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Part I

Classification variants
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A simple example
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A dataset with two classes
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A simple example

data points: Iris flowers
attributes: physical properties,

length of the petal and length of the sepal in cm
class: species, versicolor vs. virginica
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Class information, i.e. species, is absent for some points
Can we use the available information to predict it?
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classification aim to assign a class label to each instance
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A simple example

supervised labelled training instances are available
binary there are two classes to choose from

classification aim to assign a class label to each instance

A typical supervised binary classification problem
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Some notations

The data set, denoted as D, contains n data points and m
attributes, i.e. it is a n×m matrix

A data point is a m-dimensional vector x = ⟨x1, x2, . . . , xm⟩
We denote x(j) the jth data point of D, i.e. the jth row
Data points are sometimes called instances or examples

Class labels are arranged into a n-dimensional vector
y = ⟨y1, y2, . . . , yn⟩ ∈ Ln, where l = |L| is the number of classes
That is, yj is the class label associated with data point x(j)
In binary classification, class labels take value −1 or +1
(sometimes 0 or 1 instead), i.e. L = {−1,+1} (respectively
L = {0, 1}) and the two classes might be referred to as
negative and positive, respectively
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Different methods

A typical supervised binary classification problem
Various classification methods are available to tackle it
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Different methods

Look at the most similar data points
→ k nearest neighbors (k-NN)
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Different methods

Apply a sequence of tests on attributes’ values
→ classification tree
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Different methods

Look at class probabilities conditioned on attributes’ values
→ Naive bayes
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Different methods

Look at the sign of a linear combination of the attributes
→ perceptron
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0.671 · sl− 1.365 ·pl+ 2.39 < 0
0.671 · sl− 1.365 ·pl+ 2.39 ≥ 0
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Different methods

Look at the sign of a linear combination of the attributes
→ support vector machine (SVM)
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sl − 4 · pl + 13.3 ≥ 0
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Different methods

A typical supervised binary classification problem
Various classification methods are available to tackle it

k-NN decision tree naive Bayes perceptron SVM
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A simple example

A typical supervised binary classification problem
Various classification methods are available to tackle it

Problem variants

• What if there are more than two classes?
→ Multi-class learning

• What if the two classes are not equally represented?
→ Rare-class learning

Methods

• How about combining multiple classifiers?
→ Ensemble methods
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Multi-class learning



No adaptation needed

Some methods can handle multiple classes
→ k nearest neighbors (k-NN)
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No adaptation needed

Some methods can handle multiple classes
→ classification tree
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No adaptation needed

Some methods can handle multiple classes
→ Naive bayes
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Adaptations needed

Other methods, like the Perceptron and SVMs are naturally
designed for the binary scenario

Method-specific adaptations to the multi-class scenario exist

Generic, method-agnostic, meta-frameworks are helpful
Two main strategies

one-against-rest and one-against-one
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One-against-rest

Create a new binary classification problem for each class:
examples from that class are constitute positive examples
the rest are negative examples

vs.
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One-against-rest

Predictions from the different problems are then combined
Might require tie-breaking,
using weighted rather than crisp votes can help
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One-against-rest

A k class problem maps to k binary models

Might require tie-breaking,
using weighted rather than crisp votes can help
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One-against-one

Create a new binary classification problem for each pair of
classes, considering only examples from these two classes

vs.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.0

2.5

3.0

3.5

4.0

4.5

UEF//School of Computing ADA:Classification 18/165



One-against-one

Predictions from the different problems are then combined
Might require tie-breaking,
using weighted rather than crisp votes can help
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One-against-one

A k class problem maps to
(k
2
)
= k(k− 1)/2 binary models

More problems than one-against-rest, but smaller
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Rare-class learning



Rare-class scenario
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It is important to achieve high accuracy on the rare class,
at the cost of reduced accuracy on the normal class

Associate different weights to the classes and try to maximize
the weighted accuracy
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Two main strategies
example reweighting and example resampling
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Rare-class scenario

Example reweighting

• weights are associated to training examples according to
their missclassification cost

• algorithms require adaptations to handle these weights

Example resampling

• examples from rare class might be oversampled,
or examples from normal class be undersampled,
or a combination of both

• algorithms do not require any adaptation
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Rare-class scenario

In effect, resampling and reweighting are almost equivalent
resampling can be understood as sampling examples in
proportion to their weights then treating them equally

Resampling is easier to combine with other approaches

Undersampling is more efficient (smaller datasets)

Resampling has greater randomness
Reweighting is more reliable
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Ensemble methods



Ensemble methods

Different classifiers might make different predictions on the
same data point due to their specific characteristics or their
sensitivity to random artifact in the training data

The aim of ensemble methods is to increase prediction
accuracy by combining the results of multiple classifiers
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Ensemble methods

For i = 1, . . . , ℓ, train modelM(i) on dataset D(i)

Combine the predictions of the different models into a single
robust prediction

Data-centered ensembles use a single algorithm on different
derivative datasets

Model-centered ensembles use different algorithms or
different parameter settings of the same
algorithm on a single dataset
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Bucket of models

The performance of the bucket of models is only as good as
the best model in the bucket for a particular dataset
Over multiple datasets the approach is able to select the
model that is best suited to each case
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Bagging

If the variance of a single prediction is σ, the variance of the
average of ℓ independent and identically distributed (i.i.d.)
such predictions is reduced to σ2/ℓ

Derivative datasets are created using bootstrap sampling
D(i) is a subset of data points sampled uniformly with
replacement from D to approximately the same size as D

Report the majority vote among the predictions of the models
as the ensemble’s prediction

Bagging (a.k.a. bootstrapped aggregating) helps reduce
variance through aggregation
Individual models should be designed so as to reduce bias as
much as possible, even at the expense of variance
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Random forests

A random forest is an ensemble of decision trees where
randomness is added explicitely at the split selection to
reduce correlation between the components

During tree construction, each split selection is preceded by
the random selection of q attributes, among which the split
criterion is then chosen, rather than from the entire set of m
attributes
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Boosting

weak learner a classifier that is only slightly correlated with
the ground truth, i.e. one that performs only
slightly better than random guessing

strong learner a classifier that is arbitrarily well correlated
with the ground truth, i.e. one of arbitrarily high
accuracy

Hypothesis boosting aims to turn a weak learner into a strong
learner
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Boosting

Successive modelsM(t) are built by applying the same
algorithm to weighted variants D(t) of the dataset

Weights associated to every training instance are adjusted so
that the model will focus more on previously missclassified
instances

The prediction of the ensemble is a weighted combination of
all the models’ predictions

Many boosting algorithms have been proposed
AdaBoost (short for Adaptive Boosting) is most popular
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Boosting

Boosting primarily focuses on reducing bias
It aims to combine many weak learners into a strong learner
The approach should be used with simple models having high
bias but low variance

When re-weighting is done via sampling, it can also help
reduce variance

The approach is vulnerable to noise
It assumes that error is caused by bias, in the presence of
noise it will overtrain on low-quality portions of the data

Typically superior to bagging when noise is not excessive
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Stacking

The training dataset is divided into two subsets DA and DB
DA is used to train ℓ models, the ensemble components
DB is used to train a second-level classifier that combines the
predictions of the ensemble components
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Stacking

By learning from the errors of the ensemble components
stacking allows to reduce both bias and variance

The power of stacking comes from the flexible learning
approach of the combiner
Many other ensemble methods can be seen as special cases
using less flexible, data-independent, combination procedures
such as voting
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Part II

Classification
Different paradigms
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A simple example
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A typical supervised binary classification problem

supervised labelled training instances are available
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Learning paradigms

Supervised learning labelled training instances
→ Classification

Unsupervised learning unlabelled training instances

→ Clustering
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→ Classification

Unsupervised learning unlabelled training instances
→ Clustering

UEF//School of Computing ADA:Classification 34/165



Learning paradigms

Supervised learning labelled training instances
→ Classification

Unsupervised learning unlabelled training instances
→ Clustering

Reinforcement learning choose actions to maximize
cumulative rewards
→ Exploration–exploitation trade-off
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Learning paradigms

Supervised learning labelled training instances

→ Classification

Unsupervised learning unlabelled training instances

→ Clustering

Semi-supervised learning few labelled + mostly unlabelled
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Learning paradigms

Supervised learning labelled training instances

→ Classification

Semi-supervised learning few labelled + mostly unlabelled
Active learning query labels selectively, at a cost
Online learning data arrives and is processed iteratively
Transfer learning reuse what has been learnt on one task

on a different task

→ Classification
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Semi-supervised learning



Semi-supervised learning

The aim of semi-supervised learning is to exploit both labelled
and unlabelled data to improve learning
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Induction vs. transduction

Inductive algorithms proceed in two well-separated phases

Training learn a general rule from training instances
Testing apply the general rule to test instances

Transductive algorithms use test instances for training

• require test instances to be specified at training time
• use information from test instances as unlabelled data
points during training

• might not allow prediction on out-of-sample instances
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Transductive Support Vector Machines

Transductive SVM

Find a separating hyperplane with maximum margin
Label unsupervised examples to maximize the margin

minimize 1
2 ∥w∥

2 + C
j=n∑
j=1

ξj

s.t. yj(w · x(j) + b) ≥ 1− ξj and 0 ≤ ξj ∀j ∈ IL
zj(w · x(j) + b) ≥ 1− ξj and 0 ≤ ξj ∀j ∈ IU

IL and IU index labelled and unlabelled examples respectively

yj are known, class labels of the supervised examples
zj are unknown, binary integer variables to be optimized
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EM clustering/Naives Bayes classification

Labelled examples deterministic assignment
initialize parameters and stabilize EM process

Unlabelled examples probabilistic assignment
estimate the cluster structure
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Graph-based collective classification with random walks

Represent the data as a graph

Start random walk from unlabelled node, stop at the first
encountered labelled node

Assign class at which the random walk is most likely to
terminate

Key assumption: the graph must be label-connected
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Semi-supervised learning

Two types of approaches

Method-specific adaptations
• Transductive SVM
• Semi-supervised Bayes classification with EM

Graph-based collective classification
Generic meta-algorithms

• Self-training
• Co-training
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Semi-supervised learning: generic meta-algorithms

Use the smoothness assumption to incrementally expand the
labelled portion of the data
→ self-training

! Risk of error propagation and overfitting

Similar procedure but with two models trained on separate
subsets of attributes generate labels for one another
→ co-training

UEF//School of Computing ADA:Classification 41/165



Semi-supervised learning

Method-specific adaptations
• Transductive SVM
• Semi-supervised Bayes classification with EM

Graph-based collective classification
Generic meta-algorithms

• Self-training
• Co-training

Working assumption:
class structure approximately matches clustering structure

Most useful when labelled examples are scarce
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Active learning



Active learning

Labelled data is difficult and expensive to acquire
Cost can be evaluated or at least estimated

Not all training instances are equally useful

The aim of active learning is to train the most accurate model
within a given budget
Integrate label acquisition and model building to achieve
highest cost-efficiency

Active learning is sometimes known as query learning or
optimal experimental design
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Active learning

Active learning assumes access to an oracle, i.e. a means to
obtain labels for queried instances, seen as a black-box

The querying system asks the oracle for the labels of specific
instances, selected following some strategy
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Active learning scenarios

Membership query synthesis generates a synthetic instance
! instance might not be realistic

Selective sampling unlabelled instances arrive one by one
and the learner makes a decision to query the
label from the oracle or to discard
(a.k.a. stream-based or sequential AL)

Pool-based sampling a collection of interesting examples to
query is sampled from a large pool of available
unlabelled instances

Focus on the latter, most common scenario
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Active learning process

The active learning process is iterative and starts with

• small collection of labelled instances L
• large collection of unlabelled instances U
• query budget b

fO(x) is the label for data point x obtained from oracle O
cO(x) is the associated cost

while b > 0 and accuracy improves do
Train modelM on L
C← {most interesting instances from U}
U← U \ C
L← L ∪ {

(
x, fO(x)

)
for x ∈ C}

b← b−
∑

x∈C cO(x)
UEF//School of Computing ADA:Classification 46/165



Active learning process

Clearly, the crucial part of active learning is the selection of
most interesting instances, i.e. the querying strategy

while b > 0 and accuracy improves do
Train modelM on L
C← {most interesting instances from U}
U← U \ C
L← L ∪ {

(
x, fO(x)

)
for x ∈ C}

b← b−
∑

x∈C cO(x)
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Querying strategies

Heterogeneity-based strategies sample regions that are
uncertain, heterogeneous or dissimilar to what
has been seen so far

Performance-based strategies evaluate the impact of adding
the queried instance on the performance of the
model

Representativeness-based strategies query instances so as to
obtain a distribution of instances that is
representative of the underlying population
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Querying strategies

uncertainty sampling
maximize label uncertainty on queried instance

vs.

expected error reduction
minimize label uncertainty on remaining unlabelled instances
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Part III

Mining Data Streams
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Problem



Data streams

Vast amounts of data are acquired automatically

• satellite images, GPS traces
• measurements from wearable and mobile devices
• web server log traces
• user interactions on social networks
• credit card transactions

Continuous, large, rapid supply of data records
Storing all incoming data for offline processing is not possible

Algorithms must cope with amounts of incoming data many
times larger than available memory
→ Data stream paradigm

UEF//School of Computing ADA:Mining Streams 50/165



Data stream management system

working
storage

standing
queries

ad-hoc
queries

Stream processor

?

We do not know the whole data in advance
We can think of the data as infinite and non-stationnary
How to make calculations with only limited working storage?
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Constraints

Constraints encountered in the data stream paradigm include

One-pass data records can be processed only once
Concept-drift the data may evolve over time
Resources the system might need to drop part of the data
Massive domain for streams of discrete attributes, the number

of distinct values might be very large
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Synopsis data structures



Synopsis data structures

A synopsis is a concise representation of the data stream
maintained dynamically in the working storage
to be leveraged for answering queries

Sampling data points
Simple, flexible and generic synopsis data structure
Almost any algorithm can be applied to the sample
Unsuitable for a few specific queries such as counting distinct
elements

Fixed proportion sample sample a chosen fraction a/b of
data points
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Reservoir sampling

Maintain a dynamically updated sample of k data points
1. Insert nth incoming data point with probability k/n
2. If new point is inserted, eject an old point at random

Theorem
After n data points have arrived, the probability of any point
being included in the reservoir is the same and equal to k/n
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Bias-sensitive sampling

Exponential bias function with bias rate λ ∈ [0, 1]

b(r,n) = e−λ·(n−r)

Let F(n) ∈ [0, 1] be the fraction of the reservoir that is filled
before arrival of nth data point

The new point is inserted with probability k · λ

A coin is flipped, with success probability F(n)
If success, the new point replaces a randomly selected point in
the reservoir, otherwise, the new point is added

UEF//School of Computing ADA:Mining Streams 55/165



Quality bounds

Having generated a sample of data points, we can use it to
estimate statistical properties of the data

It is important to quantify the accuracy of these estimates, i.e.
bound the quality of query answers

Probabilistic inequalities provide such bounds
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Quality bounds: Markov’s inequality

Theorem
Let X be a random variable that takes on only nonnegative
random values. Then, for any constant α satisfying E[X] ≤ α

P(X ≥ α) ≤ E[X]/α

Markov’s inequality provides a bound on the upper tail of the
probability distribution of nonnegative values
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Quality bounds: Chebychev’s inequality

Theorem
Let X be an arbitrary random variable. Then, for any constant α

P(|X− E[X]| ≥ α) ≤ var[X]/α2

Chebychev’s inequality provides a bound on both tails of the
probability distribution of arbitrary values
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Quality bounds: Chernoff bounds

Theorem
Let X be a random variable that can be expressed as the sum of
n independent Bernoulli random variables with success
probabilities respectively pi.

Then, for any δ ∈ [0, 1]

P(X ≤ (1− δ)E[X]) ≤ e−E[X]δ2/2 (lower-tail bound)

and for any δ ∈ [0, 2e− 1]

P(X ≥ (1+ δ)E[X]) ≤ e−E[X]δ2/4 (upper-tail bound)

Chernoff bounds are tighter than Markov’s and Chebychev’s
inequalities, for sum of independent binary random variables
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Quality bounds: Hoeffding’s inequality

Theorem
Let X be a random variable that can be expressed as the sum of
n independent random variables, each bounded in [li,ui].

Then, for any θ ≥ 0

P(E[X]− X ≥ θ) ≤ e
− 2θ2∑

i(ui−li)2 (lower-tail bound)

P(X− E[X] ≥ θ) ≤ e
− 2θ2∑

i(ui−li)2 (upper-tail bound)

Hoeffding’s inequality is stronger than Markov’s and
Chebychev’s inequalities and applies to sum of independent
bounded random variables
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Massive domain scenario

In many applications, the data stream contains discrete
attributes with a very large number of distinct values (IP
adresses, emails, etc.)

Some simple queries can already be challenging

Has this item occurred earlier in the stream?
→ Finding duplicates

Does this item occur in set S?
→ Allowing only elements with a particular property
spam filtering: the elements of the stream are sender email
adresses, S are authorized senders (whitelisting)

Sampling schemes do not work well in such cases
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Hash functions

Hash functions
crucial ingredient of probabilistic streaming algorithms
provide reproducible randomness

Hash function h maps every value in the input domain
uniformly to a bit-string of fixed size
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Bloom filters

Does this item occur in set S?

Bloom filters provide a means to answer set-membership
queries probabilistically, when S cannot be stored explicitly in
a hash table

! False positives are possible, false negatives are not
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Bloom filters

A Bloom filter consists of

• a binary bit array B of length m,
whose elements are indexed from 0 to m− 1

• a set of k independent hash functions h1, . . . ,hk,
mapping elements from the data stream to an integer in
[0,m− 1] uniformly at random

0 1 2 3 4 5 6
0 0 0

m− 1
. . .

h1 h2 h3 . . . hk

i

S = {}
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Bloom filters

Theorem
Consider a Bloom filter B of length m with k hash functions.
Let n be the number of distinct values in S , and y ̸∈ S .
The probability that y is reported as a false positive is(

1− (1− 1/m)kn
)k
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Bloom filters

Besides set-membership queries, Bloom filters can be used for
alternative purposes

number of distinct values in a set
size of the union and of the intersection of different sets
limited tracking of deletions

A generalization for tracking occurrence counts of items is
known as the count-min sketch
A space-efficient, dedicated technique, for counting distinct
values is the Flajolet–Martin algorithm
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Count-min sketch

A count-min sketch consists of

• a numerical array C with m columns and k rows,
where elements of each row are indexed from 0 to m− 1

• a set of k pairwise-independent hash functions h1, . . . ,hk
mapping elements from the data stream to an integer in
[0,m− 1] uniformly at random, one for each row

0 1 2 3 4 5 6 m− 1

. . .

. . .

. . .

. . .

i

h1
h2
h3...
hk
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Count-min sketch

Theorem
Let E(v) be the estimate of the occurrence count of item v from
a count-min sketch of size k×m. Let nT be the sum of
occurrences counts of all items (number of elements received
so far), and G(v) the true occurrence count of item v. Then, with
probability at least 1− e−k

E(v) ≤ G(v) + nT · e
m .
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Counting distinct values

Estimating the number of distinct values (i.e. number of items)
How many distinct email addresses appear in the data stream?

Bloom filters can be used to count distinct values

The Flajolet–Martin algorithm provides a space-efficient
alternative when set-membership queries are not required
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Flajolet–Martin algorithm

Hash function h maps each element to a bit-string

The number of distinct values can be estimated by choosing
sufficiently large bit-strings, so that there are more possible
results of the hash function than there are values in the
domain
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Computing moments

The Alon–Matias–Szegedy (AMS) sketch provides an estimate
of the second-order moment when it is not possible to store
the occurrence counts for all distinct values

UEF//School of Computing ADA:Mining Streams 71/165



Alon–Matias–Szegedy sketch

Each sketch component Qi is associated with a 4-wise
independent hash function mapping elements from the data
stream to a binary value r(i)x ∈ {−1, 1} at random

Q =
∑
v∈V

cv · rv E[Q2] = F2 var(Q2) ≤ 2F22

A tighter estimate can be obtained by combining the m sketch
components using the mean-median trick
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Synopsis data structures

reservoir sampling generic queries

Bloom filters testing set-membership
Flajolet–Martin algorithm counting distinct values

count-min sketch counting item occurrences
Alon–Matias–Szegedy sketch estimating 2nd-order moment
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Finding frequent items

What is popular?

The count-min sketch and Alon–Matias–Szegedy sketch can be
used to determine frequent items (a.k.a. heavy-hitters)

Sketches are generally better at estimating the occurrence
counts of the more frequent items as compared to rare ones
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Finding frequent items: lossy counting algorithm

The stream is divided into segments of size w = ⌊1/ϵ⌋
When a new element arrives, the occurrence count of the
corresponding item is updated
When a segment boundary is reached, all counts are
decremented by 1, items with counts of zero are pruned

When n items have been processed
O(n/w) = O(nϵ) segments have been processed
Any count has been decremented at most O(nϵ) times

If ⌊nϵ⌋ is added to all counts, none would be underestimated
Reporting frequent items using this overestimate, might lead
to some false positives but no false negatives
The amount of false positives is adjusted by tuning ϵ
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Finding frequent itemsets: lossy counting algorithm

This algorithm can be generalized for finding frequent itemsets
by batching η segments

That is, η segments are read into memory and a frequent
itemset mining algorithm is applied
The counts of occurrence are maintained for itemsets instead
of items, and decremented by η after each batch

The value of η can be set depending on available memory

Combining frequent itemset mining and reservoir sampling
offers an alternative approach, which is better able to adjust to
concept drift

UEF//School of Computing ADA:Mining Streams 76/165



Finding frequent items

What is currently popular?

Use a decaying window to aggregate occurrences with decaying
weights, such that older occurrences are discounted

Consider a stream of elements x1, x2, . . . xt, where x1 is the first
element to arrive, i.e. oldest one, and xt the most recent one
Let γ be a small constant, e.g. 10−6 or 10−9

The exponentially decaying window for this stream is

t−1∑
i=0

xt−i(1− γ)i
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Classification



Classification

Concept-drift makes streaming classification challenging

One simple solution is to use a sample from the data stream,
e.g. obtained via decay-based reservoir sampling

The challenges of streaming are addressed during sampling
Any conventional classification algorithm can be used

The accuracy of the model might deteriorate over time
Might need to retrain periodically with latest sample
Monitor the performance of the model and trigger retraining

Ensemble methods can help address concept-drift, selecting
the model that is best suited for a particular portion of the
data stream
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Hoeffding trees

tree T initially consists of a single leaf (also the root)
for each new incoming element x do

sort x to the leaf ℓ of T where it belongs
update the occurrence counts in ℓ

label ℓ with the majority class among its elements
if ℓ contains elements from different classes then

generate candidate splits using the occurrence counts in ℓ

sa, sb ← scores of the first and second best candidate splits
ϵ←

√
R2 · ln(1/δ)/(2nℓ)

if sb − sa > ϵ then
replace ℓ by the best split
for each branch of the split do

add a new leaf with empty occurrence counts
return T
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Mining data streams

Mining data streams presents several challenges
high volume massive domain

resources constraints concept-drift

A high-quality synopsis of the data stream goes a long way

Choice of synopsis depends on the application at hand

task what queries need to be answered
data number and expected domain size of attributes

resources amount of memory available, desired latency

Results are estimates, it is important to quantify their accuracy

UEF//School of Computing ADA:Mining Streams 80/165



Mining temporal data



Temporal data

sequential data (only the order matters) gene sequences, text
time-series (explicit time) stock values, network monitoring

regularly sampled stock values, weather data
irregularly sampled customer transactions, system logs

real values stock values, population monitoring
symbolic values customer transactions, text

univariate electrocardiography (ECG)
multivariate electroencephalography (EEG)
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Temporal data analysis

Temporal data can be viewed as contextual data
Contextual attribute(s) provide context for the measurements,
reference points e.g. date, incremental identifier
Behavioral attribute(s) represent the actual measurements

Multivariate time-series data
A time-series of length n and dimensionality m contains m
numerical feature values at each of n timestamps t1, . . . , tn.

Multivariate discrete sequence data
A discrete sequence of length n and dimensionality m contains
m discrete feature values at each of n timestamps t1, . . . , tn.

The data point received at time ti is x(i) = ⟨x
(i)
1 , x(i)2 , . . . , x(i)m ⟩
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Tasks

Clustering group together things that look alike
Classification identify things that exhibit prototypical behavior
Outlier detection identify things that exhibit atypical behavior

Frequent pattern mining find frequently occurring patterns
Forecasting predict future behavior

Thing can be

• data point or segment within sequence or time-series
• sequence or time-series within database
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Distance vs. similarity

Distance
Distance function over domain R d: R×R → R+

Distance is smaller when objects are more similar

Similarity
Similarity function over domain R s : R×R → [0, 1]
Similarity equals 1 when objects are identical

Induced similarity functions

sd = 1− d /∆ where ∆ is the largest possible distance

sd = e− d /δ2 where parameter δ controls the decay rate
and d does not need to be bounded
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Distances and metrics

A distance function d is a metric
if and only if it satisfies the following properties

non-negativity d(x, y) ≥ 0 (a.k.a. separation axiom)
coincidence axiom d(x, y) = 0 if and only if x = y

symmetry d(x, y) = d(y, x)
triangle inequality d(x, y) ≤ d(x, z) + d(z, y)

Some tasks can be performed more efficiently if the distance
function is a metric
Some algorithms expect a distance function that is a metric
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Distances: Dynamic Time Warping

Pair of sequences or time-series over domain R

SX = ⟨x(1), x(2), . . . , x(nX)⟩ ∈ RnX and SY = ⟨y(1), y(2), . . . , y(nY)⟩ ∈ RnY

Distance function over domain R d: R×R → R+

Dynamic Time Warping (DTW) finds a mapping between
positions that minimizes the total distance
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Distances: Dynamic Time Warping

Pair of sequences or time-series over domain R

SX = ⟨x(1), x(2), . . . , x(nX)⟩ ∈ RnX and SY = ⟨y(1), y(2), . . . , y(nY)⟩ ∈ RnY

Distance function over domain R d: R×R → R+

Dynamic Time Warping (DTW) DDTW(SX,SY) = DTWSX,SY(nX,nY)
where DTW is defined recursively

DTWSX,SY(i, j) =

d(x(i), y(j)) + min


DTWSX,SY(i, j− 1) repeat x(i)
DTWSX,SY(i− 1, j) repeat y(j)
DTWSX,SY(i− 1, j− 1) repeat neither

with DTWSX,SY(0, 0) = 0,
DTWSX,SY(i, 0) =∞, ∀i > 0 and DTWSX,SY(0, j) =∞, ∀j > 0
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Part IV

Mining Sequences
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Distances



Distances

Pair of sequences over domain R

SX = ⟨x(1), x(2), . . . , x(nX)⟩ ∈ RnX and SY = ⟨y(1), y(2), . . . , y(nY)⟩ ∈ RnY

Distance function over domain R d: R×R → R+

Univariate data
Sequence of items

abacacdcac
vs.

Multivariate data
Sequence of itemsets

C,S,C,CW,C,CW,CRW,CW,C,CW
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Distances: Dynamic Time Warping

Pair of sequences SX and SY, distance function d

Dynamic Time Warping (DTW) finds a mapping between
positions that minimizes the total distance

Distance DDTW(SX,SY) = DTWSX,SY(nX,nY)
where DTW is defined recursively

DTWSX,SY(i, j) =

d(xi, yj) + min


DTWSX,SY(i, j− 1) repeat xi
DTWSX,SY(i− 1, j) repeat yj
DTWSX,SY(i− 1, j− 1) repeat neither

with DTWSX,SY(0, 0) = 0,
DTWSX,SY(i, 0) =∞, ∀i > 0 and DTWSX,SY(0, j) =∞, ∀j > 0
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Distances: Edit distance

Pair of sequences SX and SY

Edit distance finds the least expensive series of operations to
transform SX into SY

Basic edit operations are deletion, insertion and substitution
each with an associated cost, respectively cdel, cins and csub
One can use value-specific substitution costs, e.g. cp→b < cr→b
For the distance to be symmetric, each operation must have a
reverse with equal cost

Levenshtein distance is the most common edit distance and a
metric, obtained by setting cdel = cins = csub = 1
Damerau–Levenshtein distance is a variant with fourth
operation, transposition of two adjacent elements
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Distances: Longest Common Subsequence

Pair of sequences SX and SY

Longest Common Subsequence (LCS) finds a longest
noncontiguous subsequence occurring in both SX and SY

! The length SLCS(SX,SY) of the longest common subsequence
is a similarity measure

Edit distance with costs cdel = 1, cins = 1 and csub = 2 satisfies

DED(SX,SY) = nX + nY − 2 · SLCS(SX,SY)
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Sequence alignment

Carefully match items to find optimal alignment of sequences

Multiple sequence alignment
Computationally expensive problem
Especially important in bioinformatics, to search and compare

• amino-acid sequences in proteins
• nucleotides sequences in DNA and RNA

Needleman–Wunsch global alignment algorithm
Smith–Waterman local alignment algorithm

BLAST Basic Local Alignment Search Tool
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Vector-space representations

Bag of Word vector-space representation of sequences
→ position information is completely lost

Instead of single items, use short contiguous subsequences
a.k.a. n-grams (mostly in computational linguistics)
or k-mers (mostly in bioinformatics)
→ position information is partially preserved
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Distances

Carefully match items to find optimal alignment of sequences

vs.

Look at relative proportions of different items, ignoring order

Choice of distance/similarity measure depends on application,
length and number of sequences, size of the domain
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Frequent pattern mining



Frequent pattern mining

The problem of mining frequent subsequences can be seen as
the temporal analog of frequent itemset mining

Originally for market basket analysis
Can be applied to event sequences, logs, texts,
gene sequences, etc.
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Subsequence

Sequence of items abacacdcac

Let SX = x1 . . . xn and SY = y1 . . . yk be two sequences of items.
SY is a subsequence of SX if there is ⟨i1, i2, . . . , ik⟩ such that
i1 < i2 < · · · < ik and yr = xir for r = 1, . . . , k

vs.

Sequence of itemsets C,S,C,CW,C,CW,CRW,CW,C,CW

Let SX = X1, . . . , Xn and SY = Y1, . . . , Yk be two sequences of
itemsets. SY is a subsequence of SX if there is ⟨i1, i2, . . . , ik⟩
such that i1 < i2 < · · · < ik and Yr ⊆ Xir for r = 1, . . . , k

UEF//School of Computing ADA:Mining Sequences 96/165



Support

Database of sequences

W,S,W,S,W
W,S,C,S,W,CW,CRW,CR
CRW,CW,C,CW,C,W,S,W,S,C,S
...

The support of subsequence S in database D is the number of
sequences in D that contain S as a subsequence

vs.

Single sequence W,S,W,S,W,S,C,S,W,CW,CRW,…

The support of subsequence S in sequence D is the number of
occurrences of S in D

! Variations in terminology: support, support set, frequency
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Sequential pattern mining

Given a dataset D, which can be either a single long data
sequence or a database containing multiple sequences
and a minimum support threshold θ

the problem of sequential pattern mining is to determine all
subsequences whose support with respect to D is at least θ
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GSP algorithm

k← 1
Fk ← {all frequent items}
while Fk ̸= ∅ do

Generate Ck+1 by joining pairs of sequences fromFk
Fk+1 ← {S ∈ Ck+1, suppD(S) ≥ θ}
k← k+ 1

return
⋃
iFi

This is a level-wise algorithm, enumerating subsequences in
order of increasing length

Since support counting is expensive, candidates must be
generated carefully to ensure both exhaustivity and efficiency
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Markov models



Modeling sequences

Consider a sequence S = s1s2 . . . si . . . sn

The generative probability of the sequence is

P(s1 . . . sn) = P(s1) · P(s2 | s1) . . .P(sn | s1 . . . sn−1)

Short memory property
For a sequence S = s1 . . . si . . . , the probability P(si | s1 . . . si−1)
is well approximated by P(si | si−k . . . si−1) for some small value
of k

To reliably predict the next element in the sequence, we only
need to look at the last few, most recent elements
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Modeling sequences

Build a modelM that can estimate PM(s | S) for any element s
and sequence S of size k
→ Compute the probability of arbitrary sequences
→ Compute the probability of arbitrary elements conditioned
on recent subsequence
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Markov chains

Represent the sequence generation process with state
transitions in a Markov chain defined over an alphabet Σ
consisting of subsequences of size k

first order model last element in the sequence
second order model last two elements in the sequence
kth order model last k elements in the sequence

Finite number of states: special kind of finite state automaton
Discrete-time: at each time step the system moves from one
state to the next
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Markov chains

A Markov chain is defined by

Alphabet Σ, the set of distinct states of the system
Initial probabilities π, πi is the probability to start in state i
Transition probabilities A, aij is the probability to move from

state i to state j

π and A are row-stochastic,
∑
i∈Σ

πi = 1 and
∑
j∈Σ

aij = 1

The probabilities in π and A are estimated from counts over
the original sequence dataset
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Markov chains vs. hidden Markov models

Markov chains (MC)
The state of the system is fully observable
The correspondence between the current state of the system
and the generated sequence element is deterministic

Hidden Markov models (HMM)
The state of the system is partially observable
The correspondence between the current state of the system
and the generated sequence element is probabilistic
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Hidden Markov models

A hidden Markov model is defined by

States alphabet Q, the set of distinct states of the system
Observations alphabet Σ, the set of distinct observations
Initial probabilities π, πi is the probability to start in state i
Transition probabilities A, aij is the probability to move from

state i to state j
Emission probabilities B, bij is the probability that state i

generates observation j

π,A and B are row-stochastic,
∑
i∈Q

πi = 1,
∑
j∈Q

aij = 1 and
∑
j∈Σ

bij = 1
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Hidden Markov models

There are three fundamental problems associated with HMMs

Evaluation
Given modelM and observation sequence O
determine PM(O)

Explanation
Given modelM and observation sequence O
determine the most likely state sequence X

Training
Given observation sequence O and set of states Q
determine the modelM that maximizes PM(O)
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Part V

Mining Time-Series
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Data Preparation



Data preparation

• Linear interpolation
• Binning, a.k.a. piecewise aggregate approximation (PAA)
• Moving-average smoothing
• Exponential smoothing
• Range-based normalization
• Standardization
• Discretization
• Symbolic aggregate approximation (SAX)
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Transforms



Discrete wavelet transform (DWT)

For simplicity, assume the length n of the series is a power of 2

The decomposition defines 2k−1 weights of order k, for
k = 1, . . . , log2(n)

Let Ψ(k, i) be the ith weight of order k, corresponding to the
segment of the time-series between positions

(i− 1) · n
2k−1

+ 1 and i · n
2k−1

Let Φ(k, i) be the average value of this segment

Ψ(k, i) = Φ(k+ 1, 2i− 1)− Φ(k+ 1, 2i)
2

Φ(1, 1) is the global average
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Discrete wavelet transform (DWT)

Each row of matrix W contains a basis vector, i.e. a wavelet
Vector a contains the weights for the different wavelets

time
0

2

4

0.72

0.
60

−0.24

−
0.
19

0.08−0.05

0.
04

0.
00

0.72
−0.24
0.08
−0.05
0.60
0.04
0.00
−0.19

a = W =

−0.19
0.00
0.04
0.60
−0.05
0.08
−0.24
0.72





1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1
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Discrete wavelet transform (DWT)

The original time-series can be reconstructed as aT ·W

S = aT ·W =
n∑
i=1

aiw(i) =
n∑
i=1

ai
∥∥∥w(i)

∥∥∥ w(i)∥∥w(i)
∥∥

ai
∥∥w(i)∥∥ are the normalized weights

w(i)/
∥∥w(i)∥∥ are the normalized basis vectors
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Discrete wavelet transform (DWT)

The original time-series can be reconstructed as aT ·W

S = aT ·W =
n∑
i=1

aiw(i) =
n∑
i=1

ai
∥∥∥w(i)

∥∥∥ w(i)∥∥w(i)
∥∥

Dropping some weights reduces the dimensionality of the
representation
The sum of squared normalized weights is the energy retained
in the approximated time-series
Retaining the weights with largest normalized values allows to
minimize the reconstruction error
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Discrete wavelet transform (DWT)

Dropping the smallest normalized weights provides a compact
representation with minimum reconstruction error

time
0

2

4

E = 0.9952
1.26

−1.06

−1.23
0.55

−0.96

−0.31

0.54

0.
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−0.57

−0.13

−0.50
−0.35

−0.47

0.
60

−
0.
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−0.17

0.
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−
0.
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−
0.
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−
0.
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33
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0.
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−
0.
29

0.
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Example

time
0

10

20

30

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Discrete wavelet transform (DWT), keeping 1/4 of dimensions

⟨13.0, 31.0, 22.0, 22.0, 11.5, 11.5, 11.5, 11.5,
8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5⟩

energy retained = 95.55%
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Example

a = W = E =

−9.0
2.0
0.0
−3.0
1.0
1.0
−1.0
−3.0
0.0
−1.5
−3.0
−1.0
5.25
2.5

4.125
12.625





1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





162.0
8.0
0.0
18.0
2.0
2.0
2.0
18.0
0.0
9.0
36.0
4.0

220.5
50.0

272.25
2550.25
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Example

time
0

10

20

30

⟨13, 31, 24, 20, 10, 10, 10, 16, 9, 7, 15, 13, 4, 6, 4, 10⟩

Discrete wavelet transform (DWT), keeping 1/4 of dimensions

⟨13.0, 31.0, 22.0, 22.0, 11.5, 11.5, 11.5, 11.5,
8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5⟩

energy retained = 95.55%
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Discrete Fourier transform (DFT)

Given a time-series SX = ⟨x0, x1, . . . , xn−1⟩

The discrete Fourier transform decomposes the time-series
into a collection of sinusoids with associated coefficients
Each Fourier coefficient fk is a complex value
The original time-series can be reconstructed by summing all
the weighted sinusoids

fk =
n−1∑
r=0

xr ·
(
cos(2πrk/n)− i sin(2πrk/n)

)
for k = 0, . . . ,n− 1

xr =
1
n

n−1∑
k=0

fk ·
(
cos(2πrk/n)− i sin(2πrk/n)

)
for r = 0, . . . ,n− 1

i denotes the imaginary number, i2 = −1
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Discrete Fourier transform (DFT)

Each Fourier coefficient is a complex value fk = ak + ibk
The Fourier coefficients are such that an−k = ak and
bn−k = −bk for k > 0

Therefore, the imaginary parts in the reconstructed series
cancel out
Furthermore, the n/2 first complex coefficients need to be
retained to reconstruct the original series exactly

Dropping the coefficients with low energy a2k + b2k provides a
compact approximate representation
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Discrete Fourier transform (DFT)

Weekly average temperature in Kuopio from 2014 to 2018

time

0

−20

20

365 d

260 d

152 d

96 d

E = 0.9859 (1/2 of dims)
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Models for time-series



Models for univariate time-series

Given a univariate time-series SX = ⟨x1, x2, . . . , xn⟩, with xi ∈ R,
the aim is to predict xn+1
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Stationarity

A stationary process is a stochastic process whose
unconditional joint probability distribution does not change
when shifted in time

In a strictly stationary time-series, the probabilistic
distribution of the values in any time interval [a,b] is identical
to that in the shifted interval [a+ τ,b+ τ ] for any value of the
time shift τ

In a weakly stationary time-series, the mean and
autocovariance are constant in time
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Differencing

In some cases, the original time-series is not stationary
but the difference between successive values is

Converting an original sequence into a sequence of differences
is called differencing, e.g. first-order differencing of SX

SX′ = ⟨x′1, x′2, . . . , x′n−1⟩, where x′i = xi − xi−1

Higher order differencing can also be used
e.g. second-order differencing of SX

SX′′ = ⟨x′′1 , x′′2 , . . . , x′′n−2⟩, where x′′i = x′i − x
′
i−1

= xi − 2xi−1 + xi−2

For geometrically increasing series, the logarithm function is
applied before differencing
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Autocovariance

The covariance between two real-valued random variables X
and Y is

cov(X, Y) = E[(X− E[X])(Y− E[Y])]

The autocovariance at lag τ of time-series X = x1, x2, . . . , xn is
the covariance between the time-series and itself shifted by τ

The autocorrelation at lag τ of time-series X is the normalized
covariance covt(Xt, Xt+τ )/ vart(Xt) computed as

Rτ (X) =
(Xt − µX) · (Xt+τ − µX)

n · (Xt − µX)2
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Autocorrelation

IBM stock prices from Sept. 2013 to Sept. 2014

time

170

200

0

1

lag = 0 lag = 5 lag = 10 lag = 50 lag = 100 lag = 150
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Auto-regressive models

Auto-regressive model AR(p) xi =
p∑
k=1

ak · xi−k + c+ ϵi

Moving-average model MA(q) xi =
q∑
k=1

bk · ϵi−k + c+ ϵi

ARMA(p,q) xi =
p∑
k=1

ak · xi−k +
q∑
k=1

bk · ϵi−k + c+ ϵi

ARIMA(p,d,q) x′i =
p∑
k=1

ak · x′i−k +
q∑
k=1

bk · ϵi−k + c+ ϵi
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Box–Jenkins modelling procedure

Model identification

1. Use differencing to make the time-series stationary
2. Determine the most suitable model and find appropriate
values for q and p

• by looking at ACF and PACF respectively, or
• by using Akaike’s Information Criterion (AIC)

Model estimation
Estimate the parameters of the model from historical data

Model validation
Check that the model is adequate for the time-series
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Models for multivariate time-series

In practice, time-series often consist of multiple variables

In addition to correlation across time, i.e. individual variables
being autocorrelated, there might be significant correlations
across the variables

One approach to build models for this scenario is to use
hidden variables

The multiple input time-series are transformed into a smaller
number of uncorrelated time-series, typically using principal
component analysis (PCA)

A model is built for each such time-series individually
The models are used to predict hidden values, which are then
mapped back into the original representation
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Models for time-series

Artificial neural networks (ANN) offer a flexible alternative
e.g. long short-term Memory (LSTM) recurrent neural networks
(RNN) architecture

Have fewer restrictions
Can model non-linear functions

UEF//School of Computing ADA:Mining Time-Series 124/165



Periodicity

Time-series might exhibit regularly recurrent, cyclic, behavior
i.e. display periodicity (a.k.a. seasonality)

Seasonal differencing xi − xi−p for some integer p > 1, i.e.
taking the difference between values one period p apart, can
be used to remove the effect of seasonality

UEF//School of Computing ADA:Mining Time-Series 125/165



Periodicity

Given a time-series SX = ⟨x0, x1, . . . , xn−1⟩

The discrete Fourier transform decomposes the time-series
into n− 1 periodic sinusoidal components

xr =
1
n

n−1∑
k=0

fk ·
(
cos(2πrk/n)− i sin(2πrk/n)

)
for r = 0, . . . ,n− 1

The kth component, corresponding to coefficient fk = ak + ibk,
has periodicity n/k and amplitude

√
a2k + b2k

If a component has a high amplitude compared to the others,
the entire series will be dominated by its periodic behavior

Only components such that k ∈ [β,n/α] have period at least
α ≥ 2 and appear at least β ≥ 2 in the series
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Part VI

Mining spatial data
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Spatial data

grid data (only the order matters) image
geo-located data (explicit location) demographic records

regularly sampled magnetic resonance imaging (MRI),
positron emission tomography (PET)

irregularly sampled disease outbreaks, forest fires

real values surface temperature
symbolic values landcover records

spatial image, topographic records
spatio-temporal video, surface temperature, GPS traces
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Spatio-temporal data

Spatio-temporal data can be viewed as contextual data
Contextual attributes provide context for the measurements,
reference points e.g. date and geographic coordinates,
incremental identifiers
Behavioral attribute(s) represent the actual measurements

The dataset consists of n data points

D = ⟨(p(1), x(1)), (p(2), x(2)), . . . , (p(n), x(n))⟩

where x(i) = ⟨x(i)1 , x(i)2 , . . . , x(i)m ⟩ and p(i) = ⟨p
(i)
1 ,p(i)2 , . . . ,p(i)c ⟩

contain the values of the m behavioral attributes and of the c
contextual attributes, respectively, for the ith data point
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Measuring distances

The distance between the locations of two data points i and j,
d(p(i),p(j)), might be measured using e.g. Euclidean or
Manhattan distance

Coordinates might be provided as latitude and longitude
! The length of a degree of longitude varies with the latitude
Distances might be best measured using the great circle
distance (a.k.a. orthodromic distance)
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Interpolation

Interpolation can be used to produce a dataset with equally
spaced coordinates, i.e. arranged along a grid
Map datasets from different grids, e.g. with different
resolutions, to common grid

Inverse distance weighting
Let vp denote the value at the point with coordinates p
Given a sample of point coordinates P for which the values are
known, the value at coordinates q is estimated as

vq =

vp if ∃p ∈ P, d(q,p) = 0∑
p∈P vp/ d(q,p)∑
p∈P 1/ d(q,p)

otherwise
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Density estimation

Considering discrete attribute j and a value a in its domain,
we collect in P the coordinates of data points that are
occurrences of the corresponding item, i.e.

P = {p(i) for i = 1 . . .n, such that x(i)j = a}

Kernel density estimation methods produce density profiles,
similarly to histogram techniques, but applying smoothing

The density of the item at coordinates q is estimated as

vq =
1
|P|

∑
p∈P

Kh(q,p)

using for instance the Gaussian kernel of width h

Kh(q,p) =
1

(
√
2π · h)c

e−∥q−p∥22/(2h2)
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Triangulation

The Delaunay triangulation and the Voronoi diagram of a set
of points P can be used to find the neighbors of a point,
compute interpolated values, turn the data into a graph, etc.

They have multiple applications in a wide range of fields
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Contours and edges

Compute value differences across neighboring points to
identify areas at which value changes sharply

Edge detection methods aim at detecting points in an image at
which value changes sharply

A contour line or isoline of a function of two variables is a
curve along which the function has constant value

Consider a behavioral attribute as function of the coordinates
Contours are typically plotted for values spaced regularly
across the domain of the attribute
Close contours indicate steep slopes, i.e. regions where the
value of the attribute changes sharply
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Shapes to time-series

The contour of a shape can be transformed into a time-series
Measure the distance from the centroid of the shape to its
boundary, doing a clockwise sweep
E.g. taking 360 different regularly spaced angular samples
produces a series of 360 numerical values

The time-series is referred to as the centroid distance
signature of the shape

Rotations of the shape result in cyclic translation of the series
Mirror images of the shape result in a reversal of the series
Need to be taken into account in the analysis process
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Discrete wavelet transform (DWT)

For numerical data arranged into a grid, spatially adjacent
values are often very similar, storing all the values is wasteful,
redundant

The discrete wavelet transform can be generalized to multiple
contextual attributes
Differencing is applied across contiguous areas of the grid
Division is performed while alternating between the axes of
the grid, i.e. the contextual attributes
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Trajectory data

Object tracking
The position of a vehicule, robot, person, animal, etc. can be
recorded over time through a variety of means, including the
global positioning system (GPS), video, wireless triangulation,
radio frequency identification (RFID)

A trajectory is a time-series of geo-locations
Time is the contextual attribute
Spatial coordinates constitute behavioral attributes

Transform a trajectory into multidimensional data
Compute the discrete wavelet transform coefficient for each
spatial coordinate separately
Combine coefficients vectors across the different coordinates

UEF//School of Computing ADA:Spatial Data 137/165



Trajectory data

Like other time-series, trajectories can be compared using the
dynamic time warping distance (DTW)

DDTW(SX,SY) = DTWSX,SY(nX,nY)
where DTW is defined recursively

DTWSX,SY(i, j) =

d(x(i), y(j)) + min


DTWSX,SY(i, j− 1) repeat x(i)
DTWSX,SY(i− 1, j) repeat y(j)
DTWSX,SY(i− 1, j− 1) repeat neither

with DTWSX,SY(0, 0) = 0,
DTWSX,SY(i, 0) =∞, ∀i > 0 and DTWSX,SY(0, j) =∞, ∀j > 0

where d(x(i), y(j)) is the distance between the position at time i
in trajectory SX and the position at time j in trajectory SY
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Frequent trajectory patterns

A key problem in analysing trajectories is to identify frequent
sequential paths

1. Transform a trajectory into a univariate discrete sequence
through grid-based discretization

2. Apply a sequential pattern mining algorithm (e.g. GSP) to
the sequence(s)

Spatial tile transformation
Discretize each coordinate and assign a symbol to each interval
Each tile is identified by the combination of symbols along the
different dimensions
Build the sequence associated to a trajectory by listing the
identifiers of the tiles it traverses
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Frequent trajectory patterns

A key problem in analysing trajectories is to identify frequent
sequential paths

1. Transform a trajectory into a univariate discrete sequence
through grid-based discretization

2. Apply a sequential pattern mining algorithm (e.g. GSP) to
the sequence(s)

Spatio-temporal tile transformation
Divide the time range into intervals and assign them identifiers
For a given trajectory, list for each time interval the identifiers
of the tiles in which at least a chosen amount of the interval
was spent, tagged with the corresponding interval identifier
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Part VII

Outlier Analysis
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Basics



What is an outlier?

An outlier is an observation which deviates so much
from the other observations as to arouse suspicions
that it was generated by a different mechanism.

D. M. Hawkins, 1980
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What is an outlier?

Outliers can be seen as a complementary concept to clusters

Clusters are groups of data points that are similar
Outliers are individual data points that are not similar to the
rest of the data

Outliers are also known as anomalies, abnormalities,
discordants or deviants
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Applications

Credit card fraud detection
Quality control and fault detection
Web log analytics and intrusion detection
Medicine and public health
Sports statistics

…
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Swamping and masking

Swamping happens when the number of normal instances
increases or they become scattered so that normal instances
are wrongly identified as outliers

Masking happens when the number of outliers increases,
forming dense clusters of anomalous data points and
concealing their own presence

Both issues are consequences of too large amounts of data
used for the detection of outliers
This can be solved by using subsampling
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Analysis approaches

Reference set with respect to which normality is evaluated

Global approaches
The reference set contains all other data points
Assumption: single normal generating mechanism
Drawback: other outliers in the reference set may falsify results

Local approaches
The reference set consists of a selected subset of data points
No assumption on number of normal generating mechanisms
Drawback: relies on appropriate choice of reference subset

Some approaches let the reference set vary from a single data
point (local) to the entire dataset (global) automatically or
depending on a user-defined parameter
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Various detection methods

Depth-based methods
Deviation-based methods
Information-theoretic methods
Density-based methods using histograms

using fixed radius neigborhood
Statistical tests extreme values
Distance-based models k-NN distance

local outlier factor (LOF)
instance-specific Mahalanobis distance
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Univariate extreme values

Assuming a univariate Gaussian distribution, the parameters
are estimated as the mean µ and standard deviation σ over all
data points in D

The probability density function of the Gaussian distribution is

fD(x) =
1

σ
√
2π
e

−(x−µ)2

2σ2

For a data point x the standardized value z = (x− µ)/σ is
called its z-number

Points in the lower tail correspond to large negative z-numbers
Points in the upper tail correspond to large positive z-numbers
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Univariate extreme values

The probability density function can be written in terms of the
z-number

fD(x) =
1

σ
√
2π
e

−z2
2

Hence, the cumulative Gaussian distribution can be used to
determine the area of the tail that is more extreme than z
When the number of available data points n is limited, Student
t-distribution with n degrees of freedom is used instead

Points are typically declared outliers if the absolute value of
their z-number is greater than 3
i.e. if they deviate more than 3 times the standard deviation
from the mean
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Mahalanobis distance

The Mahalanobis distance from data point x to a distribution
with mean µ and covariance Σ is

DΣ(x,µ) =
√

(x− µ)TΣ−1(x− µ)

Can be seen as a multidimensional extension of the z-number,
measuring the number of standard deviations by which the
data point differs from the mean of the distribution

Computing the Mahalanobis distance is equivalent to
computing the Euclidean distance after rotating the data to the
principal directions and dividing each of the transformed
coordinate by the corresponding standard deviation
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Multivariate extreme values

The probability density function can be written in terms of the
Mahalanobis distance

fD(x) =
1√

det(Σ) · (2π)m
e−(DΣ(x,µ))2/2

Each of the independent component of the Mahalanobis
distance can be modeled as a one-dimensional standard
normal distribution N (0, 1)

The sum of squares of m such variables follows a χ2

distribution with m degrees of freedom

The cumulative probability of the region of the χ2 distribution
with m degrees of freedom for which the value is greater than
DΣ(x,µ) can be reported as the extreme value probability of x
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Clustering models

Assumption: clustering aims at finding groups of similar points,
whereas outliers are not similar to the rest of the data

Assuming that k clusters have been detected
The Mahalanobis distance from point x to the jth cluster, having
mean µj and covariance matrix Σj, is

DΣj(x,µj) = (x− µj)
TΣ−1

j (x− µj)

Report minj=1,...,k DΣj(x,µj) as outlier score of point x
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Distance-based models: k-NN distance

Assumption: outliers are not similar to the rest of the data,
i.e. they are far apart from their neighbors

Report the distance from a point to its k-nearest neighbor as
the outlier score
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Distance-based models: k-NN distance

Distance-based models have a finer granularity than clustering
models, but it comes at the cost of higher computational
complexity

Computing the k-nearest neighbor distance requires O(n) time
for each data point when a sequential scan is used,
i.e. O(n2) time for the entire dataset, which is not scalable

Early termination

Two steps method with sample
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Distance-based models: k-NN distance

The k-NN distance is sensitive to the neighborhood density
Need for corrections to account for local variations in density

Local outlier factor (LOF)
Normalizes distances with average local density
Sometimes seen as a density-based method
Sometimes as a distance-based method
Both types of methods rely on proximity
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Local outlier factor

Let ∆k(x) denote the distance from x to its k nearest neighbor
Let Nk(x) denote the points within distance ∆k(x) of x

Rk(x, x′) = max(d(x, x′),∆k(x′))

ARk(x) =
1

|Nk(x)|
∑

x′∈Nk(x)
Rk(x, x′) LOFk(x) =

1
|Nk(x)|

∑
x′∈Nk(x)

ARk(x)
ARk(x′)

Typically, LOFk values for points in a cluster are close to 1 if the
points are distributed homogeneously
Points with LOFk ≫ 1 are reported as outliers

In practice, determine the best neighborhood size k by taking
the maximum LOFk over a range of values
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Instance-specific Mahalanobis distance

Determine the k-neighborhood of point x following an
agglomerative approach

N← {x}
for i = 1, . . . , k do

N← N ∪ {argminx′∈D\Nminu∈N d(x′,u)}

return N

Use DΣN(x,µN) as outlier score for point x, with µN and ΣN
respectively the mean and covariance matrix of the
k-neighborhood N of x, i.e. the Mahalanobis distance that
accounts for the local covariance structure
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High-dimensional data



High-dimensional approaches

As dimensionality increases the distances between pairs of
points become more similar, outliers become increasingly
more difficult to tell apart from normal points
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High-dimensional approaches

Outliers typically present anomalous behavior only in a small
subset of attributes while other dimensions are irrelevant to
the anomaly detection process

Subspace outlier detection
An outlier is defined in association with one or more
subspaces that are specific to it
Consider projections into lower dimensional subspaces to
detect associated outliers
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Grid-based sparsity coefficient

Partition each attribute into p bins containing each an equal
fraction f = 1/p of data points

Selecting k attributes and one bin from each defines a
k-dimensional grid cell or cube

The sparsity coefficient for cube R containing nR data points is

S(R) = nR − n · f2√
n · fk · (1− fk)

A negative sparsity coefficient indicates that the number of
points in the cube is significantly lower than expected
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Genetic algorithm for subspace outliers

The process starts with a population of q random individuals
and iteratively repeats the process of selection, crossover,
mutation
Individuals in the population progressively improve in fitness
and become more similar
A position in the encoding has converged when a predefined
fraction of the population has the same value for that position
The population has converged when all positions in the
encoding have converged

Keep track of the best solutions encountered, i.e. cubes with
most negative sparsity coefficients
Data points contained in those cubes are reported as outliers
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Isolation-based methods: Isolation trees

Assumption: outliers are few, not similar to the rest of the data
and located in sparse regions, hence suceptible to isolation

Grow binary decision trees at random until all distinct data
points are in a node of there own

Data points that are reached via short paths are reported as
outliers
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Temporal data



Outliers in temporal data

In the context of temporal data, outlier detection is also known
as event detection, especially when performed in real-time

A sudden change at a given timestamp of a time-series or
sequence is referred to as contextual outlier or point outlier

An anomalous pattern of consecutive data points is referred to
as collective outlier, as well as shape outlier in the context of
time-series and combination outlier in the context of discrete
sequences
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Point outliers

The detection of point outliers is closely related to forecasting

A data point is considered an outlier if it deviates significantly
from its forecasted, i.e. expected, value
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Combination outliers

The aim is to identify unusual combinations of values
appearing in a sequence

Small windows of a chosen size, referred to as comparison
units, are extracted from the sequence
Distances between comparison units can be computed using
e.g. dynamic time warping (DTW) distance, edit distance, etc.

The k-nearest neighbor distance can be used as outlier score
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Shape outliers: HOTSAX

Shape outliers are defined over windows of the time-series
Distance to k-nearest neighbors is used as outlier score

1. Extract all candidates by sliding a window of length w over
the time-series

2. Compute the Euclidean distance from each candidate to
all other non-overlapping windows

3. Report candidates with highest k-nearest neighbor
distance as outliers

Use non-overlapping windows to prevent trivial matches
Pruning and early termination are used to improve efficiency
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