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Problem



A simple example
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A simple example

data points: Iris flowers
attributes: physical properties,
length of the petal and length of the sepal in cm
class: species, versicolor vs. virginica

versicolor virginica
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A simple example

versicolor
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A simple example

7.0

30 \. L L L L L ]
50 55 60 65 70 75 80
sepal length

Class information, i.e. species, is absent for some points
Can we use the available information to predict it?
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Different methods

Look at the most similar data points
— k nearest neighbors (k-NN)
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Different methods

Apply a sequence of tests on attributes’ values
— classification tree
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Different methods

Look at class probabilities conditioned on attributes’ values
— Naive bayes

L e ] P(elslsp) o P(o)-P(st|¢)-P(sp )
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w] |, ot P(e|sl,sp) < P(e|sl,sp) @
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Different methods

Look at the sign of a linear combination of the attributes
— perceptron
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Different methods

Look at the sign of a linear combination of the attributes
— support vector machine (SVM)
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R-NN decision tree naive Bayes perceptron SVM
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..but it is all about learning a decision boundary

R-NN decision tree naive Bayes perceptron SVM
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Some notations

The data set, denoted as D, contains n data points and m
attributes, i.e. itis a n x m matrix

A data point is @ m-dimensional vector x = (X1,X2, ..., Xm)
We denote xU) the jt" data point of D, i.e. the jt" row
Data points are sometimes called instances or examples

Class labels are arranged into a n-dimensional vector
y=0,Y2,...,¥n) € L, where [ = |L]| is the number of classes
That is, y; is the class label associated with data point xU)

In binary classification, class labels take value —1 or +1
(sometimes 0 or 1instead), i.e. £ = {—1,+1} (respectively

£ ={0,1}) and the two classes might be referred to as
negative and positive, respectively
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Methods




k nearest neighbors

Input: data set D, data point x
Parameters: distance function d, number of neighbors k
No training

Prediction: return majority class among k points in D that
minimize d(x, x")
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k nearest neighbors

K < {k points x' € D that minimize d(x,x’)}
return majority class in K
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k nearest neighbors

K < {k points x' € D that minimize d(x,x’)}
return majority class in

Euclidean distance (¢, norm)  Manhattan distance (¢, norm)

d(x,x') = /S (% — x))? d(x,x') = =7 |x; — x|
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Decision tree

=<

Noeaan

Input: data set D, data point x

Parameters: split evaluation measure,
max depth d, min leaf size |

Training: construct tree T by recursively finding tests that
yield best splits in D

Prediction: apply sequence of tests from T to x until reaching
a leaf, return associated class
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Decision tree

Decision tree: structure representing a succession of tests and
possible classification or regression outcomes

Leaf node decision (class/value)
Other node test on an attribute’s value

pl > 5.15
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Decision tree: Split evaluation measures

"""" Nyes.o//\lyes,.

———as NHO.!/NHO"
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Decision tree: Split evaluation measures

yes /T Nyes.o/NyeSp [ [ ]
Xi>Vv
yes  Nyeso Nyese Nyes
\\\ no Nno,e  Nnoe Nno
R N /\/no_./Nno,o Ne N N
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Decision tree: Split evaluation measures
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Decision tree: Split evaluation measures
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Decision tree: Split evaluation measures

Xi>Vv
0
0
ER  0.000
0.000
E 0.000
IG 1.000
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values

7.0

.
..
6.5 o
L]
L3N J L]
6.0 . °
L] L]
° : L]
55 .. . ... P 3/38
an
5 e o2 ° pl > 4.85
§5.0 F R 'o..: -'.
Q : L] .-I L] S
45 e o 00 o 0 0 \
. o oo \
0o °° no %y
sof -:'E o O 4] /2
H
35F e .
(1]
30 L \' L L L L L 1
5.0 5.5 6.0 6.5 7.0 75 8.0 G = 0111
sepal length

UEF//School of Computing  JADe:Classification Basics 16/66



Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Select best split,
divide the data accordingly and recurse on the subsets
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Decision tree: Training

Considering only the ‘no’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘no’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘no’ branch,
try splitting on different attributes and values

7.0 —
6.5
6.0
§055 P 3/38
5 pl > 4.85
=50[

3.0 _°

5.‘0 5.‘5 610 6‘.5 7.‘0 7.‘5 E;.O G = 0088

sepal length

UEF//School of Computing  JADe:Classification Basics 16/66



Decision tree: Training

Considering only the ‘no’ branch,
select best split...
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Decision tree: Training

Node is below the minimum size,
add leaf with dominant class as decision

7.0

6.5]

6.0 -
J o 3 /38
5 > 4,
o pl > 4.85
o ‘ :.' Il" © \

45fe o, 00 o :': .o 4 \\ ____________ 40/1

. no %, /

40 ° -- : e 1 ~

WL Sl>4.95 s ° 1/1

30F e | . . . . 1

5.0 5.5 6.0 6.5 7.0 75 8.0
sepal length

UEF//School of Computing  JADe:Classification Basics 16/66



Decision tree: Training

Considering only the current branch,
try splitting on different attributes and values

7.0 —
6.5
6.0
§055 o 3/38
5 pl > 4.85
—50f
3 ot ot pl> 4.75
45 ® oo l.l'l.:' \\\ ..... 2/
. oo no ™ S 38/0
AO L] -I : e ~
: Sl >4.95 s .
35 e .
30f o | ) ) ) ) 1
50 55 60 65 70 75 80 G =0.032
sepal length

UEF//School of Computing  JADe:Classification Basics 16/66



Decision tree: Training

No improving split can be found,
add leaf with dominant class as decision

7.0

6.5

30 o L L L L 1
5.0 5.5 6.0 6.5 7.0 75 8.0
sepal length

UEF//School of Computing  JADe:Classification Basics 16/66



Decision tree: Training

Considering only the ‘yes’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘yes’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘yes’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘yes’ branch,
select best split...
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Decision tree: Training

Node is pure,
add leaf with class as decision
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Decision tree: Training

Considering only the current branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the current branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the current branch,
select best split...
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Decision tree: Training

Maximum depth has been reached,
add leaves with dominant classes as decision
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Decision tree: Training

Tree is fully grown...
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Decision tree: Prediction

Given a point to classify: (sl = 6.0, pl = 4.8)
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Decision tree: Prediction

Apply test and follow branch according to the outcome
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Decision tree: Prediction

Apply test and follow branch according to the outcome
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Decision tree: Prediction

Apply test and follow branch according to the outcome
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Decision tree: Prediction

Assign the class associated to the leaf
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Decision tree: Prediction

The sequences of tests corresponding to the branches of the
tree define decision boundaries
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Decision tree: Prediction

The sequences of tests corresponding to the branches of the
tree define decision boundaries
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Input: data set D with attributes X;, ..., Xy and class
labels Y, data point x

Training: estimate the class probabilities P(Y) and
conditional probabilities P(X;|Y) from D
Prediction: compute conditional probabilities P(Y| X3, ..., Xm)
according to Bayes' rule, return class with highest
probability
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Naive Bayes: Bayes' rule
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Naive Bayes: Training

Estimate P(Y = ¢) and P(X; = a; | Y = ¢) from the data,
for the different classes ¢, attributes X; and values q;
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data

. :
6.5 o o
6ol . . .:.o .

oo SRETL P(e) = 40/84 = 0.476
o ’ P(s) = 44/84 = 0.524
35} e : .

3.0 *"

. ]
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Naive Bayes: Training

P(X; = a;|Y = c) count occurrences of each values in the data,
for each class and each attribute

#(CI,‘, Y= C)

P(X;:G;|Y:C): #(C)
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Naive Bayes: Training

P(X; = a;|Y = c) count occurrences of each values in the data,
for each class and each attribute

#(CI,‘, Y= C)
#(¢)

I Needs much data to get reliable values

PXi=ai|Y=c)=

! How about rare values?
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Naive Bayes: Training

P(X; = a;|Y = c) count occurrences of each values in the data,
for each class and each attribute
#(a,Y=0¢)
#(¢)
I Needs much data to get reliable values
I How about rare values?
— use Laplacian smoothing

P(Xj=aj|Y=c) =

#(G,‘, = C) + o
#(C)+ k-«
where « is the number of distinct values of attribute X;
That is, denoting the domain of X; as A;, we let k = |A|]

sothat Y P(Xj=aj|Y=c)=1
a;EA;

P(Xi=aj|Y=c)=
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Naive Bayes: Training

P(X; = a;|Y = c) count occurrences of each values in the data,
for each class and each attribute

#(CI,‘, Y= C)
#(¢)

I Needs much data to get reliable values

PXi=ai|Y=c)=

I How about continuous domains?
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Naive Bayes: Training

P(Xi = a;|Y = ¢) count occurrences of each values in the data,
for each class and each attribute

#(0/7 Y= C)

P(X[:CI;“/:C): #(C)

I Needs much data to get reliable values
! How about continuous domains?
— model with Gaussian distributions

1 (=)

e 202
V2ol

P(X=v|p o) =
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data
P(X; = a;|Y = c¢) model with Gaussian distributions,
estimating the parameters from the data
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data
P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0
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35F e °
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data

P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0

o
«
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P(V‘ Hsl, USL) =
\2mog?

o o o
o & o
T T T

°

petal length
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«
.
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.
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o | (s =mean(sl|e)  =5.945
. | 052 =var(sl|e) =0.285
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data

P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0

o
«

‘I —

P(v| Ipls (Tp[) = —
A /27T(fp{2

e *° 7 ol =mean(pl|e) = 4.252
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data
P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0

%5‘0 . . P(v]| psi; 01

45 o 00 o:o'o"' Y P(V | /['Db O_DL)

35| e o

3.0

L
5.0 55 6.0 6.5 7.0 75 8.0
sepal length
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data

P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0

petal length
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35F
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data

P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0

petal length
> [ @ o o
wl o w o w
T T T T
[ ]
o

pay
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T

35F
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data
P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0

P(V | Hsl, US[)

450 P(V|/1fpb(7pt)

35

3.0

5.0 55 6.0 6.5 7.0 75 8.0
sepal length
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Naive Bayes: Training

P(Y = ¢) count occurrences of each class in the data

P(X; = a;|Y = ¢) model with Gaussian distributions,
estimating the parameters from the data

7.0
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5
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes' rule

i=m
P(Y=c|Xi=a1,....Xm = am) x P(Y=0) - [[P(X;=q;|Y=0)
i=1
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes' rule

7.0

6.5

2

us] ! P(e](5.6,3.6)) = P(e|(5.6,3.6))

3.0
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes' rule

7.0

6.5

P(e|(5.6,3.6)) <P(e|(5.6,3.6))
0.022 <0.978
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes' rule

7.0

6.5

P(e|(5.6,3.6)) <P(e|(5.6,3.6))
0.022 <0.978

30F L L L ; L 1
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes' rule

<5.
=
on
c

<
=5
ic}
@
a

P(e|x) and P(e|x) can be
computed for every point

5.0 55 6.0 6.5 7.0 75 8.0
sepal length
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes' rule

7.0

6.5

55) * ] P(e|x) and P(e]|x) can be
ool * | computed for every point

4s) 1 The decision boundary is the line
, P(e|x) =P(e]x) =5

3.0

50 55 60 65 70 75 80
sepal length
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Input: data set D, data point x
Parameters: learning rate n

Training: initialize weights vector w and bias b,
iterate among points in D and adjust w and b

Prediction: return class according to sign of w-x+ b

UEF//School of Computing  JADe:Classification Basics 24166



Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

7.0

T T
€08s37

651 g | Atstept,

60} . _ &° | compute current prediction
cssf A 2 = sign(w® . x9) 4 b))
;25.0 .. 'o:.@ :"- A update

45te -,;;.-- IR ] w(t) — w® 77()/] . Z}_)X(j)

“or ;- g oo b(t—H) _ b(t) + 77()/} o Zj)

35F @ . (3.42 )8, 0.85)

30l e (2.79, —4.57,0.80) |

5.‘0 5.‘5 6.‘0 6‘.5 7.‘0 7.‘5 8.0
sepal length
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

At step t,
compute current prediction

ZiR= sign(W(t) @ XU) + b(t))

update
W(t‘H) — W(t) + n(yj _ Z/)X(j)
b = b® 4 51(y; - 2)

L]
5.0 55 60 65 70
sepal length
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

7.0 —r T T T T 5
B . At step t,
l . *| compute current prediction
el ) . SO z; = sign(w® - xV) 1 p(V)
§05.5 . o .. 4
Bl e 5.3 . | update
s AT | WD = w® Ly, — z)x0
of e | b+ = b0 4 n(y; - 2)
Pl | Note that if prediction is correct,
e (I?Sth707:) 3 Wwand b are unchanged
Sepal long
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

7.0 T T T T 5
e08s40 .. At Step t,

i . *| compute current prediction

.l g o | zi = sign(w(® . x0) 1 p()
55_5 .. :o .o. -
Sl il | update
Fusle een st | wD = w® 4 p(y; — z)x0

wof :5:5... ] b+ = p(®) 2 T](y} = Zj)

P ( ) | Note that if prediction is correct,

3.43, —4.14, 0.85
s 5 5 s wand b are unchanged
sepal length
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

7.0

T T
€08s41

6.5

Might cycle several times through
all points of the training data

Each such cycle is called an epoch

L]
5.0 55 60 65 70 75 80
sepal length
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

70— T 3

€08s42 .
651 S
601 o L, o

CHEN

55_5— .. :o .o. - . .
g If the data is linearly separable,
=50 o % ¢ L 1 . .
g TROSO convergence on some solution is
B R | suaranteed
35f @ ’ .
30f e ‘ ‘ (Z.‘q L‘

50 55 60 65 70 75 80

sepal length
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

7.0 —r 3
e08s43 .
650 S
60l o L, o
55_5 .. :o :o:
2 . . .
Zs0 i A If the data is not linearly separable,
] l®l -' ] M M N
Zisle | learning will fail
40F . -:.E (1]
35F e .
30f e ‘ ‘ (2. ‘4 L‘
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sepal length
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

7.0

T T
e08s44

If the data is not linearly separable,
learning will fail

The algorithm will not even
approach an approximate solution

30F e ‘ ‘ (j.%rz. 4‘.2&.‘\)‘,83) |
50 55 60 65 70 75 80
sepal length
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Perceptron: Training

lterate among points x) from D in a random order
and adjust weights w and bias b

7.0 S

651 o g

601 * .« 7| |Ifthedataisnotlinearly separable,
£ssf s . 1 learning will fail

250l S 1 Aquick fix:

Fusle ame stew | store best solution encountered
wl B | and return it after chosen
ol ) | maximum number of epochs
30 —.T- ) . . . R

50 55 GS.é)pal ?éSHgtth 75 80
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Perceptron: Prediction

Return class according to sign(w - X + b)

7.0
os| <1 0.671-s1-1365-pl4+239<0 @
s0f . . 2] 0671-51—1365-pl4+239>0 @
55_5 .. :o :o:
25'07 ...:o E : : ° 1
g 'O:.- ..-' . 0671 N 60
45 e 00 o 0 0 R
‘e * —1.365 - 4.8 +2.39 = —0.136
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Perceptron: Prediction

Return class according to sign(w - X + b)
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Perceptron: Prediction

Return class according to sign(w - X + b)

7.0

0.671-sl—1.365-pl+239<0 @
0.671-sl—1.365-pl+239>0 @

o J
5.0 5.5 6.0 6.5 7.0 75 8.0
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Perceptron: Prediction

Return class according to sign(w - X + b)

7.0

0.671-sl—1.365-pl+239<0 @
0.671-sl—1.365-pl+239>0 @

o J
5.0 5.5 6.0 6.5 7.0 75 8.0
sepal length
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The Perceptron can be seen as the simplest neural network,
a single-layer neural network

One input node for each data attribute
One output node computing the activation function

X1 —)O%

X2 —)Q%
. H()
: O—— 7
W

Xm —>07

1 —>0°
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Support Vector Machine (SVM)

Input:
Parameters:

Training:

Prediction:

UEF//School of Computing

data set D, data point x
penalty coefficient C

solve for vector w and bias b that define a
hyperplane separating points in D from the two
classes with largest margin

return class according to sigh of w-x+ b
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SVM: linearly separable case

When the data is linearly separable,
there might be multiple different separating hyperplanes

which one to choose?

45

55 6.0 6.5 70
sepal length
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SVM: linearly separable case

When the data is linearly separable,
there might be multiple different separating hyperplanes

which one to choose?

m = 0.056 -

45 65 7.0

55 6.0
sepal length
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SVM: linearly separable case

When the data is linearly separable,
there might be multiple different separating hyperplanes

which one to choose?

m = 0.047 -

45 65 7.0

55 6.0
sepal length
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SVM: linearly separable case

When the data is linearly separable,
there might be multiple different separating hyperplanes

which one to choose? Larger margin provides more stability

m = 0.141 -
535* ‘/
Sl
Salee * 13

v
25 / L
Z,O*\

45 65 7.0

55 6.0
sepal length

UEF//School of Computing  JADe:Classification Basics 29/66



Hard-margin SVM

Determining the maximum margin hyperplane

we have two hyperplanes,
" such that (under suitable scaling)

/ A
oo /H/ (Hy) w-xD4b> 41y =+
00 /g HO// (H_) W'X(j)+b§—1\7j,yj:—1

../.
° H_ o In short

°
° oo o yj(w-x(’)+b)21Vj
)
Vs .
o o
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Hard-margin SVM

Determining the maximum margin hyperplane

~~we have two hyperplanes,
[ ] [ ]

o oo / such that (under suitable scaling)
H/
/

° s .
oo o (Hy) w-xP+b>4+1v),y =+1

0o/

e (Ho) w-xD4b<—1v,y =1
[ J / H- [ ]
o0 The distance between Hy and H_
o 00 [ 2N ) [ ]
o .o equals 2/ ||w|]
2
A BN
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Hard-margin SVM

Determining the maximum margin hyperplane

[ ]
[ J
/
[ ] ./
. e oo //—// the problem can be formulated as
/
[ BN N ] /.
o Ho 7 minimize  |w]?
[ ] /
° A- e st yj(w-x(/) +b)>1V)
[ I}
o 00 [ ] [ ]
/ °
2
. el ° ‘ °
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Hard-margin SVM

Determining the maximum margin hyperplane

the problem can be formulated as
U (R
minimize E||W||
st yj(w-x¥ +b)>1vj

this is a quadratic constrained
optimization problem

can be solved by the Lagrangian
multiplier method

N\
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Hard-margin SVM

Primal problem

j=n
minLp = - ||w|| +> a(1-y(w-xD + b)) st. 0<q;V)
J=1
Dual problem
/ n i=n
max Lp —Za} — 7220/ iiyix xU) . x(1)
j=1 i=1 j=n
st. 0<gjand » ay; =0V
=1
J=n A
variables a; are defined in such a way that w = Za,-ij(/)
j=1
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Hard-margin SVM: Training

Training the SVM means solving for the g; by differentiating the
dual problem and setting it to zero

Most of the a; will have value zero
Training points associated to non-zero a; are called support
vectors, since they actually define the separating hyperplane

J=n
w=> ayx?)
=1

Support vectors satisfy
yi(w-x0) 4+ b) =1
which allows to compute b
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Hard-margin SVM: Prediction

Return class according to sign(w - x + b), where
j=n

w-x+b=b+> ayx¥. x
=1
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SVM: non linearly separable case

What if the data is not linearly separable?

7.0

. No hyperplane such that constraint
yj(w-x(j) +b) >1

would be satisfied by all points

Some points inside the margin,
or even on the wrong side of the
separating hyperplane

. ]
5.0 5.5 6.0 6.5 7.0 75 8.0
sepal length
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SVM: non linearly separable case

What if the data is not linearly separable?

Use the hinge loss and introduce a new variable for each point

& = max (0,1 — yj(w-x(f) + b))

the value is

zero if the point satisfies the margin constraint
proportional to the distance to the margin otherwise
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SVM: non linearly separable case

What if the data is not linearly separable?

Hard-margin problem

minimize %HWH2
st y(w-xV) +b) > 1Y)

Soft-margin problem

j=n
L 1 )
minimize 5||W|| +CZ;£/-
}:
st yjw-xD +b)>1-¢and 0< ¢V
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Soft-margin SVM

Primal problem

m|an—fHWH +625,+Za, — yj(w-xU waj

st. 0<agjand 0 <y V)

Dual problem

}”In

maXLD_Zal 22201 ijyl x()

1 i=1 j=n
- st 0<g;<Cand Y ay; =0V
j=1
J=n
variables a; are defined in such a way that w = _ ayy;x¥)
j=1
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Soft-margin SVM: Training

Training the SVM means solving for the a; by differentiating the
dual problem and setting it to zero

Most of the a; will have value zero

Training points associated to non-zero a; are called support

vectors, since they actually define the separating hyperplane
oo o For every support vector

w X0+ b)=1-¢

if § = 0, the pointis on the margin
otherwise, it is within the margin
or even on the wrong side
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Soft-margin SVM: Training

Training the SVM means solving for the a; by differentiating the
dual problem and setting it to zero

Most of the a; will have value zero
Training points associated to non-zero a; are called support

vectors, since they actually define the separating hyperplane
C=2 e o

Parameter C allows to adjust the
trade-off between width of the
margin and constraint violations
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Soft-margin SVM: Training

Training the SVM means solving for the a; by differentiating the
dual problem and setting it to zero

Most of the a; will have value zero
Training points associated to non-zero a; are called support

vectors, since they actually define the separating hyperplane
C=1 e o

Parameter C allows to adjust the
trade-off between width of the
margin and constraint violations
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Soft-margin SVM: Training

Training the SVM means solving for the a; by differentiating the
dual problem and setting it to zero

Most of the a; will have value zero
Training points associated to non-zero a; are called support
vectors, since they actually define the separating hyperplane

Czjo [ X J o

Parameter C allows to adjust the
trade-off between width of the
margin and constraint violations

UEF//School of Computing  JADe:Classification Basics 36/66



Soft-margin SVM: Prediction

Return class according to sign(w - x + b), where
j=n

w-x+b=b+> ayx¥. x
=1
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Kernelized SVM

What if a linear decision boundary is not the right option?
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Kernelized SVM

What if a linear decision boundary is not the right option?
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Kernelized SVM

What if a linear decision boundary is not the right option?
Project the data to a different space
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Kernelized SVM

What if a linear decision boundary is not the right option?
Train the SVM in the projected space

ps((,x2)) = (4,%3)
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Kernelized SVM

What if a linear decision boundary is not the right option?
Train the SVM in the projected space

ps((X1,X2)) = (x5, %3)

10 L EL "
e ) Y
R bl ST 12
¢ A
05 '3 R v - 0
.« LI
) g
o b) S [N i 08 ."
< . NN (1
00 . s s B X< .,
¢ s : s 06 S
[y L 0 Y
. o g %%
. | 4 04 ‘ .
05 b 75 . 3 .
g -, o
. PLN (Y
\. oy weo®’ . 02 [ \
See
10 % e eeet 00 \ &
10 -05 0.0 05 10 00 02 04 0.6 ZDB 10 12 14
X1 X3

UEF//School of Computing  JADe:Classification Basics 38/66



Kernelized SVM

If the data cannot be separated in the original space

1. find a projection ¢ to a space where the data can be
separated

2. apply the SVM method to the transformed dataset
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Kernelized SVM

If the data cannot be separated in the original space

1. find a projection ¢ to a space where the data can be
separated
2. apply the SVM method to the transformed dataset

Dual problem
j Jj=n i=n

j=n
1 . .
max Lp = Z a4—3 Z Z ajaiyyi o(x) - p(x1)
=1

j=1 i=1
j=n

st 0<ag<Cand Y ay; =0V
j=1
j=n _ _
Prediction sign (b+ > _ ajy;o(x¥) - p(x())
j=1
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Kernelized SVM

Dual problem

Jj=n J=n i=n
1 : :
maxlp = _a;— 5> > aaiyy; o) - o(x)
j=1 j=1 i=1 _
j=n
st 0<g<Cand Y ay; =0V
j=1
j:n . .
Prediction sign (b+ > _ ay;o(x¥) - o(x())
j=1

The transformed values ¢(x) appear only in dot products
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Kernelized SVM

The transformed values ¢(x) appear only in dot products

If the dot product in the transformed space can be replaced by
a function

K, X") = o(x) - o(X')

we can avoid performing the transformation explicitely
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Kernelized SVM

Dual problem

] n i=n
maxLp = Za} - = ZZGI iy K K(x0), x()
1 1
j=1 i= o
st 0<ag;<Cand Y ay; =0V
j=1
j=n -
Prediction sign (b+ Y _ ayy; K(x¥,x))
j=1
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The Kernel Trick

By replacing the dot product in the transformed space by a
function

K, X") = o(x) - o(X')

we can avoid performing the transformation explicitely

The feature map ¢ does not need to be explicitly defined
It is enough that K be expressible as an inner product

Mercer’s theorem gives the conditions for K to be a valid
kernel function

In particular, the similarity matrix (a.k.a. Gram matrix)

Sij = K(v;,vj) for a finite input space (v1,...,v;) must be
positive semi-definite (PSD)
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The Kernel Trick

Improving the separability of data points typically means
projecting into a high dimensional space

computing with high dimensional vectors is costly

the kernel function operates in the original space

The kernel trick provides the benefits of high-dimensionality
without the costs

Kernels are useful beyond SVMs, in other methods where dot

products, i.e. similarity computations, are involved
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Common kernel functions

Polynomial kernel
K(x,X') = (x-x +c)f

Sigmoid kernel
K(x,x") = tanh(kx - X' — 9)

Gaussian radial basis kernel

K(x,X') = elx /20

UEF//School of Computing  JADe:Classification Basics 41/66



Kernelized SVM
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Kernelized SVM

ps({x1,%2)) = (3, 53)
Consider the polynomial kernel of degree two

KX, X') = (x - X')? = (xix'1 + xx'5)?

2 2
= XX + X3X'5 + 24X 1xx'

- <X$,X%, \/§X1X2> ’ <X/$7X/%7 \/EXITX/2>
where o, ((1,0)) = (2,3, V2x1%)

= ¢p(X) - ¢p(X)
The terms of the feature map ¢ is a subset of those of ¢,
42/66
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Kernelized SVM

Using the polynomial kernel
K(x,X') = (x - x')?

for the two-dimensional example dataset corresponds to
projecting the points into three dimensional space

ep((X1,%2)) = (X3, X3, V2x1%;)

before training the SYM
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Kernelized SVM
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Different kernels

poly h =2 polyh =4 polyh =8 rbf o =1 rbf o = .5
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Evaluation




Model evaluation

Given a dataset, we can build a number of models, that come
with different variants and parameter settings

We need to quantify the accuracy of models, in order to

- measure the effectiveness and tune the parameters of a
particular model

- compare, select, combine various models
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Evaluation measures

To evaluate the performance of a model we compare the

known labels of the instances, representing the ground truth,
to the predicted labels

Let y and z denote respectively the true and predicted labels

If there are [ distinct classes, there are [ - [ distinct possible
outcomes for a given instance

The instance might belong to ¢, and be predicted as c;
The instance might belong to ¢, and be predicted as ¢,

The instance might belong to c¢; and be predicted as ¢

The instance might belong to ¢, and be predicted as ¢
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Evaluation measures

Let y and z denote respectively the true and predicted labels

The outcome of the classification of a set of instances across [
classes can be summarized in a [ x [ contingency matrix

Ground truth
y = Y =( Y =(

Z=0C
< o
. c
Bz=g
- -
() .
S
o Z=(

#z=a,y=0) #@z=a,y=0¢) #z=0c,y=0q)
#z=c,y=0) #z=cy=q) #z=c,y=0q)

#(z=c,y=0a) #z=cqy=0) #z=c,y=0)
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Evaluation measures

Let y and z denote respectively the true and predicted labels

The outcome of the classification of a set of instances across [
classes can be summarized in a [ x [ contingency matrix

The accuracy is the fraction of correctly classified instances

Ground truth
y = Y =( Y =(

z=0  #@z=ay=a) #z=ay=0) #z=ay=0a)

z=c  #E=cqy=a) #z=cay=q) #z=cy=a)

Prediction

z=¢q #@=cqy=0) #ez=aqy=¢) #z=cay=aq)
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Evaluation measures

Binary classification is a special case with specific terminology

Two classes: positive and negative
There are four possible outcomes for a given instance
The 2 x 2 contingency matrix is called confusion matrix

Ground truth
y=0 y=1

z=0 True negative False negative

z=1 False positive True positive

Prediction
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Evaluation measures

Binary classification is a special case with specific terminology

Two classes: positive and negative
There are four possible outcomes for a given instance
The 2 x 2 contingency matrix is called confusion matrix

y=0 y=1

z=0 True negative False negative
=1  False positive  True positive

False positive: type | error (a.k.a. false discovery, false alarm)

False negative: type Il error (a.k.a. miss)
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Evaluation measures

A binary classifier is trained on a portion of data (training data)
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For example, .
consider a linear SVM
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Evaluation measures

A binary classifier is trained on a portion of data (training data)

For example, ss 0
consider a linear SVM H 0o g°@
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Evaluation measures

A binary classifier is trained on a portion of data (training data),
and applied on another portion for which the ground-truth is
also known but hidden from the classifier (test data)

For example,
consider a linear SVYM

For instance x, predict class
according to sign of w-x+ b
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Evaluation measures

A binary classifier is trained on a portion of data (training data),
and applied on another portion for which the ground-truth is
also known but hidden from the classifier (test data)

For example,
consider a linear SVYM

For instance x, predict class
according to sign of w-x+ b
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Evaluation measures

The outcome of the binary classification of a collection of N
instances can be summarized in a confusion matrix
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Evaluation measures

The outcome of the binary classification of a collection of N
instances can be summarized in a confusion matrix

y=0 y=1
[NTN NFN] z=0 True negative False negative
Nep Nrp =1  False positive  True positive
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Evaluation measures

y=0 y=1

[NT’V NF’V] z=0 True negative False negative
Nep Nrp —1 False positive  True positive

Various measures can be computed from this matrix

o . NTP o . . .
precision 55— (a.k.a. positive predictive value)

recall ;25— (a.ka. sensitivity, true positive rate)

specificity NT,CILNNFP (a.k.a. selectivity, true negative rate)

Ao Nep
false positive rate =%

3 Ney
false negative rate "
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Evaluation measures

y=0 y=1
[NTN NFN] z=0 True negative False negative
Nep Nrp z=1 False positive True positive

Various measures can be computed from this matrix

. . NTP o . . .
precision 17— (a.k.a. positive predictive value)

N .. . ..
recall " (a.k.a. sensitivity, true positive rate)

F1 score harmonic mean of recall and precision

5 precision - recall 2N7p
precision + recall — 2N7p + Np + Npy
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Evaluation measures

y=0 y=1
[NTN NFN] z=0 True negative False negative
Nep Nrp z=1 False positive True positive

Various measures can be computed from this matrix

accuracy fraction of instances in which the predicted label
matches the ground truth

Ntp + N1y
N
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Evaluation measures

accuracy fraction of instances in which the predicted label
matches the ground truth

DcecHly=0C2=0)
Zcec #(y = C)

In some cases, not all classes are equally important
misclassification in one class incurs a higher cost than
misclassification in the other class

reflected by weight w, assigned to each class

weighted accuracy (a.k.a. cost-sensitive accuracy)

DcecWe F#ly=cz=0)
Y cecWe - #(y =¢)
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Evaluation measures

The outcome of the binary classification of a collection of N
instances can be summarized in a confusion matrix
Various measures can be computed from this matrix

7.0 —
Nrv - Nen
Nep Nrp ol
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acc = 0.812 5 .
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FPR = 0.125 B R
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Evaluation measures

Instead of crisp class assignments we might consider a
numerical score reflecting the confidence of the classifier
Class probabilities, distance from the decision boundary, etc.

For example,
consider a linear SVYM

Usew-x+b
as score for instance x
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Evaluation measures

Varying the score above which an instance is assigned to the
positive class means moving the decision boundary

7.0

o
15

o
o

For instance x, predict class
according to the outcome of test
w-x+b>¥6

with = —9,0 = -3, 60 =5,

or 0 =9, for example
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Evaluation measures

Let's look at what happens if we modify the level of confidence
required to assign an instance to the positive class

7.0

o
15

o
o
T

From almost certain that it does
not belong to the negative class
(0 — —o0)

to almost certain that it belongs
to the positive class (/ — +o0)

and cases in between
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Evaluation

Consider a linear SVM, use w - x + b as score for instance x
Collect the test instances with their scores

o= ‘ ‘ ‘ ‘ o 1 0259
08  6.481

651 i
on 1815
80 017 —1.370

60 o © -
018 8N

4 ®
=55 @ 75 i 020 3.4
2 ¢ 028 —0.259
& .
Zsol 17 N , 03 —2.M
8 ® 28 70 .

& / ® O 44 3.000
“5r® - o 1 0 49 —5.000
] 057 —1.370
“or s ] 069 —5.741
® 18 070  1.074

351 ® i
o 7% —0.718
075 —2.718

30} ‘ ‘ ‘ ‘ o
50 55 60 65 70 75 80 © 80 —6333

sepal length
UEF//School of Computing  JADe:Classification Basics 51/66



Evaluation

Consider a linear SVM, use w - x + b as score for instance x
Sort the test instances by increasing values of the score
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Evaluation

As thresholds we can use mid-point values between successive
distinct score values among the test instances
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Evaluation

Set the threshold to the minimum value
Record the corresponding FPR and TPR
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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— 60 g ® f ® 75 —2.778
g I—‘ 4 ® ® 34 —2.111
© 551 ® 75 -
= = A ®817,57 —1.370
I3)
> 5 ¥ ¥ B — ® 74 —0.778
s} = 17 i —0.518
B o 550 ® 28— 70 ® 28 —0.259
3 acc = 0.875 3 —— ®
a TPR 0.875 isie . " | ® 1  0.259
L - Y ) ® 5 @ ® 70 1.074
®
= FPR = 0.125 sol | ® 11 1.815
’ o 0
o+, ) 8 ® 44 3.000
' " f 18
0 False positive rate 1 35 ® * /1 1 ea s
* 1 7 ® 8  6.481
30F . . . . . b ® 18 8.111
50 55 60 65 70 75 80
sepal length
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

7.0

® 80 —6.333

650 , ® 69 —5.741

® 49 —5.000

80

T 6.0 o ® 1 ® 75 —2.778

g 49 ® ® 3% —2.1M
©

o £°°f % 1 ee17,57 —1370
I

= 3 ¥ ¥ % ® 74 —0.778

% =501 8 s 70 i ® 28 —0.259

I acc = 0.812 g : /® . 0000

o ® .
f— 4.5 1® 11 L4y i
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I ®
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- o i 18

0 False positive rate 1 35t * 72 | ez am
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

70
® 80 —6.333
65} 1 @69 —5.741
® 49 —5.000
—l 80
60} o ® 1 e —27m8
= w ® ® 3% —2.1M
©
o £°°f % 1 ee17,57 —1370
o
= 3 ¥ ¥ % ® 74 —0.778
G =201 g 28 70 ] 0.259
3 acc = 0.875 ] v ® 28 —0.
a 1 ® 1 0259
— 4518 — 11 44 , 0607
3 TPR = 0.750 & oy @ ® 70 1074
I ®
= FPR = 0.000 ol | emn 185
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- - ; 18
0 False positive rate 1 35t * 8 2| | sz am
%0 6 ® 8  6.481
300, . . . . . 1 ® 18 8.1
50 55 60 65 70 75 80
sepal length

UEF//School of Computing  JADe:Classification Basics 51/66



Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

0 True positive rate 1

UEF//School of Computing

acc = 0.812 3
TPR = 0.625
FPR = 0.000

0 False positive rate 1

JADe:Classification Basics
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

70
® 80 —6.333
65} , ® 69 —5.741
® 49 —5.000
80
T 6.0 o ® 1 ® 75 —2.778
2 s ® ® 3% 2.1
© L S
o £°°f 5 1 ee17,57 —1370
o
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Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

70
® 80 —6.333
65 1 e69 —574
® 49 —5.000
80
T 6.0 o ® 1 ® 75 —2.778
2 o ® ® 3% 2.1
i ®
o £°°f 5 1 ee17,57 —1370
o
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®
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FPR and TPR depend on where the ranking is split between
classes, not the specific threshold value

70
® 80 —6.333
65} 1 @69 —5.741
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80
T 6.0 o ® 1 ® 75 —2.778
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Hence, successive FPR and TPR can be computed directly from
the ranked instances

7.0
® 80 —6.333
65 ] ® 69 —5.741
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The curve FPR vs. TPR is commonly refered to as receiver
operating characteristic (ROC) curve
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The curve FPR vs. TPR is commonly refered to as (ROC) curve
The area under the curve (AUC) summarizes the ROC curve in a

single number 70
080 —6.333
65} ] 069 —5.741
0 49 —5.000
80
T 6.0 6 O 1 o075 —2.778
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2 5501 g 280 ’ 70 1 0.259

8 T o] (o} 028 —0.
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Model evaluation

! The goal is not to best mimic the labels of the training data

For evaluation, we need labelled data points not seen during
training

Compromise: the more labelled data for training the better
but some labelled examples need to be hold out for evaluation
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Divide the labelled data into two disjoint sets

training data used to train the model
typically ca. 2/3 - 3/4 of data

test data used to evaluate the model
typically ca. 1/3 - 1/4 of data
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Divide the labelled data into two disjoint sets
training data used to train the model
typically ca. 2/3 - 3/4 of data

test data used to evaluate the model
typically ca. 1/3 - 1/4 of data

I only a fraction of data used for training

I error estimates are pessimistic

UEF//School of Computing  JADe:Classification Basics 53/66



Divide the labelled data into two disjoint sets

training data used to train the model
typically ca. 2/3 - 3/4 of data
test data used to evaluate the model
typically ca. 1/3 - 1/4 of data

I only a fraction of data used for training
I error estimates are pessimistic

Repeat this process over several different hold-out samples

- improve the error estimate
- measure variance and compute statistical confidence
intervals on the error
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Cross-validation

Divide the labelled data into ¢ disjoint sets of equal size ¢/n
use one set as test data, remaining £ — 1 as training data
repeat with each set as test data

In each of ¢ rounds, the training data has size n(¢ —1)/¢
This is called ¢-fold cross-validation
e.g. 10-fold cross-validation is common
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Cross-validation

Divide the labelled data into ¢ disjoint sets of equal size ¢/n
use one set as test data, remaining £ — 1 as training data
repeat with each set as test data

In each of ¢ rounds, the training data has size n(¢ —1)/¢
This is called ¢-fold cross-validation

For larger values of /,
the training data comprises more examples
— better error estimation (still pessimistic)
more rounds are needed
— higher computational cost
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Cross-validation

Divide the labelled data into ¢ disjoint sets of equal size ¢/n
use one set as test data, remaining ¢ — 1 as training data
repeat with each set as test data

In each of ¢ rounds, the training data has size n(¢ —1)/¢
This is called ¢-fold cross-validation

Extreme case: ¢ = n
i.e. £ rounds with n — 1 training examples and 1 test example
This is called leave-one-out cross-validation
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Bootstrap

Sample training data of size n from the labelled data uniformly
with replacement

The training data has the same size as the original data
but some original data examples might be duplicated
while others might be missing

The probability that a point is not included in the sample is
(1—=1/n)", which tends towards 1/e as n increases
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Bootstrap

Sample training data of size n from the labelled data uniformly
with replacement

Use the full original labelled data as test data

The large overlap between training and test data means the
error estimate is highly optimistic

Repeating this process over several different bootstrap
samples allows to compute the mean and variance of the error
estimate
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Leave-one-out bootstrap

Generate ¢ bootstrap samples and use each such sample to
train one classifier

For labelled example x, evaluate acc(x) the performance on x
of the classifiers trained on samples that do not contain x

Average acc(x) over all labelled examples
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A step of parameter tuning and model selection, called
validation, might be needed

Validation and test should not be carried out on the same set,
since knowledge of the test set has been implicitly used while
building the model

A portion of the data is used to train different models and
select one

The performance of the selected model should be evaluated
on a distinct, so far unseen, portion of the data
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Comparing models

The statistical robustness of models is important
differences in accuracy between models might be due to
random variations

Assume we have obtained ¢ estimates of the accuracy of two
models M, and Mg on different randomly sampled subsets of
data (e.g. through repeated hold-out or bootstrap procedures)
{acc(Ma,1),. .. ,acc(May,£)} and {acc(Mp, 1), ..., acc(Msp, £)}
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Comparing models

Assume we have obtained ¢ estimates of the accuracy of two
models M, and Mg on different randomly sampled subsets of
data (e.g. through repeated hold-out or bootstrap procedures)
{acc(Ma,1),...,acc(Ma, )} and {acc(Mg,1),...,acc(Mg,£)}

Let ¢; be the difference in accuracy in round |, i.e.
0j = acc(Ma, i) — acc(Msg, 1)

the average difference in accuracy is A = Z;j 9i/¢
and the standard deviation of the difference in accuracy is
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Comparing models

We assume that ¢; are sampled from a normal distribution with
estimated mean and standard deviation A and o, respectively
According to the central limit theorem, the standard deviation

of the estimated mean accuracy difference A is a/v//¢

The number of standard deviations by which A is different
from the break-even value of 0 is vZ|A — 0| /o

For sufficiently large number of rounds ¢, the probability that
one model is truly better than the other can be quantified
using the standard normal distribution
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Comparing models

For sufficiently large number of rounds ¢, the probability that
one model is truly better than the other can be quantified
using the standard normal distribution

It is generally too computationally expensive to run sufficiently
many rounds to robustly estimate o so the Student’s
t-distribution with £ — 1 degrees of freedom is used instead of
the normal distribution
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Classification can be seen as the problem of learning a
function between the data attributes and the class label

y=g(X)+e

g represents the true, unknown, relationship between data
attributes and class label

e represents the intrinsic error in the data, the noise, cannot
be modelled
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Classification can be seen as the problem of learning a
function between the data attributes and the class label

y=g(x)+e

g represents the true, unknown, relationship between data
attributes and class label, even the form of g is unknown

e represents the intrinsic error in the data, the noise, cannot
be modelled

Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

zZ = fp(x)

UEF//School of Computing  JADe:Classification Basics 59/66



Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

zZ = fp(x)
The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family
choice of setup Species
estimation from D Individual
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Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

zZ = fp(x)

The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family decision tree
choice of setup Species  max depth, max leaf size
estimation from D Individual intermediate tests, decisions

fp(x) is defined algorithmically
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Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

zZ = fp(x)

The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family linear SVYM
choice of setup Species
estimation from D Individual aq,...,a,, b

j=n

fp(x) = sign (b + Z Gj-ij(j) - X)
=
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Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

zZ = fp(x)

The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family kernelized SVM
choice of setup Species  kernel function K
estimation from D Individual aq,...,a,, b

j=n

fp(x) = sign (b + Z ay, K(XU),X(/‘)))
=1
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Classification algorithms
rely on modeling assumptions
estimate the parameters from the data
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Classification algorithms
rely on modeling assumptions
estimate the parameters from the data

Assumptions may not reflect the true form of the relationship

Oversimplifying assumptions do not allow to
. capture the underlying structure of the data
— Underfitting
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Classification algorithms
rely on modeling assumptions
estimate the parameters from the data

Even with correct modeling assumptions, the true parameters
cannot be estimated exactly from the training data

With increasingly complex models, i.e. more parameters, the
model might fit too closely to the training data

Captures the structure of the data but also noise
Does not generalize to unseen data

!-... m‘-‘J — Overfitting

e - "..
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Imagine we had a very large dataset and could repeat the
whole model training many times, we could estimate the
expected prediction Ep[fp(X)]

Because of differences between the assumed model and the
true model, g(x) and Ep[fp(x)] would differ
— Bias

For a fixed test instance x, the value fp(x) would vary for
different instanciations of the training data D
— Variance
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Bias and variance

high

low

bias

@@

low variance high
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The expected mean squared error of the prediction for test
data points {(x1,¥1), ..., (X, ¥1)} can be written as

Ep[MSE] =
=l

% > (800 — Enlfo(X)])* + Enl(fp(x;) — Enlfo(x)])’] +(vi — (X))’
=1 T

bias variance noise

UEF//School of Computing  JADe:Classification Basics 63/66



UNDERFITTING OVERFITTING

validation

error

variance o
training

model complexity
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High bias model—Underfitting

Quick convergence to high error on training and validation sets
More training data brings little improvement
Increase model complexity to allow better fit

validation

error

training

size of training set
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High variance model-Overfitting

Performance gap between training and validation sets

More training data can bring improvement

Limit model complexity by using e.g. regularization, pruning,
early-stopping

wn

C
////training

size of training set

error

UEF//School of Computing  JADe:Classification Basics 65/66



Bias vs. variance

higher bias lower bias
lower variance higher variance
lower model complexity higher model complexity
shallow decision tree deep decision tree
R-NN with many neighbors R-NN with few neighbors
linear SYM kernel SYM
SVM RBF kernel large o SVM RBF kernel small o
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