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Part I

Clustering Basics
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Problem



A simple example

Consider a bunch of dry beans
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A simple example

Consider a bunch of dry beans

We would like to divide them into a small number of groups,
such that beans in a group are similar to each other
and unlike beans from other groups
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A simple example

Let us take a closer look at the beans...

Measurements, in number of pixels, can be extracted
automatically from digital images of the beans

data points: Dry beans

attributes: physical properties
- Major Axis Length
- Minor Axis Length
- Eccentricity
- Roundness
- Extent
- Shape Factor 2

See https://doi.org/10.1016/j.compag.2020.105507 for details
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https://doi.org/10.1016/j.compag.2020.105507

A simple example

Given measurements of physical properties of the beans...
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A simple example

..we would like to divide the beans into a few coherent groups
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A simple example

..we would like to divide the beans into a few coherent groups
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A simple example

— This is a clustering task
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The problem, informally

To put it simply,

the goal of clustering is to divide a collection of objects, or
data points, into a small number of groups,

such that the objects within a group are similar to each other
whereas objects from different groups are dissimilar
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The problem, informally

Some obvious questions arise

How many groups?

How to measure similarity?
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The problem, informally

Some obvious questions arise

How many groups?
typically chosen by the user, i.e. input parameter,
but determining the most appropriate number of
groups can also be seen as part of the problem

How to measure similarity?
calculating distances is a crucial ingredient in
many clustering methods
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The problem, informally

Some obvious questions arise

How many groups?
typically chosen by the user, i.e. input parameter,
but determining the most appropriate number of
groups can also be seen as part of the problem

How to measure similarity?
calculating distances is a crucial ingredient in
many clustering methods

Next, we will look in turn at different clustering methods
Then, we will look at ways to compare and evaluate clusterings
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A small example data set

For illustrative purposes, we will take as an example a data set
that consists of a handful of the beans

We focus on a pair of measurement variables at a time, so that
we can easily visualize our data
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A small example data set

For illustrative purposes, we will take as an example a data set
that consists of a handful of the beans

We normalize the data, rescaling each variable so that its
values fall within the unit interval
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Some notations

The data set, denoted as D, contains n data points and m
attributes, i.e. itis a n x m matrix

A data point is @ m-dimensional vector x = (X1,X2, ..., Xm)
We denote xU) the j!h data point of D, i.e. the jt row
Data points are sometimes called instances or examples

We consider subsets of the data set

For instance, we denote the subset consisting of the first, third
and fourth data points as S = {x1, X3, X4}

For simplicity, when there is no ambiguity about the underlying
data set, we might specify a subset by listing the indices of the
data points it contains

The size of a subset S, denoted |S|, is the number of data
points it contains
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Some notations

A clustering is a collection of subsets of data points, called
clusters

We write C = {G, G, ..., C,} to denote a clustering consisting
of k clusters

The size of a clustering C, denoted |C|, is the number of
clusters it contains

Typically, the clusters form a partition of the data set
That is, seeing D as a set of data points, I.e. ignoring the order,
the clusters are such that
(i) they cover the entire data set, i.e. oo C =D, and
(ii) they are pairwise disjoint, i.e. GN G =0
for any pair of distinct clusters C; and C; from C
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Some notations

A clustering is a collection of subsets of data points, called
clusters

We write C = {G, G, ..., C,} to denote a clustering consisting
of k clusters

The size of a clustering C, denoted |C|, is the number of
clusters it contains

Typically, the clusters form a partition of the data set

A clustering, i.e. an assignment of the data points to k clusters,
can be represented as a n-dimensional vector
y: <Y17)/2a e 7yn> S [Tk]n )

where y; is the index of the cluster to which data point x%) is
assigned. Thatis, y; = s if and only if xX0) € Cs
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Methods




Representative-based algorithms

A representative (a.k.a. center) is associated to each cluster

Representatives can be

- synthetic vectors from the domain, or

- existing points from the data set

Given a distance function d, the goal is to find a chosen
number k of representatives so that all points are as close as
possible from a representative

Find R = {r(),r® ... r®} to minimize 3, p minrer d(x, 1)

Each data point is assigned to the cluster associated to its
closest representative
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Representative-based algorithms

The representatives and the assignment of data points are
unknown a priori, but depend on each other in a circular way

- if the representatives are fixed, it is easy to assign each
data point to the closest one

- if the assignment of data points is fixed, it is easy to
determine a representative for each group

Such problems are typically solved using an iterative algorithm
that alternates between refining the representatives or the
assignment, keeping the other one fixed
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k-means algorithm

When the chosen distance function is the Euclidean distance
(¢; norm), i.e.

it can be shown that the optimal representative is the mean of
the data points assigned to it
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k-means algorithm

When the chosen distance function is the Euclidean distance
(¢; norm), i.e.

it can be shown that the optimal representative is the mean of
the data points assigned to it

Considering the data points assigned to cluster C;,

the associated representative is rl) = (rﬁj), rg), Oy
where

I’U) _ ZXECI X

’ lei
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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centers < k points sampled from the domain
repeat
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centers < mean of assigned points
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-medians algorithm

When the chosen distance function is the Manhattan distance
(¢, norm), i.e.

i=m
d(x,x') = Z Ixi — xi|
=1

it can be shown that the optimal representative is the median
of the data points assigned to it
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k-medians algorithm

When the chosen distance function is the Manhattan distance

(¢, norm), i.e.
i=m

d(x,x') = Z Ixi — xi|
i=1
it can be shown that the optimal representative is the median
of the data points assigned to it

Given a set of values A,

we denote a<P> the pt" smallest value in A,

thatis, <™ < a<*> < ... < g<WP>

Then the median of A is

a<(al+1/2> if |A] is odd
(a<Wl/2> 4 g<lAl/2+1>) 2 if |A| is even
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k-medians algorithm

When the chosen distance function is the Manhattan distance
(¢, norm), i.e.

i=m
d(val) = Z ’Xi _X” ;
i=1

it can be shown that the optimal representative is the median
of the data points assigned to it

Considering the data points assigned to cluster C;,
the associated representative is rl) = (rﬁj), ré’), o
where

r/(j) = median({x;, x € G;})
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k-medians algorithm

centers < k points sampled from the domain
repeat

Assign points to closest center

centers < median of assigned points
until convergence
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Representative-based algorithms

Euclidean distance Manhattan distance

Distance f7 norm £ norm
d(x,x) oG —x)? S % x|
Representative mean median
r,(j) erq Xi/ ’Cj’ median({X;, x € C;})
Algorithm k-means k-medians
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Initialization

A representative might not be assigned any data point,
because it is not closest to any one
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Initialization

A representative might not be assigned any data point,
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Initialization

A representative might not be assigned any data point,
because it is not closest to any one

In such cases, the representative might be dropped altogether,
resulting in a smaller number of clusters, or re-initialised
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Initialization

A representative might not be assigned any data point,
because it is not closest to any one

In such cases, the representative might be dropped altogether,
resulting in a smaller number of clusters, or re-initialised
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Initialization

A representative might not be assigned any data point,
because it is not closest to any one
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Initialization

The initialization of the representatives is a crucial step

Instead of initializing the representatives as random vectors
from the domain of the variables, one might sample existing
points from the data set
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k-means algorithm

centers < k points sampled from the data
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the data
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the data
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the data
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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k-means algorithm

centers < k points sampled from the data
repeat

Assign points to closest center

centers < mean of assigned points
until convergence

fork =4
00 Step# 5

00 02 04 06 08 10

VB
UEF//School of Computing  JADe:Clustering Basics 19/53



k-means algorithm

centers < k points sampled from the data
repeat
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k-means algorithm

centers < k points sampled from the data
repeat

Assign points to closest center

centers < mean of assigned points
until convergence
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Initialization

The initialization of the representatives is a crucial step

It is desirable that the initial representatives are spread
through different regions of the data

When sampling, penalize data points that are close to
previously selected representatives
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Initialization

The initialization of the representatives is a crucial step

It is desirable that the initial representatives are spread
through different regions of the data

When sampling, penalize data points that are close to
previously selected representatives

— kR-means++ algorithm
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k-means++ algorithm

r() « sample from data points uniformly at random

forj=2..kdo

r0) « sample from remaining data points with

probability P(x) oc minj—_;d(x,r;)

UEF//School of Computing JADe:Clustering Basics

o fork =4

Step# 1

00

21/53



k-means++ algorithm

r() « sample from data points uniformly at random
for) =2..k do

r¥) + sample from remaining data points with
probability P(x) oc minj—y_;d(x, ;)

o fork =4
o0 . Step# 2
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for) =2..k do

r¥) + sample from remaining data points with
probability P(x) oc minj—y_;d(x, ;)

o for k=4
o0 . Step# 3

00 02 04 06 08 10

UEF//School of Computing  JADe:Clustering Basics 21/53



k-means++ algorithm

r() « sample from data points uniformly at random
for) =2..k do

r¥) + sample from remaining data points with
probability P(x) oc minj—y_;d(x, ;)

o for k=4
o0 . Step# 4
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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k-means++ algorithm

repeat
Assign points to closest center
centers < mean of assigned points
until convergence
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Initialization

The initialization of the representatives is a crucial step

More careful initialization, as with k-means++ might be more
expensive, but the algorithm then typically and more reliably
converges in fewer iterations, and to better solutions
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Probabilistic model-based algorithms

Underlying assumption: the data was generated from a mixture
of k probability distributions

A probabilistic model (a.k.a. mixture component) is associated
to each cluster

Each data point is generated by the mixture model as follows
(i) a mixture component is selected
(i) the data point is generated from this component
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Probabilistic model-based algorithms

Each data point is generated by the mixture model as follows
(i) a mixture component is selected
(i) the data point is generated from this component

Each mixture component MU) has a prior probability aj, a set of
parameters ¢; and a probability density function fo,

For a probabilistic model M = (MM M@ M)} the
probability of data point x is

X’M ZO&I fg

and the probability of the data is
p(D| M) =] p(x| M)

xeD
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Probabilistic model-based algorithms

Each mixture component MU) has a prior probability o, a set of
parameters #; and a probability density function fgl.

For a probabilistic model M = (MM, M@ M)} the
probability of the data is

p(D| M) =] p(x| M)

xeD

It is generally more convenient to work with the log likelihood

L(D | M) = log (p(D | M)) ngza, o (x

xeD
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Probabilistic model-based algorithms

Each mixture component MU) has a prior probability aj, a set of
parameters ¢; and a probability density function f,

For a probabilistic model M = {MM M@ M®B} the log
likelihood of the data is

L(D|M)= ZlogZaj fo (x

XeD

The goal is to find the model parameters that maximize the fit
of the model to the data, as measured by the log likelihood

D
arg max L(D | M)
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Probabilistic model-based algorithms

The optimal parameters of the model and the probabilities of
data points are unknown a priori, but depend on each other in
a circular way

- if the parameters of the model are fixed, it is easy to
compute the probabilities of each data point to be
generated by each mixture component

- If the probabilities of each data point to be generated by
each mixture component are fixed, it is relatively easy to
determine the parameters of the model
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Probabilistic model-based algorithms

The optimal parameters of the model and the probabilities of
data points are unknown a priori, but depend on each other in
a circular way

Such problems are typically solved using an iterative algorithm
that alternates between two steps

Expectation estimate the posterior probability that point x
was generated by each mixture component MU)

Maximization estimate model parameters © to maximize the
log-likelihood fit under the current assignment
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Probabilistic model-based algorithms

The optimal parameters of the model and the probabilities of
data points are unknown a priori, but depend on each other in
a circular way

Such problems are typically solved using an iterative algorithm
that alternates between two steps

Expectation estimate the posterior probability that point x
was generated by each mixture component MU)

Maximization estimate model parameters © to maximize the
log-likelihood fit under the current assignment

— Expectation-Maximization (or EM) algorithm
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Gaussian mixture model

In particular, Gaussian distributions might be used as mixture
components
A Gaussian distribution (a.k.a. normal distribution) has two

parameters, the mean p and the variance o2, i.e. 0 = (u,0?),
and is typically denoted N (u, o)
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Gaussian mixture model

In particular, Gaussian distributions might be used as mixture
components
A Gaussian distribution (a.k.a. normal distribution) has two

parameters, the mean p and the variance o2, i.e. 0 = (u,0?),
and is typically denoted N (u, o)

The probability of data point x under mixture component M
with = {1, ..., um) and o = (0?,...,02,) is
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Gaussian mixture model

Let © denote all parameters of the model, including the mean
and variance of each mixture component, as well as their prior
probabilities

Assuming that the parameter values in © are fixed, the
posterior probability that data point x was generated by
mixture component M0 s

Qj - f@'(x)

MO | x. 0
PO %0 = S

This can be interpreted as a soft assignment of the data point
to the mixture component, and used to weigh the contribution
of the data point to the mixture component
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Gaussian mixture model

Given a soft assignment of data points to mixture component
MU) as a vector of probabilities over the data points

) € [0,1]", such that w{’ = p(M0) | x(@), ©), the parameters of
the mixture component are estimated as

o_Ziawe Y g | Zamawe o -y
I a=n an o = a=n
=il Wq =il WCI

And the prior probability of mixture component MU) is

estimated as

1W<(Jj)

o =
J n
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EM clustering with Gaussian mixture model

Initialize mixture components: sample k normal distribution
parameter pairs and set prior probabilities

" 0; « initialize (p, o), j € [1.K]
¥ aj < 1/kR, je[1.K]
g repeat

compute points assignment
v fork =3 compute parameters ©
o0 Step# 1 until convergence

00 0 0% 3 s T
VB
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EM clustering with Gaussian mixture model

E(xpectation) step: estimate the posterior probability that point
x was generated by each mixture component M0)

” . 0; « initialize (u, o), j € [1.K]
y aj < 1/R, Je[l.R]
g : repeat

compute points assignment
v fork =3 compute parameters ©
o0 Step# 2 until convergence

00 0 0% 3 s T
VB
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EM clustering with Gaussian mixture model

M(aximization) step: estimate model parameters © to maximize
the log-likelihood fit under the current assignment

” . 0; « initialize (u, o), j € [1.K]
y aj < 1/R, Je[l.R]
g © repeat

compute points assignment
- fork =3 compute parameters ©
o0 Step# 3 until convergence

00 02 04 06 08 10
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EM clustering with Gaussian mixture model

E(xpectation) step: estimate the posterior probability that point
x was generated by each mixture component M0)

” . 0; « initialize (u, o), j € [1.K]
y aj < 1/R, Je[l.R]
g . repeat

compute points assignment
v fork =3 compute parameters ©
o0 Step# 4 until convergence

00 02 04 06 08 10
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EM clustering with Gaussian mixture model

M(aximization) step: estimate model parameters © to maximize
the log-likelihood fit under the current assignment

g e T 0; « initialize (o), j€[1..K]
" ¥ aj < 1/kR, je[1.K]
i - repeat

compute points assignment
v fork =3 compute parameters ©
w Step# 5 until convergence

00 0 0% 3 s T
VB
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EM clustering with Gaussian mixture model

E(xpectation) step: estimate the posterior probability that point
x was generated by each mixture component M0)

g e T 0; « initialize (u, o), j € [1..K]
" ¥ aj < 1/kR, je[1.K]
i . repeat

compute points assignment
- fork =3 compute parameters ©
w Step# 6 until convergence

00 0 0% 3 s T
VB
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EM clustering with Gaussian mixture model

M(aximization) step: estimate model parameters © to maximize
the log-likelihood fit under the current assignment

0s } ‘.. . 0; < initialize (p, o), j€[1..K]
. : + o < 1/k €1kl

i : repeat

compute points assignment
v fork =3 compute parameters ©
w Step# 7 until convergence

00 0 0% 3 s T
VB
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EM clustering with Gaussian mixture model

E(xpectation) step: estimate the posterior probability that point
x was generated by each mixture component M0)

g e T 0; « initialize (u, o), j € [1..K]
" jﬁ“i aj < 1/kR, je[1.K]
i . repeat

) compute points assignment
- fork =3 compute parameters ©
w Step# 8 until convergence

R R
28/53
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EM clustering with Gaussian mixture model

M(aximization) step: estimate model parameters © to maximize
the log-likelihood fit under the current assignment

" + . 0; < initialize (p, o), j € [1..R]
. : + o < 1/k, jEI.K]

i : repeat

compute points assignment
v fork =3 compute parameters ©
w Step# 9 until convergence

00 0 0% 3 s T
VB
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EM clustering with Gaussian mixture model

E(xpectation) step: estimate the posterior probability that point
x was generated by each mixture component M0)

g + T 0; « initialize (u, o), j € [1..K]
" ‘. 4‘7 aj < 1/kR, je[1.K]
i . repeat

compute points assignment
- fork =3 compute parameters ©
o Step# 10 until convergence

R R
28/53
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EM clustering with Gaussian mixture model

M(aximization) step: estimate model parameters © to maximize
the log-likelihood fit under the current assignment

fork =3
00 Step# 11

00 0 0% 3 s T
VB
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0; « initialize (u, o), j € [1.K]
aj < 1/R, Je[l.R]
repeat
compute points assignment
compute parameters ©
until convergence
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EM clustering with Gaussian mixture model

E(xpectation) step: estimate the posterior probability that point
x was generated by each mixture component M0)

fork =3

0 Step# 12

00 0 0% 3 s T
VB
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0; « initialize (u, o), j € [1.K]
aj < 1/kR, je[1.K]
repeat
compute points assignment
compute parameters ©
until convergence
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EM clustering with Gaussian mixture model

M(aximization) step: estimate model parameters © to maximize
the log-likelihood fit under the current assignment

fork =3
00 Step# 13

00 0 0% 3 s T
VB
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0; « initialize (u, o), j € [1.K]
aj < 1/R, Je[l.R]
repeat
compute points assignment
compute parameters ©
until convergence
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EM clustering with Gaussian mixture model

E(xpectation) step: estimate the posterior probability that point
x was generated by each mixture component M0)

fork =3

o Step# 14

00 0 0% 3 s T
VB
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0; « initialize (u, o), j € [1.K]
aj < 1/kR, je[1.K]
repeat
compute points assignment
compute parameters ©
until convergence
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EM clustering with Gaussian mixture model

M(aximization) step: estimate model parameters © to maximize
the log-likelihood fit under the current assignment

o
° ..
.

® e

.

06 .
.

T 0; < initialize (pu, o), j€[1..K]
+ ;< 1/R, j€[1.K]

i repeat

compute points assignment
v fork =3 compute parameters ©
o Step# 15 until convergence

00 0 0% 3 s T
VB
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EM clustering with Gaussian mixture model

Convergence: the parameters of the model stabilize

o
° ..
.

® e

.

06 .
.

T 0; < initialize (pu, o), j€[1..K]
+ ;< 1/R, j€[1.K]

i repeat

compute points assignment
v fork =3 compute parameters ©
o Step# 16 until convergence

00 02 04 06 08 10
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EM clustering with Gaussian mixture model

Soft assignment: compute the final posterior probabilities for
each data point x
p(MY) | x,©),M0) e M

. e T 6, « initialize (o), j € [1..K]
. ’:‘ . aj /R, je 1.k
g . repeat

compute points assignment
- fork =3 compute parameters ©
0 until convergence
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EM clustering with Gaussian mixture model

Hard assignment: assign each data point to the model under
which it has the highest probability
arg max p(MY | x,©)

MO e M
g T 0; « initialize (u, ), j€[1..K]
y s . aj < 1/R, Je[l.R]
g . repeat
compute points assignment
- fork =3 compute parameters ©
0 until convergence
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Bisecting k-means

The bisecting k-means algorithm, as the name suggests, works
by bisecting clusters, i.e. splitting them into two, recursively by
applying the k-means algorithm with k =2
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Bisecting k-means

Start with a single cluster containing
all data points
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Bisecting k-means

Recursively split non-singleton
clusters into two
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Bisecting k-means

Recursively split non-singleton
clusters into two

08 1

02 1

00 1

33 0.0

UEF//School of Computing  JADe:Clustering Basics 30/53



Bisecting k-means

Recursively split non-singleton
clusters into two
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Bisecting k-means

Recursively split non-singleton
clusters into two
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Bisecting k-means

e === = Recursively split non-singleton
clusters into two

08 1

02 1

00 1

0.0
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Bisecting k-means

Recursively split non-singleton

18
Ui clusters into two
13
i
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21
14 10
15
b 08
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02 1
00 1
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Bisecting k-means

Recursively split non-singleton
clusters into two

08 1

02 1

00 1

0.0

UEF//School of Computing  JADe:Clustering Basics 30/53



Bisecting k-means

Until each data point is in its own
cluster

02 1

00 1

0.0 0.2 04 06 08 10
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Bisecting k-means

10— The clusters obtained through
. the successive iterations of the
- pE— algorithm form a hierarchy, with
higher-level clusters containing
lower-level clusters

— Bisecting k-means is a
top-down divisive hierarchical
clustering algorithm
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Bisecting k-means

10— The clusters obtained through
. the successive iterations of the
- pE— algorithm form a hierarchy, with
higher-level clusters containing
lower-level clusters

The tree diagram depicting this
hierarchical structure is called a
dendrogram
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Bisecting k-means

Rather than further splitting all current non-singleton clusters,
we can split one cluster at a time

In particular, the least cohesive current cluster can be selected
to be split next

At each step, the number of clusters increases by one

The process can be repeated until

(i) the desired number of clusters is obtained, or

(ii) a desired cohesiveness threshold is reached for all clusters
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Bisecting k-means

The cohesiveness of a cluster can be evaluated using an
aggregate of the distances between pairs of points in the
cluster, such as the maximum of pairwise distances

Let Cpy denote the current collection of non-singleton clusters
The next cluster to split can be selected as

argmax max _ d(x,x)
CeCm (xx')eC?

This way, the cluster containing the pair of nodes furthest
apart will be selected to be split in the next step
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Bisecting k-means

all data points
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Start with a single cluster containing

33/53



Bisecting k-means

Split the initial cluster into two

The horizontal position of a node indicates the cohesiveness of the corresponding cluster
ss of the old and of the r lu s indicated be
se distances are de vs in the scatter plot

The co
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The number in a circle above a node indicates its position in the priority queue
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Bisecting k-means

Take the first cluster from the queue, split it into
two, and add the new clusters to the queue

@
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Bisecting k-means

Take the first cluster from the queue, split it into
two, and add the new clusters to the queue
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Bisecting k-means

Take the first cluster from the queue, split it into
=0 two, and add the new clusters to the queue
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Bisecting k-means

; Take the first cluster from the queue, split it into
x Y two, and add the new clusters to the queue
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Bisecting k-means

\ Take the first cluster from the queue, split it into
=0 two, and add the new clusters to the queue

08 1

02 1

00 1

0.0
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Bisecting k-means

W N Until the desired number of clusters is obtained
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Hierarchical agglomerative algorithms

Contrary to divisive clustering methods that proceed in a
top-down manner, hierarchical agglomerative clustering
methods proceed from the bottom up

They start with each data point in its own cluster,
and iteratively merge the pair of clusters that are the closest,
until a single cluster containing all data points is obtained
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Hierarchical agglomerative algorithms

Contrary to divisive clustering methods that proceed in a
top-down manner, hierarchical agglomerative clustering
methods proceed from the bottom up

They start with each data point in its own cluster,
and iteratively merge the pair of clusters that are the closest,
until a single cluster containing all data points is obtained

Which clusters are considered to be the closest and selected
to be merged in the next step depends on the chosen
inter-cluster distance, called the linkage function

Different linkage functions correspond to algorithm variants of
agglomerative clustering
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Inter-cluster distances

Considering two clusters C, and C,, the inter-cluster distance
between them, d(Cy, C,), is often defined as a function of the
pairwise point distances, that is, of the distances between all
pairs of points x and x’ respectively from C, and G,

Furthermore, the distance between cluster Cy, resulting from
the merger of C, and C,, and any other cluster Cs, d(Cyy, Cy),
can often accordingly be computed as a function of the
distances between C, and Cs and between C, and Cs

Among the most common linkage functions are

single linkage minimum of pairwise point distances
complete linkage maximum of pairwise point distances
average linkage average of pairwise point distances
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Inter-cluster distances, linkage functions

Linkage single complete average
function a.ka. minimum ak.a. maximum

Inter-cluster distance (as function of pairwise point distances)

d(Cu,Cv) min  d(x,x') max d(x,x’) Z(Xax/)efuxcvd()(?)(/)

(x,x")eCyxCy (x,x")ECy xCy ‘Cu| . ‘Cv‘
Distance merging (for C,, = C, U G, and any other cluster Cs)

C|-d(c, C
min }d(C,CS) max d(C, Cs) Lcetecn |- 4(6G)

d(CUV7 CS) Ce{Cy,G ce{Cuy,Cv} |CU‘ + |CV|
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Agglomerative clustering with complete linkage

1 o o o o
2 Start with each data point in its own cluster
A Distances must be computed for all pairs of points
2 The lo riangle of the symmetric distance matrix is depicted, with darker shades of gray indicating
7J larger value
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Agglomerative clustering with complete linkage

1
2 Select the two clusters that are closest and merge them
A The clusters corresponding to the smallest value in the distance matrix are selected (blue and red)
'> They are merged into a new cluster (purple), and the distance matrix is updated
9 Specifically, the distance vectors for the O clusters are >gated according to the linkage function,
Wﬁ to compute distances for the new cluster (as depicted below the distance matrix)
12 The two vectors are removed and the new one is added to the matrix
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Agglomerative clustering with complete linkage

2 Select the two clusters that are
? closest and merge them
1 lterate...
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s 3%e complete link.
» e | Step# 2
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Agglomerative clustering with complete linkage

Select the two clusters that are
closest and merge them
b lterate...

N
N

IEEEE

s

39

i

I

1
T 02 1

~5%: complete link.
oo Step# 3
s I R

UEF//School of Computing  JADe:Clustering Basics 37/53



Agglomerative clustering with complete linkage

; Select the two clusters that are
o closest and merge them
b lterate...
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Agglomerative clustering with complete linkage

; Select the two clusters that are
o closest and merge them
b lterate...
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage

2 Select the two clusters that are
closest and merge them
2 Iterate...
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Agglomerative clustering with complete linkage

Select the two clusters that are
closest and merge them
[terate...
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Agglomerative clustering with complete linkage

2 Select the two clusters that are

1‘2: closest and merge them

3 Iterate...
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Agglomerative clustering with complete linkage

2 Select the two clusters that are
1 closest and merge them

3 Iterate...
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Agglomerative clustering with complete linkage

j Select the two clusters that are

i closest and merge them

22

i Iterate...

5

3’}% 10

08 1 = 39

1/, 2‘ JJ\.

; } W2121 06 38
% i o 36,7
s e, ot

10 = = &

lé ? T 3%91.0 02 4 ER Yoo 1 .
‘;> & “%3“5% "‘/f»_s*.}(; complete link.
2/;:> SARRRRREREE: 4o 00 4 12 Step#’l/l
'}\ (5 M D A

Q

UEF//School of Computing  JADe:Clustering Basics 37/53



Agglomerative clustering with complete linkage

j Select the two clusters that are
i closest and merge them
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Agglomerative clustering with complete linkage

Select the two clusters that are
closest and merge them

Iterate...
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage

2 Select the two clusters that are
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Agglomerative clustering with complete linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with complete linkage

Select the two clusters that are
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage

* Select the two clusters that are
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Agglomerative clustering with complete linkage

: Select the two clusters that are
closest and merge them
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Agglomerative clustering with complete linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage
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closest and merge them
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage

b Select the two clusters that are
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Agglomerative clustering with complete linkage
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Agglomerative clustering with complete linkage

b Select the two clusters that are

‘ closest and merge them
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Agglomerative clustering with complete linkage

Select the two clusters that are

‘ closest and merge them
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Agglomerative clustering with complete linkage

Until a single cluster containing all

7 data points is obtained
13
10
JZ 10
4
15
(’ 08 1
06
s
24
o
i% 02 1
30
)7
28 .
> O‘O 0‘2 O‘/l 0‘6 O‘B 1‘0

UEF//School of Computing  JADe:Clustering Basics 37/53



Agglomerative clustering with complete linkage

Once the full hierarchy of clusters has been built,
it can be truncated to obtain the desired number
of clusters, or according to inter-cluster distances
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Agglomerative clustering with complete linkage

Once the full hierarchy of clusters has been built,
it can be truncated to obtain the desired number
of clusters, or according to inter-cluster distances
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Agglomerative clustering with complete linkage

Once the full hierarchy of clusters has been built,
it can be truncated to obtain the desired number
of clusters, or according to inter-cluster distances
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Agglomerative clustering with complete linkage

Once the full hierarchy of clusters has been built,
it can be truncated to obtain the desired number
of clusters, or according to inter-cluster distances
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Agglomerative clustering with average linkage

W Start with each data point in its own
5 cluster
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Agglomerative clustering with average linkage

2 Select the two clusters that are
F closest and merge them
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Agglomerative clustering with average linkage

2 Select the two clusters that are
? closest and merge them
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Agglomerative clustering with average linkage

; Select the two clusters that are
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Agglomerative clustering with average linkage
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Agglomerative clustering with average linkage
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with average linkage

2 Select the two clusters that are

WL closest and merge them
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Agglomerative clustering with average linkage

) Select the two clusters that are
10 closest and merge them
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Agglomerative clustering with average linkage

2 Select the two clusters that are

1‘2: closest and merge them
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Agglomerative clustering with average linkage

2 Select the two clusters that are
1 closest and merge them
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Agglomerative clustering with average linkage
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Agglomerative clustering with average linkage
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with average linkage

j Select the two clusters that are
i closest and merge them
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Agglomerative clustering with average linkage

j Select the two clusters that are

2 closest and merge them
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Agglomerative clustering with average linkage
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Agglomerative clustering with average linkage

2 Select the two clusters that are
2 closest and merge them
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with average linkage

’ Select the two clusters that are
2 closest and merge them
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
[terate...
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
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Agglomerative clustering with average linkage

Select the two clusters that are
closest and merge them
[terate...
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Agglomerative clustering with average linkage

ﬂ Select the two clusters that are

closest and merge them
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Agglomerative clustering with average linkage
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Agglomerative clustering with average linkage

Until a single cluster containing all
data points is obtained
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Agglomerative clustering with average linkage

Truncate the hierarchy to obtain the
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage

Select the two clusters that are
closest and merge them

UEF//School of Computing

08 1

02 1

00 1

[terate...
1.0
lZ
[T 5‘
[ 10,
\\\ﬂzw 0.6
ImE
H2, N
= 0
130
1131
—h
i
37383
0
4
46
47
( R o
&\EED CE T e ([ [ 48

JADe:Clustering Basics

.
‘,'so'w . .
8% single link.
Step# 9
O‘O 0‘2 O‘h 0‘6 018 1‘0

41/53



Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage

Until a single cluster containing all
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Agglomerative clustering with single linkage

Truncate the hierarchy to obtain the
desired number of clusters
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Agglomerative clustering with single linkage

Truncate the hierarchy to obtain the
desired number of clusters
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Agglomerative clustering with single linkage
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Agglomerative clustering with single linkage

Truncate the hierarchy to obtain the
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Hierarchical agglomerative algorithms

Different linkage functions produce different cluster hierarchies
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Density-based algorithms

Density-based algorithms aim to identify connected dense
areas of the data as the clusters

Data points that lie in sparse areas of the data might not be
assigned to any cluster

UEF//School of Computing JADe:Clustering Basics 44 /53



Density-based algorithms

Density-based algorithms aim to identify connected dense
areas of the data as the clusters

Data points that lie in sparse areas of the data might not be
assigned to any cluster

DBSCAN is a popular example of a density-based algorithm
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The DBSCAN algorithm

The DBSCAN algorithm proceeds in three main steps

(i) divide the data points into three categories, depending on
their neighborhood

For chosen parameters e and 7

core points have at least 7 points within a radius e

border points have less than 7 points within a radius e,
but at least one is a core point

noise points have less than 7 points within a radius e,
and none is a core point
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The DBSCAN algorithm

For chosen parameters e and 7

Let N(x, €) denote the set of points within a radius e of point x
(including the point itself), that is

N(x,€) = {X € D,d(x,X) < €}

Let D, Dp and D, denote the sets of core, border and noise
points respectively, then

Dc={xeD,|N(x,e)| > 7}

Dp = {x € D,|N(x,¢€)| < 7and N(x,e) N D. # 0}

Dp = {x € D,|N(x,¢)| < 7 and N(x,e) N D = 0}
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The DBSCAN algorithm

The DBSCAN algorithm proceeds in three main steps
(i) divide the data points into core, border and noise points

(i) construct a graph with core points as the vertices and with
an edge between two vertices if the corresponding points are
within a radius e of each other, find connected components
from this graph
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The DBSCAN algorithm

The DBSCAN algorithm proceeds in three main steps
(i) divide the data points into core, border and noise points
(i) find connected components from the graph of core points

(iii) assign border points to the component they are most
strongly connected to
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The DBSCAN algorithm

The DBSCAN algorithm proceeds in three main steps

(i) divide the data points into core, border and noise points
(i) find connected components from the graph of core points
(iii) assign border points to the most relevant component

— The connected components are returned as the clusters
Noise points are not assigned to any cluster
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component

fore=0.1
00 aﬂd T = 6
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The DBSCAN algorithm

Given e and 7, partition D into D¢, D}, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component
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The DBSCAN algorithm

Given e and 7, partition D into D¢, D}, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component
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N g for e = 0.1

00 . andT:6
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin D, to the most relevant component
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component

for e = 0.05
00 aﬂdT:3
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The DBSCAN algorithm

Given e and 7, partition D into D¢, D}, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component
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The DBSCAN algorithm

Given e and 7, partition D into D¢, D}, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component

"1 "M fore=0.05
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component

"1 ™ fore=0.05
00 . aﬂdT:3
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component

"1 ™ fore=0.05
00 . aﬂdT:3
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin D, to the most relevant component
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The DBSCAN algorithm

Given € and 7, partition D into D¢, [V, and D,
Construct a graph with D¢ as vertices,
and find the connected components
Assign each pointin [, to the most relevant component

e

" fore=0.05
00 . aﬂdT:3

00 02 04 06 08 10
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The DBSCAN algorithm

Unlike for instance k-means, DBSCAN is not limited to spherical
clusters but can detect clusters of arbitrary shapes

On the other hand, it is limited to detecting clusters of similar

densities
04 %. 04 o :r_
: fore=20.1 | =™ fore=0.05
00 . aﬂd T = 6 00 4 . and T = 3
00 02 0y 05 08 10 00 02 04y 08 08 10
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The DBSCAN algorithm

DBSCAN does not require to provide the number of clusters as
input parameter, it is set implicitly based on the connectivity of

the graph
04 . o :r_
"1 fore = 0.1 "1 =™ fore=0.05
00 aﬂd T = 6 00 . aﬂd T = 3
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The DBSCAN algorithm

DBSCAN does not require to provide the number of clusters as
input parameter, it is set implicitly based on the connectivity of
the graph

On the other hand, DBSCAN requires to set parameters e and 7
While their meaning is relatively intuitive, that is, a smaller
radius € and a greater number of neighbors 7 increase the
density needed for an area to be considered a cluster,

they might be difficult to adjust for a specific data set
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Evaluation




Clustering evaluation

Given a dataset, we can obtain various clusterings, by applying
different methods and using different parameter settings

We need to quantify the quality of clusterings, in order to

- measure the effectiveness and tune the parameters of a
particular algorithm

- compare and select clusterings
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Clustering evaluation

Clustering is defined as an unsupervised task, and often there
is no ground truth clustering to compare against

Hence we often need to rely on internal validation criteria
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Internal validation criteria

We often need to rely on internal validation criteria, such as

sum of square distances to centroids determine a centroid for
each cluster (or use the representative, for
representative-based methods) and compute the
sum of square distances from every point to the
associated centroid

For a clustering C = {Cy, Gy, ..., Cy}, let {¥) denote the centroid
of cluster C,, then

SSDC(C) = ) ) " d(x,rtWy?

CueC xeCy

Smaller values indicate more cohesive clusters
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Internal validation criteria

We often need to rely on internal validation criteria, such as

Intra-cluster vs. inter-cluster distance ratio compare the
distances between pairs of points in the same vs.
in different clusters

For a clustering C = {C1, Gy, ..., Ci}, let

Z d(val) Dintra = Z D(Cu) Pintra = Z |Cu|'(|CU|_1)

(x,x")ECyxCy cuec cuec
x#x
CU7CV = Z d X, X Dinter = Z D(CuaCV) Pinter = Z |Cu| ! ‘CV‘
(x,x")eCyxCy (Cu,Cr)eCxC (Cu,Cr)eCxcC
Cu#Cy Cu#Cy

then, DR(C) = Dintra/Pintra
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Internal validation criteria

We often need to rely on internal validation criteria, such as

Intra-cluster vs. inter-cluster distance ratio compare the
distances between pairs of points in the same vs.
in different clusters

For a clustering C = {Gy, Gy, ..., C},

Dintra/Pintra
Dinter/Pinter

Dintra @aNd Dipter Can be computed for Piyya and Piger Pairs of
points sampled at random rather than from all pairs,
especially for large datasets

DR(C) =

Smaller values indicate more cohesive clusters

UEF//School of Computing  JADe:Clustering Basics 51/53



Internal validation criteria

We often need to rely on internal validation criteria, such as

Silhouette coefficient compare for each point the average
distance to other points within the same cluster
and average distance to points in other clusters

For a clustering C = {G4, G, ..., Cr} and data point x € G, let

d(x,x’) : d(x,x’)
Ds(x) = - and  Do(x) = E -
) G o) =T 2 ey
x'€G CEG X eC

X #x
then, the silhouette coefficient for point x is
Do(X) — Ds(x)
S(x) =
) = rax(0o(). Ds()
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Internal validation criteria

We often need to rely on internal validation criteria, such as

Silhouette coefficient compare for each point the average
distance to other points within the same cluster
and average distance to points in other clusters

For a clustering C = {G;, Gy, . .., Cr}, the overall silhouette
coefficient is the average of point-specific coefficients

S(C)zzsg‘)

The silhouette coefficient takes values in [-1,1], with large
positive values indicating more clearly separated clusters
whereas negative values indicate more blending
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Internal validation criteria

We often need to rely on internal validation criteria, such as

sum of square distances to centroids
Intra-cluster vs. inter-cluster distance ratio

Silhouette coefficient

These measures are biased towards algorithms that optimize a
similar criterion
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Internal validation criteria

We often need to rely on internal validation criteria, such as

sum of square distances to centroids
Intra-cluster vs. inter-cluster distance ratio

Silhouette coefficient

These measures can be used to select values for the
parameters, such as the number of clusters k

One might look at how the value of the validation measure
evolves when varying the value of a parameter and look for an
inflection point

I Caution is required due to the inherent flaws of the measures
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Comparing clusterings

We might want to compare the specific assignments of data
points corresponding to two different clusterings, to evaluate
how much they agree
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Comparing clusterings

Consider two clusterings C, and Cg with ks and kg clusters,
respectively

08

02

00

00 02 04 06 08 10 00 02 04 06 08 10

I Note that k4 and kg might be different, and that no mapping

between clusters of C4 and of Cg is assumed a priori
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Comparing clusterings

Consider two clusterings C4 and Cg with kR4 and kg clusters

Given a data point, let a (respectively b) be the index of the
cluster to which it is assigned in clustering C4 (respectively Cg)

A data point might be assigned to

the first cluster of Ca and the first cluster of Cg, i.e. (a =1,b =1)
the first cluster of Ca and the second cluster of Cg, i.e. (a =1,b = 2)

the first cluster of C, and the last cluster of Cg, i.e. (a =1,b = Rg)

the last cluster of Ca and the last cluster of Cg, i.e. (a = Ra, b = Rp)

There are Ry - kg distinct possible outcomes, i.e. pairs (a, b)
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Comparing clusterings

Consider two clusterings C4 and Cg with kR4 and kg clusters

Given a data point, let a (respectively b) be the index of the
cluster to which it is assigned in clustering C4 (respectively Cg)

There are Ry - kg distinct possible outcomes, i.e. pairs (a, b)

Let #(a = i, b = j) denote the number of data points that
belong to the it cluster of C4 and the jt cluster of Cg

Similarly, let #(a = i) and #(b =j) respectively denote the
total number of data points in the i cluster of C4 and in the
jt cluster of Cg

We assume the clusterings are partitions of the data set, that is

n= 3 #a=i= Y #b=)

1€[1..Ra] JE[1..Rg]
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Comparing clusterings

Consider two clusterings C4 and Cg with kR4 and kg clusters

Let #(a = i, b = j) denote the number of data points that
belong to the i*" cluster of C4 and the jt cluster of Cg

The assignment outcome of the pair of clusterings for the data
set can be summarized in a Ry x Rg contingency matrix

Clustering Cg
b=1 ... b=j ... b= ks

< a=1 #@=1b=1) #a=1b=j) #@a=10b=ke)
S 03

S a=i #a=ib=1) #a=ib=j) #a=ib=rke)
S a2k #a=hkeb=1) #(a=kyb=)) #(a="hnb=ke
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Comparing clusterings

Consider two clusterings C4 and Cg with kR4 and kg clusters

Clustering Cg

b=1 ... b=j ... b=kg

S a=1 #@=1,b=1) H#(a=1b=j) H#(a=10b=Rkg)
%na:/ #a=ib=1) #a=ib=j) #a=ib= ks
ga:m #(@=Ra,b=1) #(a=Ra,b=j) #(a=Rab=Rp)

For equal Ry = kg, perfect agreement means that the
clusterings are identical up to relabeling of the clusters,

i.e. that the rows and columns of the contingency matrix can be
reordered so that non-zero values appear only on the diagonal
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Comparing clusterings

Consider two clusterings C4 and Cg with kR4 and kg clusters

Clustering Cg
b=1 b=j b = kg

S a=1 #@=1,b=1) #(a=1,b=)) #(a=1b=Rkg)
S as

S aZi #a=ib=1) #a=ib=j) #a=ib=ke)
2 a=ka #a=kab=1) #(a=kab=j) #(a="kab=rks)

More in general, large values concentrated in few cells of the

contingency matrix indicate high agreement, whereas a more

uniform distribution of values across the matrix indicate poor
agreement
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Comparing clusterings

Consider two clusterings C4 and Cg with kR4 and kg clusters

Clustering Cg

b=1 ... b=j ... b=kg
a=1 #@=1b=1) #a=1,b=j) #@=10b=ks)
a=i  #a=ib=1) #a=ib=j) #a=ib=ks)

Clustering C,

Hence, the agreement between the clusterings can be
intuitively assessed by just looking at the distribution of values
across the contingency matrix

Measures can be computed from this matrix in order to

quantify the degree of agreement
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Comparing clusterings

Measures computed from the contingency matrix in order to
quantify the degree of agreement between two clusterings
include cluster purity

Purity(Ca, Ca) = 3 max M
ie[1.4feA])€[1" J

Values close to 1 are desirable, indicating that the clusters of
Cx are very pure with respect to those of Cg, i.e. a given cluster
of C, mainly contains points from the same cluster of Cg
Cluster purity only takes into account the majority assignment
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Comparing clusterings

Measures computed from the contingency matrix in order to
quantify the degree of agreement between two clusterings
include cluster purity, the Gini index

Purity(Ca, Cs) = e w
ety 1R
#(Gf’ #a=ib=j)2
GINi(Ca, C) = Y 1—Z(W))
i€l kal jen. kg)

Values close to 0 are desirable
Larger values indicate that points from the same cluster of Cy
are scattered across several clusters of Cg
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Comparing clusterings

Measures computed from the contingency matrix in order to
quantify the degree of agreement between two clusterings
include cluster purity, the Gini index and the entropy

Purity(Ca,Cs) = > max #a=ihb=))

i€ ) <11l n

Gini(Ca, Cs) = Z #le/ 1_ Z (M)z)

i€l kal jelT. kel #(a=1)
(a=1) j a=lb=]
Entropy(Ca,Cs) = #la=1) Z # .) =J) log, (#(#(a = J))
i€l al ST B

Values close to 0 are desirable
The entropy captures similar properties as the Gini index
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Comparing clusterings

Purity(Ca,Cg) = max #la=ib=))

ik ]J€[1<»kel n
aiiten e = 3> HO=D. - 5 (FHETie Sy
i€[1..Ra] jel..kg] -
Entropy(Ca,Cs) = #a_/ 3 - #G—’ b=)) Iogz(#(a:"b':/))
i€l kal =) #(a=1)
! A jE1..kg]

I Note that these measures are not symmetrlc

Computing Purity(Ca,Cg) corresponds to taking Cg as reference,
evaluating the purity of the clusters of C, with respect to Cg
Computing Purity(Cg, Ca), i.€. taking Cx as reference instead, will
not yield the same value in general

One might compute the measure in both directions and take
the average

UEF//School of Computing  JADe:Clustering Basics 53/53



Comparing clusterings

Measures computed from the contingency matrix in order to
quantify the degree of agreement between two clusterings, to
evaluate one clustering against another clustering, include
cluster purity, the Gini index and the entropy

These measures constitute external validation criteria, since
they rely on an external reference to evaluate a clustering
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Comparing clusterings

Measures computed from the contingency matrix in order to
quantify the degree of agreement between two clusterings, to
evaluate one clustering against another clustering, include
cluster purity, the Gini index and the entropy

These measures constitute external validation criteria, since
they rely on an external reference to evaluate a clustering
If some ground truth is available, for instance in the case of
synthetically generated data, it can be used as reference

In our example, for instance, we might consider that grouping
beans by species provides a useful reference for evaluating the
obtained clusters
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