Introduction to
Algorithmic Data Analysis

Esther Galbrun
Autumn 2023

\ UNIVERSITY OF
\’ EASTERN FINLAND

Last updated on 2023-07-04 10:42

Part |

Frequent Itemset Mining

UEF//School of Computing ~ JADe:FIM 1/31

Problem

Frequent Itemset Mining

Discover items that often co-occur in a dataset

Classical setting: Shopping basket data

- Each product of the supermarket is an item
- Record customer transactions as sets of items

- Identify products that are often bought together
Frequent itemset {butter, bread, ham, pickles}

- Extract rules that capture typical buying behaviour
Association rules {bread, ham} = {butter, pickles}

- Insights for marketing and shelf placement

UEF//School of Computing JADe:FIM 2/31

Frequent Itemset Mining

Discover items that often co-occur in a dataset

Shopping basket data Customer transactions
Identify products often bought together

Text mining Bag of word model
Identify co-occurring terms and keywords

More complex data types (spatio-)temporal data, graph data

Other analysis tasks Building block for clustering,
classification, outlier detection

UEF//School of Computing JADe:FIM 3/31

Pizzeria example

A pizzeria offers to compose your pizza by freely choosing
ingredients among ham, jalapeno, mozzarella, olives and tuna

To put together a menu, the pizzaiolo would like to know what
are favorite combinations

UEF//School of Computing JADe:FIM 4/31

The database 7T is a collection of sets, called transactions,
from a universe U of items

T ={T1,T2,...,Tn}, where T, C U, Vk € [1,n]

The total number of items is m = |U]

If we fix an order over U, each transaction can be represented
as a binary vector of size m

Then, the database can be represented as a binary matrix with
n rows and m columns

Each transaction has a unique identifier, its tid

UEF//School of Computing JADe:FIM 5/31

Pizzeria example

The universe of items Is the set of five ingredients
{ham, jalapeno, mozzarella, olives, tuna}

For short, U= {h,j,m, o0, t}

Each pizza constitutes a transaction, represented by the
corresponding set of ingredients

For instance, a ham and mozzarella pizza is represented as
T = {h,m}, also simply denoted hm

Ordering the items alphabetically according to corresponding
ingredient names, this pizza is represented by the binary
vector (1,0,1,0,0), also simply written 10100

UEF//School of Computing ~ JADe:FIM 6/31

Pizzeria example

The database then records all pizzas sold

tids pizzas sets matrix
1) ham mozzarella olives {h,m, 0} [m | |l
2) mozzarella {m} OOmOO
3) jalapeno mozzarella {3, m} | | [
4) ham jalapeno mozzarella olives {h,3,m, 0} [1 | | [
5) ham jalapeno mozzarella olives {h,j,m, 0} HEEEEC
6) ham {h} [!
7) ham jalapeno mozzarella tuna {h,3,m, t} [| | [m] |
8) mozzarella {m} OOmOod
9) olives {o} O0oOmo
10) ham jalapeno mozzarella olives tuna {h,j,mo,t} HENEN
1) ham mozzarella tuna {h,m, t} ECOECE
12)

ham mozzarella {h, m} EOmO0

UEF//School of Computing ~ JADe:FIM 7/31

Itemset and support

An itemset | is a set of items, i.e. | C U
A k-itemset is an itemset that contains exactly k items,
l.e.such that |l| =R

The support set of an itemset I in T is the set of transactions
from T that contain |

suppr(l) = {T € 7,1 < T}

We call |supp+(!)| the absolute support of I'in T
and |supps(1)| / |T| its fractional support

We denote supp %7(/) the fractional support given as a
percentage, i.e.
[supp7 (/)]

7]

UEF//School of Computing JADe:FIM 8/31

supp %7 (/) =100 -

Itemset and support

An itemset | is a set of items, i.e. | C U
A k-itemset is an itemset that contains exactly k items,
l.e.such that |l| =R

The support set of an itemset I in T is the set of transactions
from T that contain |

suppr(l) = {T € 7,1 < T}

We call |supp+(/)| the absolute support of I in T
and [supp(1)| / |T] its fractional support
I There are variations in the use of support terminology
I The database is often left out from the notation,
as it is clear from the context

UEF//School of Computing JADe:FIM 8/31

Pizzeria example

tid set

1) {h,m o} In the database consisting only of
? {m} transactions 1to 12,

13 E:?_}m\o} for itemset | = {t}

5 {h,j,m o0}

6) {h} supp(/) = {7,10,11}
7) {h,j,mt} L] —

8) {m}

9) {0} supp %(1) = 25

10) {h,j,m,o,t}

1) {h,m, t}

12) {h,m}

UEF//School of Computing JADe:FIM 9/31

Pizzeria example

tid set

1 {h.mo} In the database consisting only of
? 1m} transactions 1to 12,
‘*i H?_}m\o} for itemset | = {h, m}
5) {h,j,m o0}

AIRUSRS supp()\ -

8) {m}

9) {0} supp %(/) = 58.3

10) {h,j,m,o,t}

1) {h,m, t}

12) {h,m}

UEF//School of Computing JADe:FIM 9/31

Problem definition

Frequent Itemset Mining

Given a set of transactions 7 = {T4, T2, ..., Tp}, where each
transaction T; is a subset of items from U, and a minimum
support threshold o, determine all itemsets | that occur as a
subset of at least ¢ transactions in 7.

UEF//School of Computing JADe:FIM 10/31

Pizzeria example

Enumerate all distinct pizzas

count tids count tids count tids

hmo 65 {1...} hj 6 {..} jmo 7 {..}
m 74 {2,8...} hjm 42 {...} jmot 9 {..}
jm 28 {3...} hjo 8 {...} jmt 3 {...}
hjmo 47 {4,5...} hjot 0 {} jo %6 {..}
h 74 {6...} hjt 4 {...} jot 3 {...}
hjmt 30 {7...} hmot 108 {...} jt 1% {...}
0 178 {9...} ho 43 {...} mo 20 {...}
hjmot 93 {10...} hot 28 {...} mot 27 {...}
hmt 49 {11...} ht 7 {...} mt 13 {...}
hm 9% {12...} j 29 {...} ot 17 {..}
t 8 {..}

UEF//School of Computing JADe:FIM 11/31

Pizzeria example: Enumerating all distinct pizzas

0
{}
) b)) be) [
{6...} {3} @28} 3 {)
() o) () =) 3 o) () o)
9
}u } {3...}{ oy Lo L {9
u ghmo JUMJM (50t) [not)
} {-~} {1. }{W I OPES {--~} {.2-7~}
e
{4,5...} {7...} {} {...} {..}
wggm}ot

UEF//School of Computing ~ JADe:FIM 12/31

Pizzeria example: Aggregating supports

140, {4,5,10. ..}
47m\
{4,5...}
—
lhjmotl
93
{10...}

UEF//School of Computing JADe:FIM 12/31

Pizzeria example: Aggregating supports

259_{3,4,5,7,10...}

/{728'}_

= T
! —

3 L 7===3

_ —{. ..} {’}\
~N——— — ~N
hjmo |hjmt| jmot
7—__ 30 9=
{4,5...} {7...%/ — 1}
lhjmotl
93
{10...}
UEF//School of Computing JADe:FIM

12/31

Support properties

Monotonicity of support
The support of every subset J of [is at least equal to that of the
support of itemset |

V) C 1, supp(l) C supp())
and hence |[supp(!)| < |supp())|

Downward closure property
Every subset of a frequent itemset is also frequent

UEF//School of Computing JADe:FIM 13/31

Pizzeria example: Lattice of ingredient combinations

710 349 m 669 413

) GJ] CJ

183 156 —376 32 —285

(5 (hm) (o J (e | (G) (G0 J (5t J (mo | (e) ot

148 127 229 1 135 105 237

(njn] (o] (n3t] (mo | (nmt | (not) (3mo] (me] (30t (mot

140 123 93 201 102

e om0y fwot] Gmey

93

530 —392

UEF//School of Computing JADe:FIM

14/31

Pizzeria example: Frequent ingredient combinations

669 413

71%’711\
G G O CJ G

392 3197—=259 1837=156 —~3767=332"=285

() Com) Cre J (e J G) G J Gt J (oo J e) Cot J
(n) (3o (3¢ (o) (e (ot J Gimo) (3me | (Gt | (mot
140 V NZM 102
fome| (om) fiot] (mot) [mot)

93 -
@J for minimum support
o =145=0.125-|T]

UEF//School of Computing ~ JADe:FIM 14131

Pizzeria example: Frequent ingredient combinations

1156

(o]
71 mzn
Gy G @) Cy G

5307, —392 3197/-259 183 156 —37677/=332 —285

(03] Gon) (o J Gt o] (0) (5] Coo) (ot (ot

5 o o)) o)]
V 102

pomo| [omt] (gof fmot] o

3 -
@Sq for minimum support
o =289 =0.250-|T]

UEF//School of Computing ~ JADe:FIM 14131

The empty set

Considered as an itemset, the empty set has a fractional
support equal to one, since it is a subset of every transaction
in the database

However, the empty set is generally not listed among frequent
itemsets, because it does not provide any interesting
information

UEF//School of Computing JADe:FIM 15/31

Closed and maximal frequent itemsets

An itemset | is closed if none of its supersets have exactly the
same support count

A frequent itemset [is maximal at a given minimum support
level o, if it is frequent and none of its superset is frequent

Condensed representations

Knowledge of the maximal frequent itemsets allows to
reconstruct the set of frequent itemsets, but not their supports
Knowledge of the closed frequent itemsets allows to also
recompute the supports

UEF//School of Computing JADe:FIM 15/31

Pizzeria example: Closed and maximal frequent itemsets

5307—=392 3197 =259 1837 =156 =376 =332 =285

B0 60 (G G Coo B e ot o)
102

5 o o Bl o

93 -
@ for minimum support
o =145=0.125-|T]

UEF//School of Computing ~ JADe:FIM

16/31

Pizzeria example: Closed and maximal frequent itemsets

U CJCJ

392 319—259 183 156 =3767=332 —285

o] - [EEbEN] - 5

(54) O o o) o) G)
B b B e

93

@ for minimum support
o =289 =0.250-|T]

UEF//School of Computing ~ JADe:FIM

16/31

Algorithms

Algorithms for mining frequent itemsets

Support counting is expensive

Explore the space of itemsets by increasing lengths,
i.e. level-wise enumeration

Avoid generating itemsets twice by using a canonical order

Exploit the downward closure property to prune itemsets

UEF//School of Computing JADe:FIM 17/31

Level-wise enumeration: Apriori algorithm

R <1

Fr < {all frequent singleton itemsets}

while F;, # 0 do
Generate Cg. 1 by extending itemsets from Fj
Prune itemsets that violate downward closure
Frir < {S € Cryq,suppp(S) > 0}
R+« k+1

return |J; F

UEF//School of Computing JADe:FIM 18/31

Level-wise enumeration: Apriori algorithm

Candidate generation

R+ 1

Fr < {all frequent singleton itemsets}

while F, # 0 do
Generate Cyy 4 by extending itemsets from Fj
Prune itemsets that violate downward closure
Fry1 < {S € Cry1,suppp(S) > 0}
R+« k+1

return J; Fi

UEF//School of Computing JADe:FIM 18/31

Level-wise enumeration: Apriori algorithm

Candidate pruning

R+ 1

Fr < {all frequent singleton itemsets}

while F, # 0 do
Generate Cy, 4 by extending itemsets from Fy
Prune itemsets that violate downward closure
Fry1 < {S € Cry1,suppp(S) > 0}
R+« k+1

return J; Fi

UEF//School of Computing JADe:FIM 18/31

Level-wise enumeration: Apriori algorithm

Support counting

R+ 1

Fr < {all frequent singleton itemsets}

while F, # 0 do
Generate Cy, 4 by extending itemsets from Fy
Prune itemsets that violate downward closure
Fret1 < {S € Cryr,suppp(S) = 60}
R+« k+1

return J; Fi

UEF//School of Computing JADe:FIM 18/31

Pizzeria example: Apriori algorithm

tid set
1) {h,m, 0}
We return to our pizzeria example, 2) {m}
where each of the 1156 transactions in 3) {j,m}
the database represents a pizza sold s kel
5) {h,Jj,m,0}
We look how the Apriori algorithm can 6) {h}
be applied to mine frequent itemsets 7). {h,J,m t}
from this database 2; ?S{
In this example, we set the minimum 10) {h,j,mo,t}
support threshold to o = 289 (i.e. 25%) 1) {h,m,t}
12)

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Enumerate singleton itemsets
1156

(o]
e
) OGJ UJ) (]

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Count supports
1156
o]

710 349 413

= [~
(n) (5] () (o] (]

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Frequent singleton itemsets

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Generate candidates itemsets of length 2

7 X\~
Ch3 J(Chm J Cho J(he J(Gm J (5o J (5t) (Cmo) (it) (ot]

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Count supports
1156

(o)

710 349 yanl 669 413

) GJ J oJ (]

240 —530 —392 319 =259 1837=156 —376 7=3327=285

(35 Com) (o) (ot Y3) (30 30 oo (ot (ot

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Frequent itemsets of length up to 2
1156

(o)

710 349 yanl 669 413

) GJ J oJ (]

530 392 319 T=3767=332

(m] (o) (2 oo (ot

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Generate candidates itemsets of length 3
1156

[hmo][hmt][hot] mot

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Prune candidates

@
[4;310 (7549 (ABZW] (7§6? [4]f1?
\\\,

530 392

(o (o (e | 0o) (ot |
\ /\

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Count supports

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Frequent itemsets of length up to 3
1156

(o)

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Generate candidates itemsets of length 4

1156
0

hmot for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Prune candidates

T—376 =332

] (oo’ (ot}

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Apriori algorithm

Frequent itemsets of length up to 4
1156

(o)

for o =289

UEF//School of Computing JADe:FIM 19/31

Pizzeria example: Enumeration tree

Items ordered alphabetically, prefix growth
1156

(o)

for o =289

UEF//School of Computing JADe:FIM 20/31

Pizzeria example: Enumeration tree

Note the difference

itemset lattice VS. enumeration tree

— 3 =201 102
hjot] [hmot| [jmot|

—14 —12
fhimo] [himt]

[3mot)

Shows the enumeration structure
Edges indicate from which subset
each itemset was generated

Shows the space of itemsets
Edges represent subset relationships

UEF//School of Computing JADe:FIM 20/31

Pizzeria example: Enumeration tree

Items ordered by decreasing frequency, prefix growth

mm%

(n) () o] (]
530%\332 %319
(o) G 5 o

for o =289

UEF//School of Computing JADe:FIM 20/31

Pizzeria example: Enumeration tree

Items ordered by increasing frequency, prefix growth
1156

o]
349 413 669 710 71
EENE J\W ESpES

\

for o =289

UEF//School of Computing JADe:FIM 20/31

Algorithms for mining frequent itemsets

Support counting is expensive

According to the monotonicity of support
VJC I, supp(l) C supp(/))

Make support counting more efficient

- Prune irrelevant transactions

- Reuse support counting from previous steps

Recursively project the database down the enumeration tree

UEF//School of Computing JADe:FIM 21/31

Vertical apriori algorithm

kR <+ 1
Fr < {all frequent singleton itemsets}
Generate tid list for each frequent singleton itemsets
while F, # 0 do
Generate Cy,4 by joining pairs of itemsets from Fj
Prune itemsets that violate downward closure
Generate tid list for each candidate by intersecting
tid lists of associated pair of k-itemsets
Fry1 < {S € Cry1,suppp(S) = 0}
R+« k+1
return J; Fi

UEF//School of Computing JADe:FIM 22/31

Vertical apriori algorithm

Vertical database representation

R <1
Fr < {all frequent singleton itemsets}
Generate tid list for each frequent singleton itemsets
while F, # 0 do
Generate Cg.4 by joining pairs of itemsets from Fj
Prune itemsets that violate downward closure
Generate tid list for each candidate by intersecting
tid lists of associated pair of k-itemsets
Fry1 < {S € Cry1,suppp(S) = 0}
R+« k+1
return J; F

UEF//School of Computing JADe:FIM 22/31

Space-time trade-off

Tid lists

- Allow to compute supports faster

- Require memory space for storage

Use dedicated data structures that support efficient counting

UEF//School of Computing JADe:FIM 23/31

FP-growth algorithm

The FP-tree is a compact representation of the database

- Extract conditional projected database for a given suffix

- Update counts efficiently

FP-growth is a recursive suffix-based pattern growth algorithm

UEF//School of Computing JADe:FIM 2431

Pizzeria example: Construction of the FP-tree

tid set
We return to our pizzeria example, D thmo)
where each of the 1156 transactions in 2) {m
the database represents a pizza sold 3) {j,m
We look how the FP-growth algorithm 3 iE ;28;
can be applied to mine frequent 6) {h}
itemsets from this database 7y {h,3,m t}
In this example, we set the minimum 8) {mj
support threshold to o = 289 (i.e. 25%) 133 ‘{rE}Jm 0.1}
The first step is to construct the FP-tree 3 {h,m, t}

representing the database A””“}

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
1

(=)=

Step#t 1
Transaction mho

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
(n]
lz

n]

l
(]

—

—

Step#t 2
Transaction m

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
3

(o]

—

—

Step# 3.
Transaction mj

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
/4

(]
A

DD
=

Step# 4
Transaction mhoj

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
/5

(]
5

N@(—w@<—w@<—
-]

Step# 5
Transaction mhoj

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
/6\
m h
OB\Q
h .
) 5

1

Step# 6
Transaction h

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
7

\\\$
T

5

=

{-]

E D

(=]

Step# 7
Transaction mht]

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
8

\
T

5

=

2]
l
gl

—

(S

-

Step#t 8
Transaction m

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

/\O

Step# 9
Transaction O

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Insertlng transactions (items sorted by decreasing frequency)

@(—@(— =

/ /@
[~

(<)

/
/
[+

)
=

Step#t 10)
Transaction mhotj

(=]

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

'H
]

B0,
//@

T
/
=
/
-]

Step# 11
Transaction mht

)

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

W2
]

‘—@<—@<—5 -
// /
=]
==
/

)
=
=

Step#t 12
Transaction mh

)

UEF//School of Computing JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 100
@3 Transaction mho

UEF//School of Computing ~ JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

- Step# 101
@3 Transaction mot

UEF//School of Computing ~ JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

W155
711 214

Q b

@ Step# 1155
) 43 Transaction ho

UEF//School of Computing ~ JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

Having inserted all transactions, we obtain the full FP-tree

1156
@

71W 214

ol O Q NEINE \@\Q@
O\ﬁﬁﬁﬁ@m\@ =

UEF//School of Computing ~ JADe:FIM 25/31

Pizzeria example: Construction of the FP-tree

We add pointers linking nodes representing the same item

UEF//School of Computing ~ JADe:FIM 25/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

)/1%\%\ :

@ﬁ @8’6\@14 tzz\@9

@13 @9 j%ﬁ@\m@q @3
@ for o = 289

UEF//School of Computing ~ JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

711
(]

Al

for o =289
Suffix m

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

)/1%\%\ :

@ﬁ @8’6\@14 tzz\@9

@13 @9 j%ﬁ@\m@q @3
@ for o = 289

UEF//School of Computing ~ JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

e
T,

for o =289
Suffix h

UEF//School of Computing JADe:FIM

26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for o =289
Suffix mh

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

)/1%\%\ :

@ﬁ @8’6\@14 tzz\@9

@13 @9 j%ﬁ@\m@q @3
@ for o = 289

UEF//School of Computing ~ JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

7\@

Lo <—g@<—
w

w

for o =289
Suffix O

UEF//School of Computing JADe:FIM

26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

376
()

376

for o =289
Suffix mo

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

/392
l
@’\3

for o =289
Suffix ho

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for o =289
Suffix mho

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

*\’\Q) @20

@01 \Q QS

@,

201

for o =289
Suffix t

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for o =289
Suffix mt

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

/319
5 o,

l280
@80

for o =289
Suffix ht

UEF//School of Computing JADe:FIM 26/31

Pizzeria example: Suffix-based pattern growth with the FP-tree

Recursive pattern growth

@ for o =289
393 Suffix J

UEF//School of Computing ~ JADe:FIM 26/31

Pizzeria example: Enumeration tree

Items ordered by decreasing frequency, suffix growth
1156

o]
711%@69’\413349

for o =289

UEF//School of Computing JADe:FIM 27/31

Pizzeria example: Enumeration tree

Note the difference

Apriori algorithm Vs FP-growth algorithm
enumeration tree ' enumeration tree
(0] (0]
T : , — T
—n — 71 669 i —349 —mM —710 —669 —413 —
L) L) o) L) (5) J g L GY
Con (oo (o S (o (oo (o Con) (09 o) (ot It
\
—313 —
(mho (mho |
o= for o = 289
Prefix-based Suffix-based
Traversed breadth-first Traversed depth-first

UEF//School of Computing JADe:FIM 27/31

Association rules

Association rules

Frequent itemsets can be used to generate association rules

Classical setting: Shopping basket data

- ldentify products that are often bought together
Frequent itemset {butter, bread, ham, pickles}

- Extract rules that capture typical buying behaviour
Association rules {bread, ham} = {butter, pickles}

- Insights for marketing and shelf placement

UEF//School of Computing JADe:FIM 28/31

Association rules

Frequent itemsets can be used to generate association rules

Consider two itemsets X and Y such that

XcU, 0#£YCU XNY=0

The confidence of the association rule X = Y'is
the conditional probability that a transaction contains XUY
given that it contains X
XUy
conf(X = Y) = 7’SUPP(Ui
|supp(X)|

X and Y are called the antecedent and consequent of the rule,
respectively

UEF//School of Computing JADe:FIM 29/31

Association rules

X =Y is an association rule at minimum support ¢ and
minimum confidence ~ If

supp(XUY) >0 and conf(X=Y) >~y

UEF//School of Computing JADe:FIM 30/31

Mining association rules

1. Mine all the frequent itemsets for minimum support o

2. Split the frequent itemsets into association rules of
minimum confidence

Monotonicity of confidence
Let Xg, Xp and | be itemsets such that Xq C X, C I, then

conf(Xp = I\ Xp) > conf(Xq = I\ Xq)

UEF//School of Computing JADe:FIM 31/31

	FIM
	Problem
	Algorithms
	Association rules

