# Introduction to Algorithmic Data Analysis

Esther Galbrun Autumn 2023



#### Part I

## Frequent Itemset Mining

## **Problem**

## Frequent Itemset Mining

Discover items that often co-occur in a dataset Classical setting: *Shopping basket data* 

- Each product of the supermarket is an item
- Record customer transactions as sets of items
- Identify products that are often bought together
   Frequent itemset {butter, bread, ham, pickles}
- Extract rules that capture typical buying behaviour Association rules {bread, ham} ⇒ {butter, pickles}
- Insights for marketing and shelf placement

#### Frequent Itemset Mining

Discover items that often co-occur in a dataset

Shopping basket data Customer transactions
Identify products often bought together

Text mining Bag of word model
Identify co-occurring terms and keywords

More complex data types (spatio-)temporal data, graph data
Other analysis tasks Building block for clustering,
classification, outlier detection

UEF//School of Computing JADe:FIM 3/31

#### Pizzeria example

A pizzeria offers to compose your pizza by freely choosing ingredients among ham, jalapeno, mozzarella, olives and tuna

To put together a menu, the pizzaiolo would like to know what are favorite combinations

UEF//School of Computing

The database  $\mathcal{T}$  is a collection of sets, called transactions, from a universe U of items

$$\mathcal{T} = \{T_1, T_2, \dots, T_n\}, \text{ where } T_k \subseteq U, \forall k \in [1, n]$$

The total number of items is m = |U|

If we fix an order over U, each transaction can be represented as a binary vector of size m

Then, the database can be represented as a binary matrix with *n* rows and *m* columns

Each transaction has a unique identifier, its tid

#### Pizzeria example

The universe of items is the set of five ingredients  $\{ham, jalapeno, mozzarella, olives, tuna\}$  For short,  $U = \{h, j, m, o, t\}$ 

Each pizza constitutes a transaction, represented by the corresponding set of ingredients

For instance, a ham and mozzarella pizza is represented as  $T = \{h, m\}$ , also simply denoted hm

Ordering the items alphabetically according to corresponding ingredient names, this pizza is represented by the binary vector (1, 0, 1, 0, 0), also simply written 10100

**UEF//School of Computing** 

#### Pizzeria example

#### The database then records all pizzas sold

| tids | pizzas                              | sets                | matrix |
|------|-------------------------------------|---------------------|--------|
| 1)   | ham mozzarella olives               | $\{h, m, o\}$       |        |
| 2)   | mozzarella                          | {m}                 |        |
| 3)   | jalapeno mozzarella                 | $\{j,m\}$           |        |
| 4)   | ham jalapeno mozzarella olives      | $\{h, j, m, o\}$    |        |
| 5)   | ham jalapeno mozzarella olives      | $\{h, j, m, o\}$    |        |
| 6)   | ham                                 | {h}                 |        |
| 7)   | ham jalapeno mozzarella tuna        | $\{h, j, m, t\}$    |        |
| 8)   | mozzarella                          | {m}                 |        |
| 9)   | olives                              | {0}                 |        |
| 10)  | ham jalapeno mozzarella olives tuna | $\{h, j, m, o, t\}$ |        |
| 11)  | ham mozzarella tuna                 | $\{h,m,t\}$         |        |
| 12)  | ham mozzarella                      | $\{h,m\}$           |        |
| :    | :                                   | :                   | :      |

#### Itemset and support

An itemset I is a set of items, i.e.  $I \subseteq U$ A k-itemset is an itemset that contains exactly k items, i.e. such that |I| = k

The support set of an itemset I in  $\mathcal{T}$  is the set of transactions from  $\mathcal{T}$  that contain I

$$\mathsf{supp}_{\mathcal{T}}(I) = \{T \in \mathcal{T}, I \subseteq T\}$$

We call  $|supp_{\mathcal{T}}(I)|$  the absolute support of I in  $\mathcal{T}$  and  $|supp_{\mathcal{T}}(I)| / |\mathcal{T}|$  its fractional support

We denote supp  $\%_{\mathcal{T}}(I)$  the fractional support given as a percentage, i.e.

$$\mathsf{supp}\,\%_{\mathcal{T}}(I) = 100 \cdot \frac{|\mathsf{supp}_{\mathcal{T}}(I)|}{|\mathcal{T}|}$$

## Itemset and support

An itemset I is a set of items, i.e.  $I \subseteq U$ A k-itemset is an itemset that contains exactly k items, i.e. such that |I| = k

The support set of an itemset I in  $\mathcal{T}$  is the set of transactions from  $\mathcal{T}$  that contain I

$$\mathsf{supp}_{\mathcal{T}}(I) = \{T \in \mathcal{T}, I \subseteq T\}$$

We call  $|supp_{\mathcal{T}}(I)|$  the absolute support of I in  $\mathcal{T}$  and  $|supp_{\mathcal{T}}(I)| / |\mathcal{T}|$  its fractional support

- ! There are variations in the use of support terminology
- ! The database is often left out from the notation,

as it is clear from the context

#### Pizzeria example

| tid | set              |
|-----|------------------|
| 1)  | {h, m, o}        |
| 2)  | {m}              |
| 3)  | $\{j,m\}$        |
| 4)  | $\{h, j, m, o\}$ |
| 5)  | $\{h, j, m, o\}$ |
| 6)  | {h}              |
| 7)  | $\{h,j,m,t\}$    |
| 8)  | {m}              |
| 9)  | {o}              |
| 10) | $\{h,j,m,o,t\}$  |
| 11) | $\{h,m,t\}$      |
| 12) | $\{h,m\}$        |

```
In the database consisting only of transactions 1 to 12, for itemset I = \{t\}
supp(I) = \{7, 10, 11\}
|supp(I)| = 3
supp \%(I) = 25
```

#### Pizzeria example

| tid | set                                    |
|-----|----------------------------------------|
| 1)  | {h, m, o}                              |
| 2)  | {m}                                    |
| 3)  | $\{j,m\}$                              |
| 4)  | $\{h, j, m, o\}$                       |
| 5)  | $\{h, j, m, o\}$                       |
| 6)  | {h}                                    |
| 7)  | $\{h,j,m,t\}$                          |
| 8)  | {m}                                    |
| 9)  | {0}                                    |
| 10) | $\{h,j,m,o,t\}$                        |
| 11) | $\{\textbf{h},\textbf{m},\textbf{t}\}$ |
| 12) | $\{h,m\}$                              |

```
In the database consisting only of transactions 1 to 12, for itemset I = \{h, m\}
supp(I) = \{1, 4, 5, 7, 10, 11, 12\}
|supp(I)| = 7
supp \%(I) = 58.33
```

#### **Problem definition**

#### Frequent Itemset Mining

Given a set of transactions  $\mathcal{T} = \{T_1, T_2, \dots, T_n\}$ , where each transaction  $T_i$  is a subset of items from U, and a minimum support threshold  $\sigma$ , determine all itemsets I that occur as a subset of at least  $\sigma$  transactions in  $\mathcal{T}$ .

**UEF//**School of Computing

#### Pizzeria example

#### Enumerate all distinct pizzas

|       | count | tids              | (    | count | tids        | CC   | ount | tids        |
|-------|-------|-------------------|------|-------|-------------|------|------|-------------|
| hmo   | 65    | {1}               | hj   | 16    | {}          | jmo  | 7    | {}          |
| m     | 74    | $\{2, 8 \dots \}$ | hjm  | 42    | $\{\dots\}$ | jmot | 9    | $\{\dots\}$ |
| jm    | 28    | {3}               | hjo  | 8     | $\{\dots\}$ | jmt  | 3    | $\{\dots\}$ |
| hjmo  | 47    | $\{4, 5 \dots\}$  | hjot | 0     | {}          | jo   | 16   | $\{\dots\}$ |
| h     | 74    | {6}               | hjt  | 4     | $\{\dots\}$ | jot  | 3    | $\{\dots\}$ |
| hjmt  | 30    | {7}               | hmot | 108   | $\{\dots\}$ | jt   | 14   | $\{\dots\}$ |
| 0     | 178   | {9}               | ho   | 43    | $\{\dots\}$ | mo   | 20   | $\{\dots\}$ |
| hjmot | 93    | {10}              | hot  | 28    | $\{\dots\}$ | mot  | 27   | $\{\dots\}$ |
| hmt   | 49    | {11}              | ht   | 7     | $\{\dots\}$ | mt   | 13   | $\{\dots\}$ |
| hm    | 96    | {12}              | j    | 29    | $\{\dots\}$ | ot   | 17   | $\{\dots\}$ |
|       |       |                   |      |       |             | t    | 8    | {}          |

**UEF//**School of Computing

JADe:FIM

## Pizzeria example: Enumerating all distinct pizzas



## Pizzeria example: Aggregating supports



## Pizzeria example: Aggregating supports



#### Support properties

#### Monotonicity of support

The support of every subset *J* of *I* is at least equal to that of the support of itemset *I* 

$$\forall J \subseteq I$$
,  $supp(I) \subseteq supp(J)$   
and hence  $|supp(I)| \le |supp(J)|$ 

#### Downward closure property

Every subset of a frequent itemset is also frequent

## Pizzeria example: Lattice of ingredient combinations



## Pizzeria example: Frequent ingredient combinations



#### Pizzeria example: Frequent ingredient combinations



#### The empty set

Considered as an itemset, the empty set has a fractional support equal to one, since it is a subset of every transaction in the database

However, the empty set is generally not listed among frequent itemsets, because it does not provide any interesting information

UEF//School of Computing JADe:FIM 15/31

#### Closed and maximal frequent itemsets

An itemset *I* is closed if none of its supersets have exactly the same support count

A frequent itemset I is maximal at a given minimum support level  $\sigma$ , if it is frequent and none of its superset is frequent

#### Condensed representations

Knowledge of the maximal frequent itemsets allows to reconstruct the set of frequent itemsets, but not their supports Knowledge of the closed frequent itemsets allows to also recompute the supports

UEF//School of Computing JADe:FIM

#### Pizzeria example: Closed and maximal frequent itemsets



#### Pizzeria example: Closed and maximal frequent itemsets



# **Algorithms**

## Algorithms for mining frequent itemsets

Support counting is expensive

Explore the space of itemsets by increasing lengths, i.e. level-wise enumeration

Avoid generating itemsets twice by using a canonical order

Exploit the downward closure property to prune itemsets

UEF//School of Computing JADe:FIM 17/31

```
k \leftarrow 1
\mathcal{F}_k \leftarrow \{\text{all frequent singleton itemsets}\}
while \mathcal{F}_k \neq \emptyset do
\text{Generate } \mathcal{C}_{k+1} \text{ by extending itemsets from } \mathcal{F}_k
\text{Prune itemsets that violate downward closure}
\mathcal{F}_{k+1} \leftarrow \{\mathcal{S} \in \mathcal{C}_{k+1}, \operatorname{supp}_{\mathcal{D}}(\mathcal{S}) \geq \theta\}
k \leftarrow k+1
\text{return } \bigcup_i \mathcal{F}_i
```

#### Candidate generation

```
\begin{array}{l} k \leftarrow 1 \\ \mathcal{F}_k \leftarrow \{ \text{all frequent singleton itemsets} \} \\ \text{while } \mathcal{F}_k \neq \emptyset \text{ do} \\ \text{Generate } \mathcal{C}_{k+1} \text{ by extending itemsets from } \mathcal{F}_k \\ \text{Prune itemsets that violate downward closure} \\ \mathcal{F}_{k+1} \leftarrow \{ \mathcal{S} \in \mathcal{C}_{k+1}, \operatorname{supp}_{\mathcal{D}}(\mathcal{S}) \geq \theta \} \\ k \leftarrow k+1 \\ \text{return } \bigcup_i \mathcal{F}_i \end{array}
```

**UEF//**School of Computing

#### Candidate pruning

```
k \leftarrow 1
\mathcal{F}_k \leftarrow \{\text{all frequent singleton itemsets}\}
while \mathcal{F}_k \neq \emptyset do
\text{Generate } \mathcal{C}_{k+1} \text{ by extending itemsets from } \mathcal{F}_k
Prune itemsets that violate downward closure
\mathcal{F}_{k+1} \leftarrow \{\mathcal{S} \in \mathcal{C}_{k+1}, \operatorname{supp}_{\mathcal{D}}(\mathcal{S}) \geq \theta\}
k \leftarrow k+1
return \bigcup_i \mathcal{F}_i
```

#### Support counting

```
k \leftarrow 1
\mathcal{F}_k \leftarrow \{\text{all frequent singleton itemsets}\}
while \mathcal{F}_k \neq \emptyset do
\text{Generate } \mathcal{C}_{k+1} \text{ by extending itemsets from } \mathcal{F}_k
\text{Prune itemsets that violate downward closure}
\mathcal{F}_{k+1} \leftarrow \{\mathcal{S} \in \mathcal{C}_{k+1}, \operatorname{supp}_{\mathcal{D}}(\mathcal{S}) \geq \theta\}
k \leftarrow k+1
\text{return } \bigcup_i \mathcal{F}_i
```

We return to our pizzeria example, where each of the 1156 transactions in the database represents a pizza sold

We look how the *Apriori* algorithm can be applied to mine frequent itemsets from this database In this example, we set the minimum support threshold to  $\sigma = 289$  (i.e. 25%)

| tid | set              |
|-----|------------------|
| 1)  | {h,m,o}          |
| 2)  | {m}              |
| 3)  | $\{j,m\}$        |
| 4)  | $\{h, j, m, o\}$ |
| 5)  | $\{h, j, m, o\}$ |
| 6)  | {h}              |
| 7)  | $\{h, j, m, t\}$ |
| 8)  | {m}              |
| 9)  | {0}              |
| 10) | $\{h,j,m,o,t\}$  |
| 11) | $\{h,m,t\}$      |
| 12) | $\{h,m\}$        |
| :   | :                |
|     |                  |

#### Enumerate singleton itemsets



#### Count supports



#### Frequent singleton itemsets



#### Generate candidates itemsets of length 2



#### Count supports



UEF//School of Computing

#### Frequent itemsets of length up to 2



#### Generate candidates itemsets of length 3



#### Prune candidates



**UEF//**School of Computing

#### Count supports



#### Frequent itemsets of length up to 3



#### Generate candidates itemsets of length 4



**UEF//**School of Computing

#### Prune candidates



**UEF//**School of Computing

#### Frequent itemsets of length up to 4



#### Items ordered alphabetically, prefix growth



#### Note the difference

#### itemset lattice



Shows the space of itemsets Edges represent subset relationships

#### vs. enumeration tree



Shows the enumeration structure Edges indicate from which subset each itemset was generated

UEF//School of Computing JADe:FIM 20/31

#### Items ordered by decreasing frequency, prefix growth



Items ordered by increasing frequency, prefix growth



# Algorithms for mining frequent itemsets

Support counting is expensive

According to the monotonicity of support

$$\forall J \subseteq I$$
,  $supp(I) \subseteq supp(J)$ 

Make support counting more efficient

- · Prune irrelevant transactions
- Reuse support counting from previous steps

Recursively project the database down the enumeration tree

### *Vertical apriori* algorithm

```
k \leftarrow 1
\mathcal{F}_k \leftarrow \{\text{all frequent singleton itemsets}\}\
Generate tid list for each frequent singleton itemsets
while \mathcal{F}_b \neq \emptyset do
     Generate \mathcal{C}_{k+1} by joining pairs of itemsets from \mathcal{F}_k
     Prune itemsets that violate downward closure
     Generate tid list for each candidate by intersecting
tid lists of associated pair of k-itemsets
     \mathcal{F}_{k+1} \leftarrow \{\mathcal{S} \in \mathcal{C}_{k+1}, \operatorname{supp}_{\mathcal{D}}(\mathcal{S}) \geq \theta\}
     k \leftarrow k + 1
return \bigcup_i \mathcal{F}_i
```

# Vertical apriori algorithm

#### Vertical database representation

```
k \leftarrow 1
\mathcal{F}_k \leftarrow \{\text{all frequent singleton itemsets}\}
Generate tid list for each frequent singleton itemsets
while \mathcal{F}_b \neq \emptyset do
     Generate C_{k+1} by joining pairs of itemsets from \mathcal{F}_k
     Prune itemsets that violate downward closure
     Generate tid list for each candidate by intersecting
tid lists of associated pair of k-itemsets
     \mathcal{F}_{k+1} \leftarrow \{\mathcal{S} \in \mathcal{C}_{k+1}, \operatorname{supp}_{\mathcal{D}}(\mathcal{S}) > \theta\}
     k \leftarrow k + 1
return \bigcup_i \mathcal{F}_i
```

#### Space-time trade-off

#### Tid lists

- · Allow to compute supports faster
- · Require memory space for storage

Use dedicated data structures that support efficient counting

UEF//School of Computing

#### FP-growth algorithm

The FP-tree is a compact representation of the database

- Extract conditional projected database for a given suffix
- Update counts efficiently

FP-growth is a recursive suffix-based pattern growth algorithm

24/31

UEF//School of Computing JADe:FIM

We return to our pizzeria example, where each of the 1156 transactions in the database represents a pizza sold

We look how the *FP-growth* algorithm can be applied to mine frequent itemsets from this database In this example, we set the minimum support threshold to  $\sigma=289$  (i.e. 25%)

The first step is to construct the *FP-tree* representing the database

| tid | set              |
|-----|------------------|
| 1)  | {h, m, o}        |
| 2)  | {m}              |
| 3)  | $\{j,m\}$        |
| 4)  | $\{h, j, m, o\}$ |
| 5)  | $\{h,j,m,o\}$    |
| 6)  | {h}              |
| 7)  | $\{h, j, m, t\}$ |
| 8)  | {m}              |
| 9)  | {o}              |
| 10) | $\{h,j,m,o,t\}$  |
| 11) | $\{h,m,t\}$      |
| 12) | $\{h,m\}$        |
| :   | :                |
|     |                  |

Inserting transactions (items sorted by decreasing frequency)



Step# 1 Transaction **mho** 

Inserting transactions (items sorted by decreasing frequency)



Step# 2 Transaction **m** 

Inserting transactions (items sorted by decreasing frequency)



Step# 3 Transaction **mj** 

Inserting transactions (items sorted by decreasing frequency)



Step# 4 Transaction **mhoj** 

Inserting transactions (items sorted by decreasing frequency)



Step# 5 Transaction **mhoj** 

Inserting transactions (items sorted by decreasing frequency)



Step# 6 Transaction **h** 

Inserting transactions (items sorted by decreasing frequency)



Step# 7
Transaction mhtj

Inserting transactions (items sorted by decreasing frequency)



Step# 8 Transaction m

Inserting transactions (items sorted by decreasing frequency)



Step# 9 Transaction **o** 

Inserting transactions (items sorted by decreasing frequency)



Transaction mhotj

Inserting transactions (items sorted by decreasing frequency)



Step# 11
Transaction mht

Inserting transactions (items sorted by decreasing frequency)



Step# 12 Transaction **mh** 

Inserting transactions (items sorted by decreasing frequency)



Inserting transactions (items sorted by decreasing frequency)



Inserting transactions (items sorted by decreasing frequency)



Having inserted all transactions, we obtain the full *FP-tree* 



### Pizzeria example: Construction of the FP-tree

We add pointers linking nodes representing the same item



Recursive pattern growth



Recursive pattern growth



for  $\sigma = 289$ Suffix m

Recursive pattern growth



#### Recursive pattern growth



for  $\sigma = 289$ Suffix **h** 

Recursive pattern growth



for  $\sigma = 289$ Suffix **mh** 

Recursive pattern growth



Recursive pattern growth



for  $\sigma = 289$  Suffix **o** 

Recursive pattern growth



for  $\sigma = 289$ Suffix **mo** 

#### Recursive pattern growth



for  $\sigma = 289$  Suffix **ho** 

Recursive pattern growth



for  $\sigma = 289$ Suffix **mho** 

Recursive pattern growth



Recursive pattern growth



for  $\sigma = 289$ Suffix **mt** 

Recursive pattern growth



for  $\sigma = 289$ Suffix **ht** 





#### Pizzeria example: Enumeration tree

Items ordered by decreasing frequency, suffix growth



IADe:FIM

UEF//School of Computing

#### Pizzeria example: Enumeration tree

#### Note the difference

# Apriori algorithm enumeration tree



# vs. FP-growth algorithm enumeration tree



27/31

Prefix-based
Traversed breadth-first

Suffix-based Traversed depth-first

UEF//School of Computing JADe:FIM

Frequent itemsets can be used to generate association rules

Classical setting: Shopping basket data

- Identify products that are often bought together
   Frequent itemset {butter, bread, ham, pickles}
- Extract rules that capture typical buying behaviour
   Association rules {bread, ham} ⇒ {butter, pickles}
- · Insights for marketing and shelf placement

Frequent itemsets can be used to generate association rules
Consider two itemsets X and Y such that

$$X \subset U$$
,  $\emptyset \neq Y \subseteq U$ ,  $X \cap Y = \emptyset$ 

The confidence of the association rule  $X \Rightarrow Y$  is the *conditional probability* that a transaction contains  $X \cup Y$  given that it contains X

$$conf(X \Rightarrow Y) = \frac{|supp(X \cup Y)|}{|supp(X)|}$$

X and Y are called the antecedent and consequent of the rule, respectively

 $X \Rightarrow Y$  is an association rule at minimum support  $\sigma$  and minimum confidence  $\gamma$  if

$$supp(X \cup Y) \ge \sigma$$
 and  $conf(X \Rightarrow Y) \ge \gamma$ 

### Mining association rules

- 1. Mine all the frequent itemsets for minimum support  $\sigma$
- 2. Split the frequent itemsets into association rules of minimum confidence  $\boldsymbol{\gamma}$

#### Monotonicity of confidence

Let  $X_a$ ,  $X_b$  and I be itemsets such that  $X_a \subset X_b \subset I$ , then

$$conf(X_b \Rightarrow I \setminus X_b) \ge conf(X_a \Rightarrow I \setminus X_a)$$