

Remarquable theorems, equations and methods that one should be able to prove and/or apply are indicated by *****

Part I: Classification variants

Multi-class learning

Rare-class learning

Ensemble methods

- Bucket of models
- Bagging, random forests
- Boosting, AdaBoost
- Stacking

Part II: Classification - Different paradigms

Semi-supervised learning

- Transductive SVM
- · Clustering and classification
- Graph-based collective classification \star
- Self-training and co-training

Active learning

- Heterogeneity-based querying strategies, uncertainty sampling
- · Performance-based querying strategies, expected error reduction
- · Representativeness-based querying strategies

Part III: Mining Streams

Data stream paradigm

Synopsis data structures

- Sampling
 - Reservoir sampling *
 - Bias-sensitive sampling
- Quality bounds
 - Markov's inequality *
 - Chebychev's inequality \star
 - Chernoff bounds *
 - Hoeffding's inequality \star
- Massive domain scenario
 - Approximate counting *
 - Bloom filters \star
 - Count-min sketch \star
 - Flajolet-Martin algorithm \star
 - Alon-Matias-Szegedy sketch, mean-median trick \star
 - Frequent items, Lossy counting and exponentially decaying window \star

Classification

· Hoeffding's trees

Intro Temporal Data

Mining temporal data

- Temporal data characteristics and tasks
- Distance vs. similarity
 - Dynamic Time Warping (DTW), window constraint *

Part IV: Mining Sequences

Distances

- Distances based on sequence alignment
 - Dynamic Time Warping (DTW) *
 - Edit Distance (ED) *
 - Longest Common Subsequence (LCS) *
- Distances based on elements frequencies
 - Bag of Words and TF-IDF \star
 - *n*-grams, *k*-mers, and similarity kernels

Frequent pattern mining

- Subsequences and support \star
- Sequential pattern mining, GSP algorithm \star

Markov models

- Markov Chains
 - First and second order MC *
 - Probabilistic suffix tree \star
- Hidden Markov Models
 - Evaluation: forward algorithm \star
 - Explanation: Viterbi algorithm \star
 - Training: Baum-Welch (aka forward-backward) algorithm \star

Part V: Mining Time-Series

Data preparation

- Interpolation *
- Binning, smoothing, normalization and standardization \star
- Discretization, Symbolic Aggregate approXimation (SAX) \star

Transforms

- Discrete wavelet transform (DWT) \star
- Discrete Fourier Transform (DFT)

Models for time-series

- · Stationarity, differencing
- · Autocovariance and autocorrelation
- Periodicity

Part VI: Spatial Data

- Spatial and spatio-temporal data
- Distances and map projections
- Interpolation, density estimation, triangulation \star
- Contours and edges, shapes to time-series \star
- Discrete wavelet transform (DWT) \star
- Frequent trajectory patterns, tile transformation \star

Part VII: Outlier Analysis

Basics

- Applications
- Depth-based methods \star
- Deviation-based methods \star
- Density-based methods *
- Statistical tests *****
- Mahalanobis distance \star
- Clustering models *
- Distance-based models, k-NN distances, Local Outlier Factor (LOF) \star
- High-dimensional data
 - Angle-based method
 - Subspace outlier detection
 - Grid-based sparsity coefficient, genetic algorithms
 - · Isolation-based methods, isolation trees

Temporal data

- Point outliers
- Combination and shape outliers (HOTSAX)