School of Computing ADA:Mining Time-Series 28/58



Example

a = W = E =

−9.0
2.0
0.0

−3.0
1.0
1.0

−1.0
−3.0
0.0

−1.5
−3.0
−1.0
5.25
2.5

4.125
12.625





1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





162.0
8.0
0.0
18.0
2.0
2.0
2.0
18.0
0.0
9.0
36.0
4.0

220.5
50.0

272.25
2550.25


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Example

time
0

10

20

30

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Discrete wavelet transform (DWT), keeping 1/4 of dimensions

⟨13.0, 31.0, 22.0, 22.0, 11.5, 11.5, 11.5, 11.5,
8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5⟩

energy retained = 95.55%
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Discrete Fourier transform (DFT)

Given a time-series SX = ⟨x0, x1, . . . , xn−1⟩

The discrete Fourier transform decomposes the time-series
into a collection of sinusoids with associated coefficients
Each Fourier coefficient fk is a complex value
The original time-series can be reconstructed by summing all
the weighted sinusoids

fk =
n−1∑
r=0

xr ·
(
cos(2πrk/n)− i sin(2πrk/n)

)
for k = 0, . . . ,n− 1

xr =
1
n

n−1∑
k=0

fk ·
(
cos(2πrk/n)− i sin(2πrk/n)

)
for r = 0, . . . ,n− 1

i denotes the imaginary number, i2 = −1
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Discrete Fourier transform (DFT)

Each Fourier coefficient is a complex value fk = ak + ibk
The Fourier coefficients are such that an−k = ak and
bn−k = −bk for k > 0

Therefore, the imaginary parts in the reconstructed series
cancel out
Furthermore, the n/2 first complex coefficients need to be
retained to reconstruct the original series exactly

Dropping the coefficients with low energy a2k + b2k provides a
compact approximate representation
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Discrete Fourier transform (DFT)

The discrete Fourier transform satisfies the additivity property,
i.e. the Fourier coefficients of the sum of two series are the
sum of their coefficients

It also satisfies Parseval’s theorem, i.e.
n−1∑
r=0

x2r =
1
n

k−1∑
k=0

a2k + b2k

This allows to compute the scaled Euclidean distance between
two series by computing the Euclidean distance between their
coefficients
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018

time

0

−20

20
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018

time
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20

365 d

E = 0.6512
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018
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Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century
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Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century
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Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century
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Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century

time
0

2

4

39 y

49 y

E = 0.6740

UEF//School of Computing ADA:Mining Time-Series 33/58



Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century
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Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century
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Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century

time
0

2

4

39 y

49 y

65 y

197 y

E = 0.8914 (1/4 of dims)

UEF//School of Computing ADA:Mining Time-Series 33/58



Discrete Fourier transform (DFT)

Annual copper prices during the early 19th century

time
0

2

4

39 y

49 y

65 y

197 y

E = 0.9725 (1/2 of dims)
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Models for time-series



Models for univariate time-series

Given a univariate time-series SX = ⟨x1, x2, . . . , xn⟩, with xi ∈ R,
the aim is to predict xn+1
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Stationarity

A stationary process is a stochastic process whose
unconditional joint probability distribution does not change
when shifted in time

In a strictly stationary time-series, the probabilistic
distribution of the values in any time interval [a,b] is identical
to that in the shifted interval [a+ τ,b+ τ ] for any value of the
time shift τ

Parameters, e.g. mean and variance, do not change over time
Estimated parameters are good predictors of future behavior

White noise is the simplest example of a stationary process
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Stationarity

A stationary process is a stochastic process whose
unconditional joint probability distribution does not change
when shifted in time

In a strictly stationary time-series, the probabilistic
distribution of the values in any time interval [a,b] is identical
to that in the shifted interval [a+ τ,b+ τ ] for any value of the
time shift τ

In a weakly stationary time-series, the mean and
autocovariance are constant in time
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Differencing

In some cases, the original time-series is not stationary
but the difference between successive values is

Converting an original sequence into a sequence of differences
is called differencing, e.g. first-order differencing of SX

SX′ = ⟨x′1, x′2, . . . , x′n−1⟩, where x′i = xi − xi−1

Higher order differencing can also be used
e.g. second-order differencing of SX

SX′′ = ⟨x′′1 , x′′2 , . . . , x′′n−2⟩, where x′′i = x′i − x′i−1
= xi − 2xi−1 + xi−2

For geometrically increasing series, the logarithm function is
applied before differencing
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Original time-series

time

170

200
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
First-order differenced time-series

time
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Example

IBM stock prices from Sept. 2013 to Sept. 2014
Second-order differenced time-series

time
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
Original time-series

time

320

340
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
First-order differenced time-series
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Example

Nail prices from 1800 to 1996
Original time-series

time
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Example

Nail prices from 1800 to 1996
First-order differenced time-series

time
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−50

50
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Example

Nail prices from 1800 to 1996
Logarithmic time-series

time
1

2
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Example

Nail prices from 1800 to 1996
First-order differenced logarithmic time-series

time

0

−0.5

0.5
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Autocovariance

The covariance between two real-valued random variables X
and Y is

cov(X, Y) = E[(X− E[X])(Y− E[Y])]

The autocovariance at lag τ of time-series X = x1, x2, . . . , xn is
the covariance between the time-series and itself shifted by τ

The autocorrelation at lag τ of time-series X is the normalized
covariance covt(Xt, Xt+τ )/ vart(Xt) computed as

Rτ (X) =
(Xt − µX) · (Xt+τ − µX)

n · (Xt − µX)2
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014

time

170

200
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014
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lag = 0
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014
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lag = 0 lag = 5
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014

time
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0

1

lag = 0 lag = 5 lag = 10
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014

time

170

200

0

1

lag = 0 lag = 5 lag = 10 lag = 50
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014

time

170
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lag = 0 lag = 5 lag = 10 lag = 50 lag = 100
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014

time
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UEF//School of Computing ADA:Mining Time-Series 42/58



Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014

time

170

200

0

1

lag = 0 lag = 5 lag = 10 lag = 50 lag = 100 lag = 150
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Auto-regressive models

Auto-regressive model AR(p)
The value xi at timestamp ti is defined as a linear combination
of the values in the immediately preceding window of length p

xi =
p∑
k=1

ak · xi−k + c+ ϵi

The deviation from predicted value, ϵi, can be viewed as white
noise or a shock

The regression coefficients a1, . . . , ap and c need to be learnt
from training data
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Auto-regressive models

Auto-regressive model AR(p) xi =
p∑
k=1

ak · xi−k + c+ ϵi

The regression coefficients a1, . . . , ap and c need to be learnt
from training data

A linear equation between the coefficients is created for the
value at each timestamp in the past history of the time-series
and its associated preceding window

When the number of timestamps available is larger than p, this
results in an over-determined system of equations
The coefficients minimizing the square error of this system of
equations are approximated with least-squares regression
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Auto-regressive models

Moving-average model MA(q)
The value xi at timestamp ti is defined as a linear combination
of the shocks in the immediately preceding window of length q

xi =
q∑
k=1

bk · ϵi−k + c+ ϵi

Parameter c is the mean of the time-series

The regression coefficients b1, . . . ,bq need to be learnt from
training data
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Auto-regressive models

Moving-average model MA(q) xi =
q∑
k=1

bk · ϵi−k + c+ ϵi

The regression coefficients b1, . . . ,bq need to be learnt from
training data

The auto-regressive model relates the current value to the
history of previous values
The moving-average model relates the current value to the
history of deviations from previous forecasted values

This circularity means the system of equations is non-linear
The solution is found using iterative non-linear methods
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Auto-regressive models

Auto-regressive model AR(p) xi =
p∑
k=1

ak · xi−k + c+ ϵi

Moving-average model MA(q) xi =
q∑
k=1

bk · ϵi−k + c+ ϵi

Auto-regressive moving-average model ARMA(p,q)
Combine p auto-regressive terms and q moving-average terms
to capture the impact of both autocorrelation and shocks

xi =
p∑
k=1

ak · xi−k +
q∑
k=1

bk · ϵi−k + c+ ϵi
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Auto-regressive models

Auto-regressive model AR(p) xi =
p∑
k=1

ak · xi−k + c+ ϵi

Moving-average model MA(q) xi =
q∑
k=1

bk · ϵi−k + c+ ϵi

ARMA(p,q) xi =
p∑
k=1

ak · xi−k +
q∑
k=1

bk · ϵi−k + c+ ϵi

Auto-regressive integrated moving-average model ARIMA(p,d,q)
ARMA model applied to the d-order differenced time-series

x′i =
p∑
k=1

ak · x′i−k +
q∑
k=1

bk · ϵi−k + c+ ϵi

UEF//School of Computing ADA:Mining Time-Series 45/58



Auto-regressive models

Auto-regressive model AR(p) xi =
p∑
k=1

ak · xi−k + c+ ϵi

Moving-average model MA(q) xi =
q∑
k=1

bk · ϵi−k + c+ ϵi

ARMA(p,q) xi =
p∑
k=1

ak · xi−k +
q∑
k=1

bk · ϵi−k + c+ ϵi

ARIMA(p,d,q) x′i =
p∑
k=1

ak · x′i−k +
q∑
k=1

bk · ϵi−k + c+ ϵi
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ACF and PACF

The autocorrelation at lag τ of time-series X is the normalized
covariance

ACFX(τ) = Rτ (X) = t(Xt, Xt+τ )

vart(Xt)

The partial autocorrelation at lag τ of time-series X, PACFX(τ),
is the autocorrelation at lag τ that is not accounted for by
shorter lags
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Box–Jenkins modelling procedure

Model identification

1. Use differencing to make the time-series stationary
2. Determine the most suitable model and find appropriate
values for q and p

• by looking at ACF and PACF respectively, or
• by using Akaike’s Information Criterion (AIC)

Model estimation
Estimate the parameters of the model from historical data

Model validation
Check that the model is adequate for the time-series
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Coefficient of determination

The effectiveness of the forecasting model can be quantified
by measuring the noise in the estimated coefficients

The coefficient of determination measures the ratio between
the white noise and the series variance

R2 = 1−
mean(ϵ2i )

var(x2i )

It should be as close to 1 as possible
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Models for multivariate time-series

In practice, time-series often consist of multiple variables

In addition to correlation across time, i.e. individual variables
being autocorrelated, there might be significant correlations
across the variables

One approach to build models for this scenario is to use
hidden variables

The multiple input time-series are transformed into a smaller
number of uncorrelated time-series, typically using principal
component analysis (PCA)

A model is built for each such time-series individually
The models are used to predict hidden values, which are then
mapped back into the original representation

UEF//School of Computing ADA:Mining Time-Series 49/58



Models for multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to predict x(n+1)
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Models for multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to predict x(n+1)

1. Build the m×m covariance matrix C, where Cij is the
covariance between variables i and j

Cij =
(
⟨x(1)i , x(2)i , . . . , x(n)i ⟩, ⟨x(1)j , x(2)j , . . . , x(n)j ⟩

)
C captures the correlations across variables, not across time
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Models for multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to predict x(n+1)

2. Compute the eigendecomposition of C
Keep the p eigenvectors with largest eigenvalues

C = QΛQT

where the m columns of Q contain the orthogonal eigenvectors
and the diagonal of Λ contains the corresponding eigenvalues

Let P be the m× p matrix obtained by selecting the p columns
of Q with largest eigenvalues, for some p≪ m
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Models for multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to predict x(n+1)

3. Compute the p-dimensional hidden time-series SH

SH = ⟨h(1),h(2), . . . ,h(n)⟩, with h(i) = x(i)P ∈ Rp

The p variables of SH are uncorrelated
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Models for multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to predict x(n+1)

4. Build a model for each dimension j of SH
Use them to predict the hidden values h(n+1)j

Build p separate univariate models using for instance the
Box–Jenkins modelling procedure

Predict h(n+1)j using the model built for hidden variable j and
corresponding hidden values h(n)j ,h(n−1)j , . . .
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Models for multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to predict x(n+1)

5. Transform h(n+1) back to the original m-dimensional
representation, the prediction x(n+1) for timestamp n+ 1

Return x(n+1) = h(n+1)PT as the predicted vector
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Models for multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to predict x(n+1)

1. Build the m×m covariance matrix C, where Cij is the
covariance between variables i and j

2. Compute the eigendecomposition of C
Keep the p eigenvectors with largest eigenvalues

3. Compute the p-dimensional hidden time-series SH
4. Build a model for each dimension j of SH
Use them to predict the hidden values h(n+1)j

5. Transform h(n+1) back to the original m-dimensional
representation, the prediction x(n+1) for timestamp n+ 1
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Models for time-series

Artificial neural networks (ANN) offer a flexible alternative
e.g. long short-term Memory (LSTM) recurrent neural networks
(RNN) architecture

Have fewer restrictions
Can model non-linear functions

UEF//School of Computing ADA:Mining Time-Series 51/58



Periodicity

Time-series might exhibit regularly recurrent, cyclic, behavior
i.e. display periodicity (a.k.a. seasonality)

UEF//School of Computing ADA:Mining Time-Series 52/58



Periodicity

Time-series might exhibit regularly recurrent, cyclic, behavior
i.e. display periodicity (a.k.a. seasonality)

Seasonal differencing xi − xi−p for some integer p > 1, i.e.
taking the difference between values one period p apart, can
be used to remove the effect of seasonality
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Periodicity

Given a time-series SX = ⟨x0, x1, . . . , xn−1⟩

The discrete Fourier transform decomposes the time-series
into n− 1 periodic sinusoidal components

xr =
1
n

n−1∑
k=0

fk ·
(
cos(2πrk/n)− i sin(2πrk/n)

)
for r = 0, . . . ,n− 1

The kth component, corresponding to coefficient fk = ak + ibk,
has periodicity n/k and amplitude

√
a2k + b2k

If a component has a high amplitude compared to the others,
the entire series will be dominated by its periodic behavior

Only components such that k ∈ [β,n/α] have period at least
α ≥ 2 and appear at least β ≥ 2 in the series
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
Original time-series

time

320

340
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
Folding the time-series, p = 12

time

320

340
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
Folding the time-series, p = 12

time

320

340
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
Seasonal differenced time-series, p = 12

time

0

3
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
Original time-series

time

320

340
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980
First-order differenced time-series

time

0

−2

2
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

−2

0
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

−2

0

2

12 m
0.6945
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

−2

0

2

12 m

6 m

4 m

11 m

0.6945

0.1828

0.0074

0.0081

0.0076
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

UEF//School of Computing ADA:Mining Time-Series 58/58



Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

−1

1

lag = 0
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

−1

1

lag = 0 lag = 2
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

−1

1

lag = 0 lag = 2 lag = 6
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

−1

1

lag = 0 lag = 2 lag = 6 lag = 12
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

−1

1

lag = 0 lag = 2 lag = 6 lag = 12 lag = 48
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Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

−1

1

lag = 0 lag = 2 lag = 6 lag = 12 lag = 48 lag = 100

UEF//School of Computing ADA:Mining Time-Series 58/58



Example

Monthly mean CO2 ppm. in Hawaii (US) from 1965 to 1980

time

0

−2

2

−1

1

lag = 0 lag = 2 lag = 6 lag = 12 lag = 48 lag = 100
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