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Part VII

Outlier Analysis
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Basics



What is an outlier?
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What is an outlier?

An outlier is an observation which deviates so much
from the other observations as to arouse suspicions
that it was generated by a different mechanism.

D. M. Hawkins, 1980
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What is an outlier?

Outliers can be seen as a complementary concept to clusters

Clusters are groups of data points that are similar
Outliers are individual data points that are not similar to the
rest of the data

Outliers are also known as anomalies, abnormalities,
discordants or deviants
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Applications

The distinction between noise and interesting outliers can be
difficult to make, in general
Outliers result from fluctuations during data generation
Noise are caused by artifacts of the data collection process

Detecting measurement errors
Outliers detection methods are sometimes used to identify
measurement errors, seen as noise, that should be removed
before further processing

One man’s noise is another man’s signal

E. Ng, 1990
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Applications

Credit card fraud detection
Credit card companies maintain a record of transactions,
including attributes such as user identifier, amount spent,
timestamp, geographic location

Fraudulent transactions often show up as unusual
combinations of attributes

Unusual patterns of credit card activity as a result of fraud
Much rarer than the normal patterns, can be detected as
outliers
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Applications

Quality control and fault detection
Track the number of defective units produced to detect
anomalies in a manufacturing process

Continuous monitoring of production line robot, engine, built
infrastructure
Typically involves tracking various parameters simultaneously
Early detection is desired, to organise preventive maintenance
and avoid interruptions
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Applications

Web log analytics and intrusion detection
Web sites, networks and computer systems generally
automatically track agent behavior

Detect anomalous behavior from web logs or system logs
e.g. user trying to break into password protected website
Identify unusual sequences of actions
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Applications

Medicine and public health
Unusual symptoms or test results may indicate health problem
of a patient
Whether or not a result is abnormal often depends on
characteristics of the patient, e.g. age, gender, etc.

Track occurrences of particular diseases across hospitals
Detect problems with, e.g. vaccination program
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Applications

Sports statistics
Record various parameters about the performance of athletes
and players
Identify outstanding players, detect cheating
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Applications

Credit card fraud detection
Quality control and fault detection
Web log analytics and intrusion detection
Medicine and public health
Sports statistics

…
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Swamping and masking

Swamping happens when the number of normal instances
increases or they become scattered so that normal instances
are wrongly identified as outliers

Masking happens when the number of outliers increases,
forming dense clusters of anomalous data points and
concealing their own presence

Both issues are consequences of too large amounts of data
used for the detection of outliers
This can be solved by using subsampling
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Analysis scenarios

Supervised scenario
Training data containing data points labelled as normal and
abnormal is provided
There might be multiple normal and abnormal categories
This corresponds to a classification problem, often highly
unbalanced

Semi-supervised scenario
Only partial labels are provided, e.g. data points only from the
normal categories

Unsupervised scenario
In most cases, outlier detection is performed in an
unsupervised manner, with no training data
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Analysis scenarios

Unsupervised scenario
In most cases, outlier detection is performed in an
unsupervised manner, with no training data

Unsupervised outlier detection is closely related to clustering

Many clustering algorithms do not assign all points to clusters
to account for noisy data points

However, clustering algorithms are optimized to find clusters,
not outliers
Multiple similar abnormal data points might be reported as a
separate cluster
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Analysis approaches

Reference set with respect to which normality is evaluated
Global vs. local approaches
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Analysis approaches

Reference set with respect to which normality is evaluated

Global approaches
The reference set contains all other data points
Assumption: single normal generating mechanism
Drawback: other outliers in the reference set may falsify results

Local approaches
The reference set consists of a selected subset of data points
No assumption on number of normal generating mechanisms
Drawback: relies on appropriate choice of reference subset

Some approaches let the reference set vary from a single data
point (local) to the entire dataset (global) automatically or
depending on a user-defined parameter
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Analysis approaches

Type of output
Labelling vs. scoring approaches
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Analysis approaches

Type of output

Labelling approaches
Binary output, label data points as either normal or abnormal,
inliers or outliers

Scoring approaches
Real-valued output, compute a score for each data point
e.g. probability of being an outlier
Allows to sort data points according to their scores

Scoring approaches typically focus on top-r outliers for
user-defined parameter r
Choosing a threshold value turns scores into binary labels
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Evaluation

Evaluating an outlier detection algorithm requires ground truth
data, i.e. to know which points are true outliers

Outlier detection algorithms are typically evaluated on

• synthetic data with identified outliers or
• considering the rare class of labelled real-world data as
ground truth

Rare classes do not always reflect all natural outliers in the
data, but are generally representative enough when the
evaluation is repeated over many datasets
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Evaluation

Consider the (rare) class of outliers as the positive class and
the rest of data points as the negative class

For algorithms that return an outlier score, this score is turned
into a binary label using a threshold

A strict threshold will lead to reporting fewer outliers,
both true outliers as well as falsely detected ones,
i.e. low true positive rate (TPR) and false positive rate (FPR)

A relaxed threshold will lead to reporting many outliers,
i.e. high true positive rate (TPR) and false positive rate (FPR)

The curve showing the trade-off FPR vs. TPR is called the
receiver operating characteristic (ROC) curve
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Evaluation

The curve showing the trade-off FPR vs. TPR is called the
receiver operating characteristic (ROC) curve

Compare different algorithms by comparing their ROC curves
! All regions of the curve might not be equally important
depending on the application

! Using the ROC curve and the area under the curve (AUC) to
tune an algorithm can lead to drastic overestimation of the
accuracy
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ROC curve

Dataset: 20 normal data points, 5 anomalies
Consider three algorithms that rank data points by decreasing
likelihood of being anomalous
Compare by looking at the positions of the anomalies in
respective rankings
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Depth-based methods

Assumption: outliers lie at the border of the data space,
whereas inliers lie in the center of the data space

Organize the data points into convex hull layers
i.e. peel the data layer by layer, like an onion
Depth of layer is used as score
Points on the ℓ outermost layers are declared outliers
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Depth-based methods

Peel the data layer by layer, like an onion
Depth of layer is used as score
Points on the ℓ outermost layers are declared outliers

δ ← 1
while D ̸= ∅ do
H corners of the convex hull of D
ox ← δ, for x ∈ H
D ← D \H
δ ← δ + 1

return {x ∈ D,ox ≤ ℓ}
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Depth-based methods
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Depth-based methods

Peeling the outer layer of the data
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Depth-based methods

Peeling the outer layer of the data
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Depth-based methods

Depth of layer as outlier score
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Depth-based methods

Peel the data layer by layer, like an onion
Depth of layer is used as score
Points on the ℓ outermost layers are declared outliers

All points on the same layer are treated equally

Typically, increased dimensionality leads to increase of

• computational complexity of finding the convex hull
• fraction of points at corners of the convex hull
• number of undistinguishable points
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Deviation-based methods

Assumption: outliers are the outermost points in the dataset

For a given set of points, the outliers are those points that do
not fit the general characteristics of the set, the variance of the
set is minimized when removing them
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Information-theoretic methods

Assumption: outliers are not similar to the rest of the data

If we compress the data using normal patterns, outliers will
increase the encoding length
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Density-based methods

Assumption: outliers are not similar to the rest of the data

For univariate data, construct a histogram, i.e. discretize the
data into bins of equal width, and compute the number of
data points in each bin

Points lying in very low frequency bins are reported as outliers
Use the number of other points in the bin as outlier score

With smaller bins widths, more points are reported as outliers
With larger bins widths, anomalies and normal points might be
merged, preventing detection
Choosing a suitable bins width is difficult

This approach is very local, when granularity is high, an
isolated group of points may result in an artificially dense bin

UEF//School of Computing ADA:Outlier Analysis 25/86



Density-based methods
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Density-based methods

Histogram for bin width 2 and anchor point 0
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Density-based methods

Histograms for different bin widths and anchor points
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Density-based methods

Assumption: outliers are not similar to the rest of the data

For multivariate data, construct a grid, i.e. partition each
dimension into intervals of equal width, and compute the
number of data points in each cell

Points lying in very low frequency cells are reported as outliers
Use the number of other points in the cell as outlier score

Choosing a suitable cells widths is difficult

This approach is very local, when granularity is high, an
isolated group of points may result in an artificially dense cell

As dimensionality increases, the grid becomes sparser and the
expected number of points per cell decreases exponentially
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Density-based methods

x

y

0

20

0 30
UEF//School of Computing ADA:Outlier Analysis 28/86



Density-based methods

Histogram for bin width 2 and anchor point (0, 0)
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Density-based methods

Histogram for bin width 2 and anchor point (1, 1)
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Density-based methods

Histogram for bin width 5 and anchor point (0, 0)
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Density-based methods

Histogram for bin width 5 and anchor point (2, 1)

x

y

0

20

0 30
UEF//School of Computing ADA:Outlier Analysis 28/86



Density-based methods

Assumption: outliers are not similar to the rest of the data

Given a radius ρ and a threshold τ ∈ [0, 1], a data point x is
reported as outlier if at most a fraction τ of the other points
are at distance at most ρ from it, i.e. if∣∣{x′ ∈ D \ {x}, d(x, x′) ≤ ρ}

∣∣ ≤ τ(n− 1)
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Density-based methods

Looking at points in radius ρ
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Statistical tests

Assumption: probability distribution underlying the data
generation process
Normal data points occur in high probability regions
whereas outliers occur in low probability regions

The parameters of the chosen statistical distribution are
estimated assuming all data points were generated by the
distribution

Points that have a low probability under the estimated
distribution are declared outliers

Data points lying in the low probability regions of the
distribution constitute extreme values
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Univariate extreme values

Assumption: probability distribution underlying the data
generation process
Normal data points occur in high probability regions
whereas outliers occur in low probability regions

Considering a univariate probability density function fD(x)
the tails of the distribution are the two extreme regions where
fD(x) ≤ θ for some user-defined threshold θ

For distributions that are not symmetric, lower and upper tails
may not have the same probability
Some distributions, e.g. exponential, have a tail only at one end

Data points lying in the tails of the distribution constitute
extreme values
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Univariate extreme values

Assuming a univariate Gaussian distribution, the parameters
are estimated as the mean µ and standard deviation σ over all
data points in D

The probability density function of the Gaussian distribution is

fD(x) =
1

σ
√
2π
e

−(x−µ)2

2σ2

For a data point x the standardized value z = (x− µ)/σ is
called its z-number

Points in the lower tail correspond to large negative z-numbers
Points in the upper tail correspond to large positive z-numbers
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Univariate extreme values

Normal distribution estimated from all univariate data points
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Univariate extreme values

Computing z-numbers
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Univariate extreme values

Assuming a univariate Gaussian distribution, the parameters
are estimated as the mean µ and standard deviation σ over all
data points in D

The probability density function of the Gaussian distribution is

fD(x) =
1

σ
√
2π
e

−(x−µ)2

2σ2

For a data point x the standardized value z = (x− µ)/σ is
called its z-number

The probability density function can be written in terms of the
z-number

fD(x) =
1

σ
√
2π
e

−z2
2
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Univariate extreme values

The probability density function can be written in terms of the
z-number

fD(x) =
1

σ
√
2π
e

−z2
2

Hence, the cumulative Gaussian distribution can be used to
determine the area of the tail that is more extreme than z
When the number of available data points n is limited, Student
t-distribution with n degrees of freedom is used instead

Points are typically declared outliers if the absolute value of
their z-number is greater than 3
i.e. if they deviate more than 3 times the standard deviation
from the mean
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Univariate extreme values

…more than 3 times the standard deviation from the mean
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Univariate extreme values

Normal distribution estimated from all data points
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Univariate extreme values

Normal distribution estimated from cluster of data points
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Univariate extreme values

Normal distributions estimated from cluster vs. all data points
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Multivariate extreme values

The same ideas can be extended to multidimensional data, i.e.
m-dimensional data points

Assuming a multivariate Gaussian distribution, the parameters
are estimated as the mean µ and m×m covariance matrix Σ
over all data points in D

The probability density function of the Gaussian distribution is

fD(x) =
1√

det(Σ) · (2π)m
e−(x−µ)TΣ−1(x−µ)/2

where det(Σ) is the determinant of the covariance matrix

UEF//School of Computing ADA:Outlier Analysis 37/86



Multivariate extreme values

Probability density function estimated from all data points
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Mahalanobis distance

The Mahalanobis distance from data point x to a distribution
with mean µ and covariance Σ is

DΣ(x,µ) =
√

(x− µ)TΣ−1(x− µ)

Can be seen as a multidimensional extension of the z-number,
measuring the number of standard deviations by which the
data point differs from the mean of the distribution

Computing the Mahalanobis distance is equivalent to
computing the Euclidean distance after rotating the data to the
principal directions and dividing each of the transformed
coordinate by the corresponding standard deviation
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Mahalanobis distance

Comparing ∥x− µ∥ and DΣ(x,µ)
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Mahalanobis distance

Comparing ∥x− µ∥ and DΣ(x,µ)
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Multivariate extreme values

The probability density function can be written in terms of the
Mahalanobis distance

fD(x) =
1√

det(Σ) · (2π)m
e−(DΣ(x,µ))2/2

Each of the independent component of the Mahalanobis
distance can be modeled as a one-dimensional standard
normal distribution N (0, 1)

The sum of squares of m such variables follows a χ2

distribution with m degrees of freedom

The cumulative probability of the region of the χ2 distribution
with m degrees of freedom for which the value is greater than
DΣ(x,µ) can be reported as the extreme value probability of x
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χ2 distribution
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Multivariate extreme values

! Curse of dimensionality
As dimensionality increases the Mahalanobis distances of all
points become more similar

! Robustness
The estimation of parameters is sensitive to outliers
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Clustering models

Assumption: clustering aims at finding groups of similar points,
whereas outliers are not similar to the rest of the data

Cluster the data and report as outliers points that have a large
raw distance to the closest cluster centroid

The raw distance is not well suited if the clusters are elongated
and have varying densities
Use the Mahalanobis distance with respect to the clusters,
i.e. local Mahalanobis distances
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Clustering models

Assumption: clustering aims at finding groups of similar points,
whereas outliers are not similar to the rest of the data

Assuming that k clusters have been detected
The Mahalanobis distance from point x to the jth cluster, having
mean µj and covariance matrix Σj, is

DΣj(x,µj) = (x− µj)
TΣ−1

j (x− µj)

Report minj=1,...,k DΣj(x,µj) as outlier score of point x
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Clustering models

min
(
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Clustering models

In the case of EM clustering with Gaussian mixture model,
each cluster Ci is modelled as a Gaussian distribution
N (µi,σi) with probability density function fi and associated to
a prior probability αi
The probability that data point x is generated by the model is∑

i
αifi(x)

Points that are highly unlikely to be generated by the model,
i.e. have very low fit, are reported as outliers

UEF//School of Computing ADA:Outlier Analysis 46/86



Distance-based models: k-NN distance

Assumption: outliers are not similar to the rest of the data,
i.e. they are far apart from their neighbors

Report the distance from a point to its k-nearest neighbor as
the outlier score
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Distance-based models: k-NN distance

Distance to k-nearest neighbor, k = 1
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Distance-based models: k-NN distance

Distance to k-nearest neighbor, k = 9
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Distance-based models: k-NN distance

Assumption: outliers are not similar to the rest of the data,
i.e. they are far apart from their neighbors

Report the average distance from a point to its k-nearest
neighbors as the outlier score
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Distance-based models: k-NN distance

Average distance to k-nearest neighbors, k = 10
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Distance-based models: k-NN distance

Assumption: outliers are not similar to the rest of the data,
i.e. they are far apart from their neighbors

Construct the k-nearest neighbor graph for the dataset, where
each data point x is represented by a vertex vx and there is a
directed edge from vx to vx′ if x′ is among the k-nearest
neighbors of x
Report point x as outlier if the in-degree of vx is less than
user-defined threshold τ
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Distance-based models: k-NN distance

O← ⟨⟩ r top outliers
λ← 0 k-NN distance of top r outlier
for each x ∈ D do

N← ⟨⟩ k nearest neighbors of x
δ ←∞ distance to k nearest neighbor of x
for each x′ ∈ D \ {x} do

if d(x, x′) < δ then
insert x′ into N and update δ accordingly

if δ > λ then
insert x into O and update λ accordingly

return O
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Distance-based models: k-NN distance

Distance-based models have a finer granularity than clustering
models, but it comes at the cost of higher computational
complexity

Computing the k-nearest neighbor distance requires O(n) time
for each data point when a sequential scan is used,
i.e. O(n2) time for the entire dataset, which is not scalable

Early termination
In most cases the scores of all data points are not required,
only the top r outliers
The scan for a data point can be terminated if the upper
bound estimate on its k-nearest neighbor distance falls below
the current rth top outlier score
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Distance-based models: k-NN distance

O← ⟨⟩ r top outliers
λ← 0 k-NN distance of top r outlier
for each x ∈ D do

N← ⟨⟩ k nearest neighbors of x
δ ←∞ distance to k nearest neighbor of x
for each x′ ∈ D \ {x} do

if d(x, x′) < δ then
insert x′ into N and update δ accordingly
if δ < λ then drop x early termination

if δ > λ then
insert x into O and update λ accordingly

return O
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Distance-based models: k-NN distance

Distance-based models have a finer granularity than clustering
models, but it comes at the cost of higher computational
complexity

Computing the k-nearest neighbor distance requires O(n) time
for each data point when a sequential scan is used,
i.e. O(n2) time for the entire dataset, which is not scalable

Early termination

Two steps method with sample
Compute distances exhaustively for a small sample of points
Compute distances for other points that are potential outliers
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Distance-based models: k-NN distance

Compute distances exhaustively for a small sample of points
S← {s data points sampled randomly from D, s≪ n}
compute d(x, x′) for s · n pairs (x, x′) ∈ S×D
∆S,k(x) denotes the distance from x to its k nearest neighbor in S
O← ⟨r top outliers from S⟩ i.e. r points x ∈ S with highest ∆S,k(x)
λ← k-NN distance of top r outlier from S i.e. ∆S,k(O[r])

Compute distances for other points that are potential outliers
for each x ∈ D \ S do

if ∆S,k(x) < λ then drop x early termination
Nk ← k nearest neighbors of x in S; δ ← ∆S,k(x)
for each x′ ∈ D \ S do

if d(x, x′) < δ then
insert x′ into Nk and update δ accordingly
if δ < λ then drop x early termination

if δ > λ then insert x into O and update λ accordingly
return O

UEF//School of Computing ADA:Outlier Analysis 53/86



Distance-based models: k-NN distance

Compute distances exhaustively for a small sample of points
S← {s data points sampled randomly from D, s≪ n}
compute d(x, x′) for s · n pairs (x, x′) ∈ S×D
∆S,k(x) denotes the distance from x to its k nearest neighbor in S
O← ⟨r top outliers from S⟩ i.e. r points x ∈ S with highest ∆S,k(x)
λ← k-NN distance of top r outlier from S i.e. ∆S,k(O[r])

Compute distances for other points that are potential outliers
for each x ∈ D \ S ordered by decreasing ∆S,k(x) do

if ∆S,k(x) < λ then drop x early termination
Nk ← k nearest neighbors of x in S; δ ← ∆S,k(x)
for each x′ ∈ D \ S ordered by increasing ∆S,k(x′) do

if d(x, x′) < δ then
insert x′ into Nk and update δ accordingly
if δ < λ then drop x early termination

if δ > λ then insert x into O and update λ accordingly
return O
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Distance-based models: k-NN distance

The k-NN distance is sensitive to the neighborhood density
Need for corrections to account for local variations in density

Local outlier factor (LOF)
Normalizes distances with average local density
Sometimes seen as a density-based method
Sometimes as a distance-based method
Both types of methods rely on proximity
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Local outlier factor

Let ∆k(x) denote the distance from x to its k nearest neighbor
Let Nk(x) denote the points within distance ∆k(x) of x

Nk(x) = {x′ ∈ D \ {x}, d(x, x′) ≤ ∆k(x)}

Due to ties, Nk(x) might contain more than k points

The reachability distance of point x with respect to x′ is

Rk(x, x′) = max(d(x, x′),∆k(x′))

The reachability distance is not symmetric
Intuitively, when x′ is in a dense region and the distance
between x and x′ is large Rk(x, x′) equals the true distance,
whereas when the distance between x and x′ is small Rk(x, x′)
is smoothed out by the k-NN distance of x′
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Local outlier factor

Let ∆k(x) denote the distance from x to its k nearest neighbor
Let Nk(x) denote the points within distance ∆k(x) of x
The reachability distance of point x with respect to x′ is

Rk(x, x′) = max(d(x, x′),∆k(x′))

The average reachability distance of point x with respect to its
neighborhood is

ARk(x) =
1

|Nk(x)|
∑

x′∈Nk(x)
Rk(x, x′)

The local outlying factor of point x is

LOFk(x) =
1

|Nk(x)|
∑

x′∈Nk(x)

ARk(x)
ARk(x′)
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Local outlier factor

Let ∆k(x) denote the distance from x to its k nearest neighbor
Let Nk(x) denote the points within distance ∆k(x) of x

Rk(x, x′) = max(d(x, x′),∆k(x′))

ARk(x) =
1

|Nk(x)|
∑

x′∈Nk(x)
Rk(x, x′) LOFk(x) =

1
|Nk(x)|

∑
x′∈Nk(x)

ARk(x)
ARk(x′)

Typically, LOFk values for points in a cluster are close to 1 if the
points are distributed homogeneously
Points with LOFk ≫ 1 are reported as outliers

In practice, determine the best neighborhood size k by taking
the maximum LOFk over a range of values
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Local outlier factor

Distance to tenth-nearest neighbor ∆10
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Local outlier factor

AR10(x) vs. AR10(x′), x′ ∈ N10(x), computing LOF10(x)
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Local outlier factor

AR10(x) vs. AR10(x′), x′ ∈ N10(x), computing LOF10(x)
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Local outlier factor

AR10(x) vs. AR10(x′), x′ ∈ N10(x), computing LOF10(x)
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Local outlier factor

AR10(x) vs. AR10(x′), x′ ∈ N10(x), computing LOF10(x)
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Local outlier factor

Local outlier factors LOF10
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Distance-based models: k-NN distance

The k-NN distance is sensitive to the neighborhood shape
Need for corrections to account for local variations in shape

Instance-specific Mahalanobis distance
Compute Mahalanobis distance that accounts for the local
covariance structure
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Instance-specific Mahalanobis distance

Determine the k-neighborhood of point x following an
agglomerative approach

N← {x}
for i = 1, . . . , k do

N← N ∪ {argminx′∈D\Nminu∈N d(x′,u)}

return N

Use DΣN(x,µN) as outlier score for point x, with µN and ΣN
respectively the mean and covariance matrix of the
k-neighborhood N of x, i.e. the Mahalanobis distance that
accounts for the local covariance structure
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Instance-specific Mahalanobis distance

DΣN(x,µN) for the k-neighborhood N of x, k = 19
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Instance-specific Mahalanobis distance

DΣN(x,µN) for the k-neighborhood N of x, k = 19
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High-dimensional data



High-dimensional approaches

As dimensionality increases the distances between pairs of
points become more similar, outliers become increasingly
more difficult to tell apart from normal points

Angle-based method
More stable than distances in high-dimensional spaces
e.g. cosine based similarity measure for text data

Assumption: outliers lie at the border of the data space,
whereas inliers lie in the center of the data space

The rest of the data is in a similar direction from an outlier,
in varying directions from an inlier
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High-dimensional approaches

Outliers typically present anomalous behavior only in a small
subset of attributes while other dimensions are irrelevant to
the anomaly detection process

Subspace outlier detection
An outlier is defined in association with one or more
subspaces that are specific to it
Consider projections into lower dimensional subspaces to
detect associated outliers
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Subspace outlier detection

There is an analogy between subspace clustering and subspace
outlier detection but the levels of difficulty are not similar

It is much easier to determine frequent characteristics of a
dataset than rare characteristics
Dense subspaces can be determined by aggregate analysis of
the data points whereas detecting outliers requires to explore
subspaces in a way that is specific to individual points

For a d-dimensional dataset, there are 2d subspaces
Only a small fraction of them will expose the anomalous
behavior of an individual point
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Grid-based sparsity coefficient

Partition each attribute into p bins containing each an equal
fraction f = 1/p of data points

Selecting k attributes and one bin from each defines a
k-dimensional grid cell or cube

Under the independence assumption, the presence or absence
of an individual point in such a cube is a Bernoulli random
variable with success probability fk

When the total number of points n is large, the number of
points in the cube follows a normal distribution with µ = n · fk

and σ2 = n · fk · (1− fk)
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Grid-based sparsity

Histogram for bins containing 10% of data points
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Grid-based sparsity coefficient

Partition each attribute into p bins containing each an equal
fraction f = 1/p of data points

Selecting k attributes and one bin from each defines a
k-dimensional grid cell or cube

The sparsity coefficient for cube R containing nR data points is

S(R) = nR − n · f2√
n · fk · (1− fk)

A negative sparsity coefficient indicates that the number of
points in the cube is significantly lower than expected
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Grid search for subspace outliers

Individual dimensions provide no information about the
combination of dimensions
Level-wise algorithms are not practical
Consider an evolutionary (genetic) algorithm

Genetic algorithms mimic the process of biological evolution
to solve optimization problems
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Genetic algorithms

Candidate solutions to the optimization problem are
represented by a population of individuals
Each feasible solution has a string encoding, akin to its
chromosome

The fitness of an individual is the objective value of the
corresponding solution

The selection operator accounts for the fact that fitter
individuals are more likely to survive and multiply
The crossover and mutation operators allow individuals to
evolve
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Genetic algorithms

The selection operator replicates individuals in the population
with a bias towards fitter individuals

The crossover operator exchanges the segments of two
encodings to the right of a randomly chosen position
An optimized crossover operator the outcomes of possible
recombinations and select the best one

The mutation operator flips positions in the encoding with a
predefined probability
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Genetic algorithm for subspace outliers

In the grid search for subspace outliers encodings are strings
of length d
Each position specifies a bin for the corresponding attribute or
that the dimension is not included, {1, . . . ,p, ∗}
Each encoding corresponds to a cube

The fitness of an individual is the sparsity coefficient of the
cube associated to its encoding
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Grid-based sparsity

Histogram for bins containing 10% of data points
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Genetic algorithm for subspace outliers

The process starts with a population of q random individuals
and iteratively repeats the process of selection, crossover,
mutation
Individuals in the population progressively improve in fitness
and become more similar
A position in the encoding has converged when a predefined
fraction of the population has the same value for that position
The population has converged when all positions in the
encoding have converged

Keep track of the best solutions encountered, i.e. cubes with
most negative sparsity coefficients
Data points contained in those cubes are reported as outliers

UEF//School of Computing ADA:Outlier Analysis 71/86



Isolation-based methods

Assumption: outliers are few, not similar to the rest of the data
and located in sparse regions, hence suceptible to isolation

Grow binary decision trees at random until all distinct data
points are in a node of there own

Data points that are reached via short paths are reported as
outliers
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Isolation trees: training

Build an isolation tree with recursive algorithm iTree

iTree(S):
if S cannot be divided then

return leaf node
else

a← select attribute of S at random
v← select value in [minx∈S xa,maxx∈S xa] at random
return node with test xa ≥ v,

left child iTree({x ∈ S, xa < v}) and
right child iTree({x ∈ S, xa ≥ v})
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Isolation trees: training

Build an isolation tree with recursive algorithm iTree
Collect trees built on θ different random data samples of size κ

to form a decision forest

F ← ∅
for i = 1 . . . θ do

S← sample κ data points from D at random
F ← F ∪ {iTree(S)}

return F
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Isolation trees: evaluation

The outlier score of a data point x is the average length of
paths from root to leaf in trees of the forest

Run x through each tree in the forest until reaching a leaf
Return the average length of the path from root to leaf node
over the different trees

In practice, the depth of trees is limited during training
Path lengths are normalized to account for this limit and for
the sample size
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Temporal data



Outliers in temporal data

In the context of temporal data, outlier detection is also known
as event detection, especially when performed in real-time

A sudden change at a given timestamp of a time-series or
sequence is referred to as contextual outlier or point outlier

An anomalous pattern of consecutive data points is referred to
as collective outlier, as well as shape outlier in the context of
time-series and combination outlier in the context of discrete
sequences
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Point outliers

The detection of point outliers is closely related to forecasting

A data point is considered an outlier if it deviates significantly
from its forecasted, i.e. expected, value
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Point outliers in discrete sequences

Build a probabilistic suffix tree from historical data, capturing
the typical behavior of the sequence

The probability of observing a specific value at a given
position, in the context of the values occurring at the previous
postion(s) can be retrieved from the tree
Positions where this probability is very low are reported as
anomalies
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Point outliers in multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to detected unexpected events
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Point outliers in multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to detected unexpected events

1. Predict the values at each timestamp using some
time-series modelling approach

Let y(i) be the m-dimensional vector of forecasted values at
timestamp i
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Point outliers in multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to detected unexpected events

2. Compute the multivariate time-series of deviations
between the forecasted and the actual values

Let δ(i) = y(i) − x(i) be the m-dimensional vector of deviations
at timestamp i
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Point outliers in multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to detected unexpected events

3. Compute the normalized deviation, i.e. z-number, for each
timestamp and each variable

Let µj and σ2j be the mean and variance of the deviations for
variable j across the forecasted timestamps, δ(1)j , δ

(2)
j , . . . , δ

(n)
j

z(i)j =
δ
(i)
j − µj

σj
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Point outliers in multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to detected unexpected events

4. Report as anomalies the pairs of timestamps and
variables for which the z-number exceeds a chosen
threshold value, typically 3

Timestamp–variable pair (i, j) is reported as outlier if z(i)j > 3

Depending on the application, one might aggregate the
deviations at a given timestamp, taking for instance the
maximum or average over the different variables, i.e. report
timestamp i as outlier if maxj=1...m z

(i)
j or meanj=1...m z

(i)
j ,

respectively, exceed the chosen threshold

UEF//School of Computing ADA:Outlier Analysis 79/86



Point outliers in multivariate time-series

Given a multivariate time-series SX = ⟨x(1), x(2), . . . , x(n)⟩,
with x(i) ∈ Rm, the aim is to detected unexpected events

1. Predict the values at each timestamp using some
time-series modelling approach

2. Compute the multivariate time-series of deviations
between the forecasted and the actual values

3. Compute the normalized deviation, i.e. z-number, for each
timestamp and each variable

4. Report as anomalies the pairs of timestamps and
variables for which the z-number exceeds a chosen
threshold value, typically 3
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Combination outliers

The aim is to identify unusual combinations of values
appearing in a sequence

Small windows of a chosen size, referred to as comparison
units, are extracted from the sequence
Distances between comparison units can be computed using
e.g. dynamic time warping (DTW) distance, edit distance, etc.

The k-nearest neighbor distance can be used as outlier score
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Shape outliers

Shape outliers are defined over windows of the time-series
Distance to k-nearest neighbors is used as outlier score

1. Extract all candidates by sliding a window of length w over
the time-series

2. Compute the Euclidean distance from each candidate to
all other non-overlapping windows

3. Report candidates with highest k-nearest neighbor
distance as outliers

Use non-overlapping windows to prevent trivial matches
Pruning and early termination are used to improve efficiency
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Shape outliers: HOTSAX

Pruning and early termination are used to improve efficiency
It works best if true outliers are found early, i.e. more
promising candidates need to be processed first

The clustering behavior of candidates informs about how
promising they are
Process candidates from clusters having fewest members first
Other candidates from the same clusters are considered first
when computing the nearest neighbor distances

Use symbolic aggregate approximation (SAX) representation to
map candidate windows to clusters, one cluster for each
distinct SAX word
Piecewise aggregation approximation is done with intervals of
size k < w resulting in SAX words of length w/k
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Shape outliers: HOTSAX

IBM stock prices from Sept. 2013 to Sept. 2014

SAX of candidate window maps to cluster
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Shape outliers: HOTSAX

IBM stock prices from Sept. 2013 to Sept. 2014
SAX of candidate window maps to cluster
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Rule-based supervised detection of shape outliers

Training
Given a database of time-series of length n, some labelled as
anomalous, the aim is to train a classifier that can identify
anomalous series

1. Use the discrete wavelet transform to convert each
time-series into a vector of coefficients

2. Discretize the wavelet representation, i.e. turn each
dimension of the numerical wavelet representation into a
categorical attribute by partitioning the range of values
into intervals

3. Extract a set of rules by applying a rule-based classifier
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Rule-based classifiers

Rule-based classifiers make predictions using a collection of
rules of the form “if condition then conclusion”, Q =⇒ c
The condition Q (a.k.a. antecedent) typically consists of a
conjunction of tests on the data attributes
The conclusion c (a.k.a. consequent) typically consists of a
class label

If an instance satisfies the conditions of a rule, we say that the
rule covers the instance and that the instance triggers the rule

A set of exhaustive and mutually exclusive rules can be
generated from decisions trees
An ordered list of rules can be extracted by growing them one
by one using a sequential covering algorithm
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Rule-based supervised detection of shape outliers

Predicting
To make a prediction for a given time-series, its discrete
wavelet transform is computed then discretized in the same
way as the training instances
The collection of rules is scanned, evaluating their conditions
on the categorical transformed representation of the
time-series

The time-series is reported as an outlier if it triggers some rule
having the minority outlier class as its conclusion
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