Introduction to Algorithmic Data Analysis

Esther Galbrun
Autumn 2023

Part III

Classification Basics

Problem

A simple example

A dataset with two classes

A simple example

data points: Iris flowers
attributes: physical properties,
length of the petal and length of the sepal in cm
class: species, versicolor vs. virginica

A simple example

A simple example

Class information, i.e. species, is absent for some points
Can we use the available information to predict it?

Different methods

Look at the most similar data points
$\rightarrow k$ nearest neighbors (k-NN)

majority class among k nearest neighbors

Different methods

Apply a sequence of tests on attributes' values
\rightarrow classification tree

Different methods

Look at class probabilities conditioned on attributes' values
\rightarrow Naive bayes

$$
\begin{gathered}
P(c \mid s l, s p) \propto P(c) \cdot P(s l \mid c) \cdot P(s p \mid c) \\
P(\bullet \mid s l, s p)>P(\bullet \mid s l, s p) \\
P(\bullet \mid s l, s p) \leq P(\bullet \mid s l, s p)
\end{gathered}
$$

Different methods

Look at the sign of a linear combination of the attributes \rightarrow perceptron

$0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39<0$
$0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39 \geq 0$

Different methods

Look at the sign of a linear combination of the attributes \rightarrow support vector machine (SVM)

$$
\begin{aligned}
& \mathrm{sl}-4 \cdot \mathrm{pl}+13.3<0 \\
& \mathrm{sl}-4 \cdot \mathrm{pl}+13.3 \geq 0
\end{aligned}
$$

Different methods ...

...but it is all about learning a decision boundary

Some notations

The data set, denoted as \mathcal{D}, contains n data points and m attributes, i.e. it is a $n \times m$ matrix

A data point is a m-dimensional vector $\boldsymbol{x}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ We denote $x^{(j)}$ the $j^{\text {th }}$ data point of \mathcal{D}, i.e. the $j^{\text {th }}$ row Data points are sometimes called instances or examples

Class labels are arranged into a n-dimensional vector $y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle \in \mathcal{L}^{n}$, where $l=|\mathcal{L}|$ is the number of classes That is, y_{j} is the class label associated with data point $\boldsymbol{x}^{(j)}$ In binary classification, class labels take value -1 or +1 (sometimes 0 or 1 instead), i.e. $\mathcal{L}=\{-1,+1\}$ (respectively $\mathcal{L}=\{0,1\})$ and the two classes might be referred to as negative and positive, respectively

Methods

k nearest neighbors

Input: data set \mathcal{D}, data point x
Parameters: distance function d, number of neighbors k
No training
Prediction: return majority class among k points in \mathcal{D} that minimize $\mathrm{d}\left(x, x^{\prime}\right)$

k nearest neighbors

$\mathcal{K} \leftarrow\left\{k\right.$ points $x^{\prime} \in \mathcal{D}$ that minimize $\left.\mathrm{d}\left(x, x^{\prime}\right)\right\}$
return majority class in \mathcal{K}

k nearest neighbors

$\mathcal{K} \leftarrow\left\{k\right.$ points $x^{\prime} \in \mathcal{D}$ that minimize $\left.\mathrm{d}\left(x, x^{\prime}\right)\right\}$
return majority class in \mathcal{K}

Euclidean distance (ℓ_{2} norm) Manhattan distance (ℓ_{1} norm)

$$
\mathrm{d}\left(x, x^{\prime}\right)=\sqrt{\sum_{i=1}^{i=m}\left(x_{i}-x_{i}^{\prime}\right)^{2}}
$$

$$
\mathrm{d}\left(x, x^{\prime}\right)=\sum_{i=1}^{i=m}\left|x_{i}-x_{i}^{\prime}\right|
$$

Decision tree

Input: data set \mathcal{D}, data point x
Parameters: split evaluation measure, max depth d, min leaf size l
Training: construct tree T by recursively finding tests that yield best splits in \mathcal{D}
Prediction: apply sequence of tests from T to x until reaching a leaf, return associated class

Decision tree

Decision tree: structure representing a succession of tests and possible classification or regression outcomes

Leaf node decision (class/value)
Other node test on an attribute's value

Decision tree: Split evaluation measures

Decision tree: Split evaluation measures

Decision tree: Split evaluation measures

	\bullet	\bullet	
yes	$N_{\text {yes }, \bullet}$	$N_{\text {yes }, \bullet}$	$N_{\text {yes }}$
no	$N_{\text {no, }}$	$N_{\text {no, }} \bullet$	$N_{\text {no }}$
	N_{\bullet}	N_{\bullet}	N

error rate

$$
\sum_{\mathrm{b} \in\{y \mathrm{yes}, \mathrm{no}\}} \frac{1}{N}\left(N_{\mathrm{b}}-\max _{c \in\{\bullet \bullet \bullet\}} N_{\mathrm{b}, \mathrm{c}}\right)
$$

Gini index

$$
\sum_{\mathrm{b} \in\{y \mathrm{yes}, \mathrm{no}\}} \frac{N_{\mathrm{b}}}{N}\left(1-\sum_{c \in\{\bullet, \bullet\}}\left(\frac{N_{\mathrm{b}, \mathrm{c}}}{N_{\mathrm{b}}}\right)^{2}\right)
$$

entropy

$$
\sum_{\mathrm{b} \in\{\text { yes,no\} }} \frac{N_{\mathrm{b}}}{N} \sum_{\mathrm{c} \in\{\bullet, \bullet\}}-\frac{N_{\mathrm{b}, \mathrm{c}}}{N_{\mathrm{b}}} \log _{2}\left(\frac{N_{\mathrm{b}, \mathrm{c}}}{N_{\mathrm{b}}}\right)
$$

Decision tree: Split evaluation measures

information gain

$$
\begin{aligned}
& \sum_{c \in\{\bullet, \bullet\}}-\frac{N_{c}}{N} \log _{2}\left(\frac{N_{c}}{N}\right) \\
- & \sum_{\mathrm{b} \in\{\mathrm{yes}, \mathrm{no}\}} \frac{N_{\mathrm{b}}}{N} \sum_{c \in\{\bullet, \bullet\}}-\frac{N_{\mathrm{b}, \mathrm{c}}}{N_{\mathrm{b}}} \log _{2}\left(\frac{N_{\mathrm{b}, \mathrm{c}}}{N_{\mathrm{b}}}\right)
\end{aligned}
$$

Decision tree: Split evaluation measures

	\bullet	\bullet	
yes	$N_{\text {yes }, \bullet}$	$N_{\text {yes }, \bullet}$	$N_{\text {yes }}$
no	$N_{\text {no, }}$	$N_{\text {no, }}$	$N_{\text {no }}$
	N_{\bullet}	N_{\bullet}	N

	10	0	9	1	7	3	5	5	0	10	5	2	7

Decision tree: Training

Try splitting on different attributes and values

Decision tree: Training

Try splitting on different attributes and values

Decision tree: Training

Try splitting on different attributes and values

Decision tree: Training

Try splitting on different attributes and values

Decision tree: Training

Try splitting on different attributes and values

Decision tree: Training

Try splitting on different attributes and values

Decision tree: Training

Try splitting on different attributes and values

Decision tree: Training

Select best split, divide the data accordingly and recurse on the subsets

Decision tree: Training

Considering only the 'no' branch, try splitting on different attributes and values

Decision tree: Training

Considering only the 'no' branch, try splitting on different attributes and values

Decision tree: Training

Considering only the 'no' branch, try splitting on different attributes and values

Decision tree: Training

Considering only the 'no' branch, select best split...

Decision tree: Training

Node is below the minimum size, add leaf with dominant class as decision

Decision tree: Training

Considering only the current branch, try splitting on different attributes and values

Decision tree: Training

No improving split can be found, add leaf with dominant class as decision

Decision tree: Training

Considering only the 'yes' branch, try splitting on different attributes and values

Decision tree: Training

Considering only the 'yes' branch, try splitting on different attributes and values

Decision tree: Training

Considering only the 'yes' branch, try splitting on different attributes and values

Decision tree: Training

Considering only the 'yes' branch, select best split...

Decision tree: Training

Node is pure, add leaf with class as decision

Decision tree: Training

Considering only the current branch, try splitting on different attributes and values

Decision tree: Training

Considering only the current branch, try splitting on different attributes and values

Decision tree: Training

Considering only the current branch, select best split...

Decision tree: Training

Maximum depth has been reached, add leaves with dominant classes as decision

Decision tree: Training

Tree is fully grown...

Decision tree: Prediction

Given a point to classify: $(\mathrm{sl}=6.0, \mathrm{pl}=4.8)$

Decision tree: Prediction

Apply test and follow branch according to the outcome

Decision tree: Prediction

Apply test and follow branch according to the outcome

Decision tree: Prediction

Apply test and follow branch according to the outcome

Decision tree: Prediction

Assign the class associated to the leaf

Decision tree: Prediction

The sequences of tests corresponding to the branches of the tree define decision boundaries

Decision tree: Prediction

The sequences of tests corresponding to the branches of the tree define decision boundaries

Naive Bayes

Input: data set \mathcal{D} with attributes X_{1}, \ldots, X_{m} and class labels Y, data point \boldsymbol{x}
Training: estimate the class probabilities $P(Y)$ and conditional probabilities $P\left(X_{i} \mid Y\right)$ from \mathcal{D}
Prediction: compute conditional probabilities $\mathrm{P}\left(Y \mid X_{1}, \ldots, X_{m}\right)$ according to Bayes' rule, return class with highest probability

Naive Bayes: Bayes' rule

$$
\begin{gathered}
\mathrm{P}(Y \mid X)=\frac{\mathrm{P}(Y) \cdot \mathrm{P}(X \mid Y)}{\mathrm{P}(X)} \\
\mathrm{P}\left(Y=c \mid X_{1}=a_{1}, \ldots, X_{m}=a_{m}\right) \\
=\frac{\mathrm{P}(Y=c) \cdot \mathrm{P}\left(X_{1}=a_{1}, \ldots, X_{m}=a_{m} \mid Y=c\right)}{\mathrm{P}\left(X_{1}=a_{1}, \ldots, X_{m}=a_{m}\right)} \\
\propto \mathrm{P}(Y=c) \cdot \prod_{i=1}^{i=m} \mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)
\end{gathered}
$$

Naive Bayes: Training

Estimate $\mathrm{P}(Y=c)$ and $\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ from the data, for the different classes c, attributes X_{i} and values a_{i}

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data

$$
P(Y=c)=\frac{\#(c)}{n}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data

$$
\begin{aligned}
& \mathrm{P}(\bullet)=40 / 84=0.476 \\
& \mathrm{P}(\bullet)=44 / 84=0.524
\end{aligned}
$$

Naive Bayes: Training

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ count occurrences of each values in the data, for each class and each attribute

$$
\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)=\frac{\#\left(a_{i}, Y=c\right)}{\#(c)}
$$

Naive Bayes: Training

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ count occurrences of each values in the data, for each class and each attribute

$$
\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)=\frac{\#\left(a_{i}, Y=c\right)}{\#(c)}
$$

! Needs much data to get reliable values
! How about rare values?

Naive Bayes: Training

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ count occurrences of each values in the data, for each class and each attribute

$$
\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)=\frac{\#\left(a_{i}, Y=c\right)}{\#(c)}
$$

! Needs much data to get reliable values
! How about rare values?
\rightarrow use Laplacian smoothing

$$
\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)=\frac{\#\left(a_{i}, Y=c\right)+\alpha}{\#(c)+\kappa \cdot \alpha}
$$

where κ is the number of distinct values of attribute X_{i}
That is, denoting the domain of X_{i} as A_{i}, we let $\kappa=\left|A_{i}\right|$

$$
\text { so that } \sum_{a_{i} \in A_{i}} \mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)=1
$$

Naive Bayes: Training

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ count occurrences of each values in the data, for each class and each attribute

$$
\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)=\frac{\#\left(a_{i}, Y=c\right)}{\#(c)}
$$

! Needs much data to get reliable values
! How about continuous domains?

Naive Bayes: Training

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ count occurrences of each values in the data, for each class and each attribute

$$
\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)=\frac{\#\left(a_{i}, Y=c\right)}{\#(c)}
$$

! Needs much data to get reliable values
! How about continuous domains?
\rightarrow model with Gaussian distributions

$$
\mathrm{P}(X=v \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(v-\mu)^{2}}{2 \sigma^{2}}}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data $\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data
$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

$$
\begin{gathered}
\mathrm{P}\left(v \mid \mu_{\mathrm{sl}}, \sigma_{\mathrm{sl}}\right)=\frac{1}{\sqrt{2 \pi \sigma_{\mathrm{sl}}^{2}}} e^{-\frac{\left(v-\mu_{\mathrm{sl}}\right)^{2}}{2 \sigma_{\mathrm{sl}}^{2}}} \\
\mu_{\mathrm{sl}}=\operatorname{mean}(\mathrm{sl} \mid \bullet)=5.945 \\
\sigma_{\mathrm{sl}}^{2}=\operatorname{var}(\mathrm{sl} \mid \bullet) \quad=0.285
\end{gathered}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

$$
\begin{gathered}
\mathrm{P}\left(v \mid \mu_{\mathrm{pl}}, \sigma_{\mathrm{pl}}\right)=\frac{1}{\sqrt{2 \pi \sigma_{p l^{2}}}} e^{-\frac{\left(v-\mu_{\mathrm{pl}}\right)^{2}}{2 \sigma_{\mathrm{pl}}^{2}}} \\
\mu_{\mathrm{pl}}=\operatorname{mean}(\mathrm{pl} \mid \bullet)=4.252 \\
\sigma_{\mathrm{pl}}^{2}=\operatorname{var}(\mathrm{pl} \mid \bullet) \quad=0.219
\end{gathered}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data $\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

$$
\begin{aligned}
& \mathrm{P}\left(v \mid \mu_{\mathrm{sl}}, \sigma_{\mathrm{sl}}\right) \\
& \mathrm{P}\left(v \mid \mu_{\mathrm{pl}}, \sigma_{\mathrm{pl}}\right)
\end{aligned}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

$$
\begin{gathered}
\mathrm{P}\left(v \mid \mu_{\mathrm{sl}}, \sigma_{\mathrm{sl}}\right)=\frac{1}{\sqrt{2 \pi \sigma_{\mathrm{sl}}^{2}}} e^{-\frac{\left(v-\mu_{\mathrm{sl}}\right)^{2}}{2 \sigma_{\mathrm{sl}}^{2}}} \\
\mu_{\mathrm{sl}}=\operatorname{mean}(\mathrm{sl} \mid \bullet)=6.628 \\
\sigma_{\mathrm{sl}}^{2}=\operatorname{var}(\mathrm{sl} \mid \bullet) \quad=0.414
\end{gathered}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data

$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

$$
\begin{aligned}
\mathrm{P}\left(v \mid \mu_{\mathrm{pl}}, \sigma_{\mathrm{pl}}\right)=\frac{1}{\sqrt{2 \pi \sigma_{\mathrm{pl}}^{2}}} e^{-\frac{\left(v-\mu_{\mathrm{pl}}\right)^{2}}{2 \sigma_{\mathrm{pl}}{ }^{2}}} \\
\mu_{\mathrm{pl}}=\operatorname{mean}(\mathrm{pl} \mid \bullet) \quad=5.575 \\
\sigma_{\mathrm{pl}}{ }^{2}=\operatorname{var}(\mathrm{pl} \mid \bullet) \quad=0.308
\end{aligned}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data $\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

$$
\begin{aligned}
& \mathrm{P}\left(v \mid \mu_{\mathrm{sl}}, \sigma_{\mathrm{sl}}\right) \\
& \mathrm{P}\left(v \mid \mu_{\mathrm{pl}}, \sigma_{\mathrm{pl}}\right)
\end{aligned}
$$

Naive Bayes: Training

$P(Y=c)$ count occurrences of each class in the data
$\mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)$ model with Gaussian distributions, estimating the parameters from the data

$$
\begin{array}{cc}
\mathrm{P}(\bullet) & \mathrm{P}(\bullet) \\
\mathrm{P}\left(v \mid \mu_{\mathrm{sl}}, \sigma_{\mathrm{sl}}\right) & \mathrm{P}\left(v \mid \mu_{\mathrm{sl}}, \sigma_{\mathrm{sl}}\right) \\
\mathrm{P}\left(v \mid \mu_{\mathrm{pl}}, \sigma_{\mathrm{pl}}\right) & \mathrm{P}\left(v \mid \mu_{\mathrm{pl}}, \sigma_{\mathrm{pl}}\right)
\end{array}
$$

Naive Bayes: Prediction

Compute the conditional probability of each class according to Bayes' rule

$$
\mathrm{P}\left(Y=c \mid X_{1}=a_{1}, \ldots, X_{m}=a_{m}\right) \propto \mathrm{P}(Y=c) \cdot \prod_{i=1}^{i=m} \mathrm{P}\left(X_{i}=a_{i} \mid Y=c\right)
$$

Naive Bayes: Prediction

Compute the conditional probability of each class according to Bayes' rule

$$
P(\bullet \mid(5.6,3.6)) \stackrel{?}{<} P(\bullet \mid(5.6,3.6))
$$

Naive Bayes: Prediction

Compute the conditional probability of each class according to Bayes' rule

$$
\mathrm{P}(\bullet \mid(5.6,3.6))<\mathrm{P}(\bullet \mid(5.6,3.6))
$$

$$
0.022<0.978
$$

Naive Bayes: Prediction

Compute the conditional probability of each class according to Bayes' rule

$$
\mathrm{P}(\bullet \mid(5.6,3.6))<\mathrm{P}(\bullet \mid(5.6,3.6))
$$

$$
0.022<0.978
$$

Naive Bayes: Prediction

Compute the conditional probability of each class according to Bayes' rule

$\mathrm{P}(\bullet \mid x)$ and $\mathrm{P}(\bullet \mid x)$ can be computed for every point

Naive Bayes: Prediction

Compute the conditional probability of each class according to Bayes' rule

$\mathrm{P}(\bullet \mid x)$ and $\mathrm{P}(\bullet \mid x)$ can be computed for every point

The decision boundary is the line

$$
\mathrm{P}(\bullet \mid x)=\mathrm{P}(\bullet \mid x)=.5
$$

Perceptron

Input: data set \mathcal{D}, data point x
Parameters: learning rate η
Training: initialize weights vector w and bias b, iterate among points in \mathcal{D} and adjust w and b
Prediction: return class according to sign of $w \cdot x+b$

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

At step t, compute current prediction

$$
z_{i}=\operatorname{sign}\left(w^{(t)} \cdot x^{(j)}+b^{(t)}\right)
$$

update

$$
\begin{aligned}
w^{(t+1)} & =w^{(t)}+\eta\left(y_{j}-z_{j}\right) x^{(j)} \\
b^{(t+1)} & =b^{(t)}+\eta\left(y_{j}-z_{j}\right)
\end{aligned}
$$

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

At step t, compute current prediction

$$
z_{i}=\operatorname{sign}\left(w^{(t)} \cdot x^{(j)}+b^{(t)}\right)
$$

update

$$
\begin{aligned}
w^{(t+1)} & =w^{(t)}+\eta\left(y_{j}-z_{j}\right) x^{(j)} \\
b^{(t+1)} & =b^{(t)}+\eta\left(y_{j}-z_{j}\right)
\end{aligned}
$$

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

At step t,
compute current prediction

$$
z_{i}=\operatorname{sign}\left(w^{(t)} \cdot x^{(j)}+b^{(t)}\right)
$$

update

$$
\begin{aligned}
w^{(t+1)} & =w^{(t)}+\eta\left(y_{j}-z_{j}\right) x^{(j)} \\
b^{(t+1)} & =b^{(t)}+\eta\left(y_{j}-z_{j}\right)
\end{aligned}
$$

Note that if prediction is correct, w and b are unchanged

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

At step t,
compute current prediction

$$
z_{i}=\operatorname{sign}\left(w^{(t)} \cdot x^{(j)}+b^{(t)}\right)
$$

update

$$
\begin{aligned}
w^{(t+1)} & =w^{(t)}+\eta\left(y_{j}-z_{j}\right) x^{(j)} \\
b^{(t+1)} & =b^{(t)}+\eta\left(y_{j}-z_{j}\right)
\end{aligned}
$$

Note that if prediction is correct, w and b are unchanged

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

Might cycle several times through all points of the training data Each such cycle is called an epoch

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

If the data is linearly separable, convergence on some solution is guaranteed

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

If the data is not linearly separable, learning will fail

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

If the data is not linearly separable, learning will fail

The algorithm will not even approach an approximate solution

Perceptron: Training

Iterate among points $x^{(j)}$ from \mathcal{D} in a random order and adjust weights w and bias b

If the data is not linearly separable, learning will fail

A quick fix:
store best solution encountered and return it after chosen maximum number of epochs

Perceptron: Prediction

Return class according to $\operatorname{sign}(w \cdot x+b)$

$$
\begin{aligned}
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39<0 \\
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39 \geq 0 \\
& 0.671 \cdot 6.0 \\
& -1.365 \cdot 4.8+2.39=-0.136
\end{aligned}
$$

Perceptron: Prediction

Return class according to $\operatorname{sign}(w \cdot x+b)$

$$
\begin{aligned}
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39<0 \\
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39 \geq 0 \\
& 0.671 \cdot 6.0 \\
& -1.365 \cdot 4.8+2.39=-0.136
\end{aligned}
$$

Perceptron: Prediction

Return class according to $\operatorname{sign}(w \cdot x+b)$

$$
\begin{aligned}
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39<0 \\
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39 \geq 0
\end{aligned}
$$

Perceptron: Prediction

Return class according to $\operatorname{sign}(w \cdot x+b)$

$$
\begin{aligned}
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39<0 \\
& 0.671 \cdot \mathrm{sl}-1.365 \cdot \mathrm{pl}+2.39 \geq 0
\end{aligned}
$$

Perceptron

The Perceptron can be seen as the simplest neural network, a single-layer neural network

One input node for each data attribute
One output node computing the activation function

Support Vector Machine (SVM)

Input: data set \mathcal{D}, data point x
Parameters: penalty coefficient C
Training: solve for vector w and bias b that define a hyperplane separating points in \mathcal{D} from the two classes with largest margin

Prediction: return class according to sign of $w \cdot x+b$

SVM: linearly separable case

When the data is linearly separable, there might be multiple different separating hyperplanes which one to choose?

SVM: linearly separable case

When the data is linearly separable, there might be multiple different separating hyperplanes which one to choose?

SVM: linearly separable case

When the data is linearly separable, there might be multiple different separating hyperplanes which one to choose?

SVM: linearly separable case

When the data is linearly separable, there might be multiple different separating hyperplanes which one to choose? Larger margin provides more stability

Hard-margin SVM

Determining the maximum margin hyperplane

Hard-margin SVM

Determining the maximum margin hyperplane

we have two hyperplanes,
such that (under suitable scaling)

$$
\begin{aligned}
& \left(H_{+}\right) \quad w \cdot x^{(j)}+b \geq+1 \forall j, y_{j}=+1 \\
& \left(H_{-}\right) \quad w \cdot x^{(j)}+b \leq-1 \forall j, y_{j}=-1
\end{aligned}
$$

The distance between H_{+}and H_{-} equals $2 /\|w\|$

Hard-margin SVM

Determining the maximum margin hyperplane

Hard-margin SVM

Determining the maximum margin hyperplane

the problem can be formulated as

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2} \\
\text { s.t. } & y_{j}\left(w \cdot x^{(j)}+b\right) \geq 1 \forall j
\end{aligned}
$$

this is a quadratic constrained optimization problem
can be solved by the Lagrangian multiplier method

Hard-margin SVM

Primal problem

$$
\min L_{p}=\frac{1}{2}\|w\|^{2}+\sum_{j=1}^{j=n} a_{j}\left(1-y_{j}\left(w \cdot \boldsymbol{x}^{(j)}+b\right)\right) \text { s.t. } 0 \leq a_{j} \forall j
$$

Dual problem

$$
\max L_{D}=\sum_{j=1}^{j=n} a_{j}-\frac{1}{2} \sum_{j=1}^{j=n} \sum_{i=1}^{i=n} a_{j} a_{i} y_{j} y_{i} x^{(j)} \cdot x^{(i)} \quad \text { s.t. } 0 \leq a_{j} \text { and } \sum_{j=1}^{j=n} a_{j} y_{j}=0 \forall j
$$

variables a_{j} are defined in such a way that $w=\sum_{j=1}^{j=n} a_{j} y_{j} j^{(j)}$

Hard-margin SVM: Training

Training the SVM means solving for the a_{j} by differentiating the dual problem and setting it to zero

Most of the a_{j} will have value zero
Training points associated to non-zero a_{j} are called support vectors, since they actually define the separating hyperplane

$$
w=\sum_{j=1}^{j=n} a_{j} y_{j} x^{(j)}
$$

Support vectors satisfy $y_{j}\left(w \cdot x^{(j)}+b\right)=1$
which allows to compute b

Hard-margin SVM: Prediction

Return class according to $\operatorname{sign}(w \cdot x+b)$, where

$$
w \cdot x+b=b+\sum_{j=1}^{j=n} a_{j} y_{j} x^{(j)} \cdot x
$$

SVM: non linearly separable case

What if the data is not linearly separable?

No hyperplane such that constraint

$$
y_{j}\left(w \cdot x^{(j)}+b\right) \geq 1
$$

would be satisfied by all points Some points inside the margin, or even on the wrong side of the separating hyperplane

SVM: non linearly separable case

What if the data is not linearly separable?

Use the hinge loss and introduce a new variable for each point

$$
\xi_{j}=\max \left(0,1-y_{j}\left(w \cdot x^{(j)}+b\right)\right)
$$

the value is
zero if the point satisfies the margin constraint proportional to the distance to the margin otherwise

SVM: non linearly separable case

What if the data is not linearly separable?

Hard-margin problem

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2} \\
\text { s.t. } & y_{j}\left(w \cdot x^{(j)}+b\right) \geq 1 \forall j
\end{aligned}
$$

Soft-margin problem

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2}+C \sum_{j=1}^{j=n} \xi_{j} \\
\text { s.t. } & y_{j}\left(w \cdot x^{(j)}+b\right) \geq 1-\xi_{j} \text { and } 0 \leq \xi_{j} \forall j
\end{aligned}
$$

Soft-margin SVM

Primal problem

$$
\begin{gathered}
\min L_{p}=\frac{1}{2}\|w\|^{2}+c \sum_{j=1}^{j=n} \xi_{j}+\sum_{j=1}^{j=n} a_{j}\left(1-\xi_{j}-y_{j}\left(w \cdot \boldsymbol{x}^{(j)}+b\right)\right)-\sum_{j=1}^{j=n} \mu_{j} \xi_{j} \\
\text { s.t. } 0 \leq a_{j} \text { and } 0 \leq \mu_{j} \forall j
\end{gathered}
$$

Dual problem

$$
\begin{aligned}
& \max L_{D}=\sum_{j=1}^{j=n} a_{j}-\frac{1}{2} \sum_{j=1}^{j=n} \sum_{i=1}^{i=n} a_{j} a_{i} y_{j} y_{i} x^{(j)} \cdot x^{(i)} \\
& \qquad \text { s.t. } 0 \leq a_{j} \leq C \text { and } \sum_{j=1}^{j=n} a_{j} y_{j}=0 \forall j \\
& \text { variables } a_{j} \text { are defined in such a way that } w=\sum_{j=1}^{j=n} a_{j} y_{j} x^{(j)}
\end{aligned}
$$

Soft-margin SVM: Training

Training the SVM means solving for the a_{j} by differentiating the dual problem and setting it to zero

Most of the a_{j} will have value zero
Training points associated to non-zero a_{j} are called support vectors, since they actually define the separating hyperplane

For every support vector

$$
y_{j}\left(w \cdot x^{(j)}+b\right)=1-\xi_{j}
$$

if $\xi_{j}=0$, the point is on the margin otherwise, it is within the margin or even on the wrong side

Soft-margin SVM: Training

Training the SVM means solving for the a_{j} by differentiating the dual problem and setting it to zero

Most of the a_{j} will have value zero
Training points associated to non-zero a_{j} are called support vectors, since they actually define the separating hyperplane $C=2$

Soft-margin SVM: Training

Training the SVM means solving for the a_{j} by differentiating the dual problem and setting it to zero

Most of the a_{j} will have value zero
Training points associated to non-zero a_{j} are called support vectors, since they actually define the separating hyperplane

Parameter C allows to adjust the trade-off between width of the margin and constraint violations

Soft-margin SVM: Training

Training the SVM means solving for the a_{j} by differentiating the dual problem and setting it to zero

Most of the a_{j} will have value zero
Training points associated to non-zero a_{j} are called support vectors, since they actually define the separating hyperplane
$C=10$

Parameter C allows to adjust the trade-off between width of the margin and constraint violations

Soft-margin SVM: Prediction

Return class according to $\operatorname{sign}(w \cdot x+b)$, where

$$
w \cdot x+b=b+\sum_{j=1}^{j=n} a_{j} y_{j} x^{(j)} \cdot x
$$

Kernelized SVM

What if a linear decision boundary is not the right option?

Kernelized SVM

What if a linear decision boundary is not the right option?

Kernelized SVM

What if a linear decision boundary is not the right option? Project the data to a different space

Kernelized SVM

What if a linear decision boundary is not the right option?
Train the SVM in the projected space

$$
\varphi_{s}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{1}^{2}, x_{2}^{2}\right\rangle
$$

Kernelized SVM

What if a linear decision boundary is not the right option?
Train the SVM in the projected space

$$
\varphi_{s}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{1}^{2}, x_{2}^{2}\right\rangle
$$

Kernelized SVM

If the data cannot be separated in the original space

1. find a projection φ to a space where the data can be separated
2. apply the SVM method to the transformed dataset

Kernelized SVM

If the data cannot be separated in the original space

1. find a projection φ to a space where the data can be separated
2. apply the SVM method to the transformed dataset

Dual problem

$$
\begin{aligned}
& \max L_{D}=\sum_{j=1}^{j=n} a_{j}-\frac{1}{2} \sum_{j=1}^{j=n} \sum_{i=1}^{i=n} a_{j} a_{i} y_{j} y_{i} \varphi\left(x^{(j)}\right) \cdot \varphi\left(x^{(i)}\right) \\
& \quad \text { s.t. } 0 \leq a_{j} \leq C \text { and } \sum_{j=1}^{j=n} a_{j} y_{j}=0 \forall j
\end{aligned}
$$

Prediction $\quad \operatorname{sign}\left(b+\sum_{j=1}^{j=n} a_{j} y_{j} \varphi\left(x^{(j)}\right) \cdot \varphi\left(x^{(i)}\right)\right)$

Kernelized SVM

Dual problem

$$
\begin{aligned}
& \max L_{D}=\sum_{j=1}^{j=n} a_{j}-\frac{1}{2} \sum_{j=1}^{j=n} \sum_{i=1}^{i=n} a_{j} a_{i} y_{j} y_{i} \varphi\left(x^{(j)}\right) \cdot \varphi\left(x^{(i)}\right) \\
& \quad \text { s.t. } 0 \leq a_{j} \leq C \text { and } \sum_{j=1}^{j=n} a_{j} y_{j}=0 \forall j
\end{aligned}
$$

$$
\text { Prediction } \quad \operatorname{sign}\left(b+\sum_{j=1}^{j=n} a_{j} y_{j} \varphi\left(x^{(j)}\right) \cdot \varphi\left(x^{(i)}\right)\right)
$$

The transformed values $\varphi(x)$ appear only in dot products

Kernelized SVM

The transformed values $\varphi(x)$ appear only in dot products
If the dot product in the transformed space can be replaced by
a function

$$
\mathrm{K}\left(x, x^{\prime}\right)=\varphi(x) \cdot \varphi\left(x^{\prime}\right)
$$

we can avoid performing the transformation explicitely

Kernelized SVM

Dual problem

$$
\max L_{D}=\sum_{j=1}^{j=n} a_{j}-\frac{1}{2} \sum_{j=1}^{j=n} \sum_{i=1}^{i=n} a_{j} a_{i} y_{j} y_{i} K\left(x^{(j)}, x^{(i)}\right)
$$

$$
\text { s.t. } 0 \leq a_{j} \leq C \text { and } \sum_{j=1}^{j=n} a_{j} y_{j}=0 \forall j
$$

Prediction $\quad \operatorname{sign}\left(b+\sum_{j=1}^{j=n} a_{j} y_{j} K\left(x^{(j)}, x^{(i)}\right)\right)$

The Kernel Trick

By replacing the dot product in the transformed space by a function

$$
\mathrm{K}\left(x, x^{\prime}\right)=\varphi(x) \cdot \varphi\left(x^{\prime}\right)
$$

we can avoid performing the transformation explicitely
The feature map φ does not need to be explicitly defined It is enough that K be expressible as an inner product

Mercer's theorem gives the conditions for K to be a valid kernel function
In particular, the similarity matrix (a.k.a. Gram matrix) $S_{i j}=\mathrm{K}\left(v_{i}, v_{j}\right)$ for a finite input space $\left\langle\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{l}\right\rangle$ must be positive semi-definite (PSD)

The Kernel Trick

Improving the separability of data points typically means projecting into a high dimensional space computing with high dimensional vectors is costly the kernel function operates in the original space

The kernel trick provides the benefits of high-dimensionality without the costs

Kernels are useful beyond SVMs, in other methods where dot products, i.e. similarity computations, are involved

Common kernel functions

Polynomial kernel

$$
\mathrm{K}\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+c\right)^{h}
$$

Sigmoid kernel

$$
\mathrm{K}\left(x, x^{\prime}\right)=\tanh \left(\kappa x \cdot x^{\prime}-\delta\right)
$$

Gaussian radial basis kernel

$$
\mathrm{K}\left(x, x^{\prime}\right)=e^{\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}}
$$

Kernelized SVM

$$
\varphi_{s}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{1}^{2}, x_{2}^{2}\right\rangle
$$

Kernelized SVM

$$
\varphi_{s}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{1}^{2}, x_{2}^{2}\right\rangle
$$

Consider the polynomial kernel of degree two

$$
\begin{aligned}
\mathrm{K}\left(x, x^{\prime}\right) & =\left(x \cdot x^{\prime}\right)^{2}=\left(x_{1} x^{\prime} 1_{1}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{1}^{\prime} x_{2} x^{\prime}{ }_{2} \\
& =\left\langle x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right\rangle \cdot\left\langle x_{1}^{\prime 2}, x_{2}^{\prime \prime}, \sqrt{2} x^{\prime}{ }_{1} x^{\prime}{ }_{2}\right\rangle \\
& =\varphi_{p}(x) \cdot \varphi_{p}\left(x^{\prime}\right) \quad \text { where } \varphi_{\rho}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right\rangle
\end{aligned}
$$

The terms of the feature map φ_{s} is a subset of those of φ_{p}

Kernelized SVM

Using the polynomial kernel

$$
\mathrm{K}\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}\right)^{2}
$$

for the two-dimensional example dataset corresponds to projecting the points into three dimensional space

$$
\varphi_{p}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right\rangle
$$

before training the SVM

Kernelized SVM

Different kernels

Evaluation

Model evaluation

Given a dataset, we can build a number of models, that come with different variants and parameter settings

We need to quantify the accuracy of models, in order to

- measure the effectiveness and tune the parameters of a particular model
- compare, select, combine various models

Evaluation measures

To evaluate the performance of a model we compare the known labels of the instances, representing the ground truth, to the predicted labels

Let y and z denote respectively the true and predicted labels
If there are l distinct classes, there are l. $/$ distinct possible outcomes for a given instance

The instance might belong to c_{1} and be predicted as c_{1}
The instance might belong to c_{1} and be predicted as c_{2}

The instance might belong to c_{l} and be predicted as c_{1}

The instance might belong to c_{l} and be predicted as c_{l}

Evaluation measures

Let y and z denote respectively the true and predicted labels
The outcome of the classification of a set of instances across l classes can be summarized in a $l \times l$ contingency matrix

Ground truth

	$y=c_{1}$	$y=c_{i}$	$y=c_{l}$
	$\begin{aligned} & \#\left(z=c_{1}, y=c_{1}\right) \\ & \#\left(z=c_{i}, y=c_{1}\right) \\ & \#\left(z=c_{l}, y=c_{1}\right) \end{aligned}$	$\begin{aligned} & \#\left(z=c_{1}, y=c_{i}\right) \\ & \#\left(z=c_{i}, y=c_{i}\right) \\ & \#\left(z=c_{l}, y=c_{i}\right) \end{aligned}$	$\begin{aligned} & \#\left(z=c_{1}, y=c_{l}\right) \\ & \#\left(z=c_{i}, y=c_{l}\right) \\ & \#\left(z=c_{l}, y=c_{l}\right) \end{aligned}$

Evaluation measures

Let y and z denote respectively the true and predicted labels
The outcome of the classification of a set of instances across l classes can be summarized in a $l \times l$ contingency matrix

The accuracy is the fraction of correctly classified instances

Evaluation measures

Binary classification is a special case with specific terminology
Two classes: positive and negative
There are four possible outcomes for a given instance
The 2×2 contingency matrix is called confusion matrix

Ground truth

$$
y=0 \quad y=1
$$

$.$	True negative	False negative
产 $z=1$	False positive	True positive

Evaluation measures

Binary classification is a special case with specific terminology
Two classes: positive and negative
There are four possible outcomes for a given instance
The 2×2 contingency matrix is called confusion matrix

$$
y=0 \quad y=1
$$

$z=0 \quad$ True negative False negative
$z=1 \quad$ False positive \quad True positive

False positive: type I error (a.k.a. false discovery, false alarm)
False negative: type II error (a.k.a. miss)

Evaluation measures

A binary classifier is trained on a portion of data (training data)

For example, consider a linear SVM

Solve for vector w and bias b defining a separating hyperplane

Evaluation measures

A binary classifier is trained on a portion of data (training data)

For example, consider a linear SVM

Solve for vector w and bias b defining a separating hyperplane

Evaluation measures

A binary classifier is trained on a portion of data (training data), and applied on another portion for which the ground-truth is also known but hidden from the classifier (test data)

For example, consider a linear SVM

For instance x, predict class according to sign of $w \cdot x+b$

Evaluation measures

A binary classifier is trained on a portion of data (training data), and applied on another portion for which the ground-truth is also known but hidden from the classifier (test data)

For example, consider a linear SVM

For instance x, predict class according to sign of $w \cdot x+b$

Evaluation measures

The outcome of the binary classification of a collection of N instances can be summarized in a confusion matrix

$$
\left[\begin{array}{ll}
N_{T N} & N_{F N} \\
N_{F P} & N_{T P}
\end{array}\right]
$$

Evaluation measures

The outcome of the binary classification of a collection of N instances can be summarized in a confusion matrix

$$
\left[\begin{array}{ll}
N_{T N} & N_{F N} \\
N_{F P} & N_{T P}
\end{array}\right]
$$

$$
y=0
$$

$$
y=1
$$

	$y=0$	$y=1$
$z=0$	True negative	False negative
$z=1$	False positive	True positive

Evaluation measures

$$
y=0 \quad y=1
$$

$$
\left[\begin{array}{ll}
N_{T N} & N_{F N} \\
N_{F P} & N_{T P}
\end{array}\right] \quad \begin{array}{lll}
z=0 & \text { True negative } & \text { False negative } \\
z=1 & \text { False positive } & \text { True positive } \\
\hline
\end{array}
$$

Various measures can be computed from this matrix
precision $\frac{N_{T P}}{N_{T P}+N_{\text {FP }}}$ (a.k.a. positive predictive value)
recall $\frac{N_{T P}}{N_{T P}+N_{F N}}$ (a.k.a. sensitivity, true positive rate)
specificity $\frac{N_{T N}}{N_{T N}+N_{F P}}$ (a.k.a. selectivity, true negative rate)
false positive rate $\frac{N_{F P}}{N_{F P}+N_{T N}}$
false negative rate $\frac{N_{F N}}{N_{F N}+N_{T P}}$

Evaluation measures

$$
y=0 \quad y=1
$$

\(\left[\begin{array}{ll}N_{T N} \& N_{F N}

N_{F P} \& N_{T P}\end{array}\right] \quad\)| $z=0$ | True negative | False negative |
| :--- | :--- | :---: |
| $z=1$ | False positive | True positive |

Various measures can be computed from this matrix
precision $\frac{N_{T P}}{N_{T P}+N_{F P}}$ (a.k.a. positive predictive value)
recall $\frac{N_{T P}}{N_{T P}+N_{F N}}$ (a.k.a. sensitivity, true positive rate)
F1 score harmonic mean of recall and precision

$$
2 \cdot \frac{\text { precision } \cdot \text { recall }}{\text { precision }+ \text { recall }}=\frac{2 N_{T P}}{2 N_{T P}+N_{F P}+N_{F N}}
$$

Evaluation measures

$$
\left[\begin{array}{ll}
N_{T N} & N_{F N} \\
N_{F P} & N_{T P}
\end{array}\right] \quad \begin{array}{lll}
z=0 & \text { True negative } & \text { False negative } \\
z=1 & \text { False positive } & \text { True positive } \\
\hline
\end{array}
$$

Various measures can be computed from this matrix
accuracy fraction of instances in which the predicted label matches the ground truth

$$
\frac{N_{T P}+N_{T N}}{N}
$$

Evaluation measures

accuracy fraction of instances in which the predicted label matches the ground truth

$$
\frac{\sum_{c \in c} \#(y=c, z=c)}{\sum_{c \in C} \#(y=c)}
$$

In some cases, not all classes are equally important misclassification in one class incurs a higher cost than misclassification in the other class reflected by weight w_{c} assigned to each class weighted accuracy (a.k.a. cost-sensitive accuracy)

$$
\frac{\sum_{c \in C} W_{c} \cdot \#(y=c, z=c)}{\sum_{c \in C} W_{C} \cdot \#(y=c)}
$$

Evaluation measures

The outcome of the binary classification of a collection of N instances can be summarized in a confusion matrix Various measures can be computed from this matrix

$$
\begin{aligned}
& {\left[\begin{array}{ll}
N_{T N} & N_{F N} \\
N_{F P} & N_{T P}
\end{array}\right]} \\
& \mathrm{acC}=0.812 \\
& \mathrm{TPR}=0.750 \\
& \mathrm{FPR}=0.125
\end{aligned}
$$

Evaluation measures

Instead of crisp class assignments we might consider a numerical score reflecting the confidence of the classifier Class probabilities, distance from the decision boundary, etc.

For example, consider a linear SVM

Use $w \cdot x+b$ as score for instance x

Evaluation measures

Varying the score above which an instance is assigned to the positive class means moving the decision boundary

For instance x, predict class according to the outcome of test $w \cdot x+b \geq \theta$
with $\theta=-9, \theta=-3, \theta=5$,
or $\theta=9$, for example

Evaluation measures

Let's look at what happens if we modify the level of confidence required to assign an instance to the positive class

From almost certain that it does not belong to the negative class $(\theta \rightarrow-\infty)$
to almost certain that it belongs to the positive class $(\theta \rightarrow+\infty)$ and cases in between

Evaluation

Consider a linear SVM, use $w \cdot x+b$ as score for instance x Collect the test instances with their scores

Evaluation

Consider a linear SVM, use $w \cdot x+b$ as score for instance x Sort the test instances by increasing values of the score

Evaluation

As thresholds we can use mid-point values between successive distinct score values among the test instances

Evaluation

Set the threshold to the minimum value Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

Set the threshold to the minimum value, raise it progressively Record the corresponding FPR and TPR

Evaluation

FPR and TPR depend on where the ranking is split between classes, not the specific threshold value

Evaluation

Hence, successive FPR and TPR can be computed directly from the ranked instances

Evaluation

The curve FPR vs. TPR is commonly refered to as receiver operating characteristic (ROC) curve

80	-6.333
69	-5.741
49	-5.000
75	-2.778
34	-2.111
17,57	-1.370
74	-0.778
28	-0.259
1	0.259
70	1.074
11	1.815
44	3.000
27	3.741
8	6.481
18	8.111

Evaluation

The curve FPR vs. TPR is commonly refered to as (ROC) curve The area under the curve (AUC) summarizes the ROC curve in a single number

Model evaluation

! The goal is not to best mimic the labels of the training data
For evaluation, we need labelled data points not seen during training

Compromise: the more labelled data for training the better but some labelled examples need to be hold out for evaluation

Hold-out

Divide the labelled data into two disjoint sets
training data used to train the model
typically ca. 2/3-3/4 of data
test data used to evaluate the model typically ca. 1/3-1/4 of data

Hold-out

Divide the labelled data into two disjoint sets
training data used to train the model
typically ca. 2/3-3/4 of data
test data used to evaluate the model typically ca. 1/3-1/4 of data
! only a fraction of data used for training
! error estimates are pessimistic

Hold-out

Divide the labelled data into two disjoint sets
training data used to train the model
typically ca. 2/3-3/4 of data
test data used to evaluate the model typically ca. 1/3-1/4 of data
! only a fraction of data used for training
! error estimates are pessimistic
Repeat this process over several different hold-out samples

- improve the error estimate
- measure variance and compute statistical confidence intervals on the error

Cross-validation

Divide the labelled data into ℓ disjoint sets of equal size ℓ / n use one set as test data, remaining $\ell-1$ as training data repeat with each set as test data

In each of ℓ rounds, the training data has size $n(\ell-1) / \ell$
This is called ℓ-fold cross-validation
e.g. 10-fold cross-validation is common

Cross-validation

Divide the labelled data into ℓ disjoint sets of equal size ℓ / n use one set as test data, remaining $\ell-1$ as training data repeat with each set as test data

In each of ℓ rounds, the training data has size $n(\ell-1) / \ell$
This is called ℓ-fold cross-validation
For larger values of ℓ, the training data comprises more examples
\rightarrow better error estimation (still pessimistic)
more rounds are needed
\rightarrow higher computational cost

Cross-validation

Divide the labelled data into ℓ disjoint sets of equal size ℓ / n use one set as test data, remaining $\ell-1$ as training data repeat with each set as test data
In each of ℓ rounds, the training data has size $n(\ell-1) / \ell$
This is called ℓ-fold cross-validation
Extreme case: $\ell=n$
i.e. ℓ rounds with $n-1$ training examples and 1 test example This is called leave-one-out cross-validation

Bootstrap

Sample training data of size n from the labelled data uniformly with replacement

The training data has the same size as the original data but some original data examples might be duplicated while others might be missing

The probability that a point is not included in the sample is $(1-1 / n)^{n}$, which tends towards $1 / e$ as n increases

Bootstrap

Sample training data of size n from the labelled data uniformly with replacement

Use the full original labelled data as test data
The large overlap between training and test data means the error estimate is highly optimistic

Repeating this process over several different bootstrap
samples allows to compute the mean and variance of the error estimate

Leave-one-out bootstrap

Generate ℓ bootstrap samples and use each such sample to train one classifier

For labelled example x, evaluate $\operatorname{acc}(x)$ the performance on x of the classifiers trained on samples that do not contain x

Average $\operatorname{acc}(x)$ over all labelled examples

Validation

A step of parameter tuning and model selection, called validation, might be needed

Validation and test should not be carried out on the same set, since knowledge of the test set has been implicitly used while building the model

A portion of the data is used to train different models and select one
The performance of the selected model should be evaluated on a distinct, so far unseen, portion of the data

Comparing models

The statistical robustness of models is important differences in accuracy between models might be due to random variations

Assume we have obtained ℓ estimates of the accuracy of two models \mathcal{M}_{A} and \mathcal{M}_{B} on different randomly sampled subsets of data (e.g. through repeated hold-out or bootstrap procedures) $\left\{\operatorname{acc}\left(\mathcal{M}_{A}, 1\right), \ldots, \operatorname{acc}\left(\mathcal{M}_{A}, \ell\right)\right\}$ and $\left\{\operatorname{acc}\left(\mathcal{M}_{B}, 1\right), \ldots, \operatorname{acc}\left(\mathcal{M}_{B}, \ell\right)\right\}$

Comparing models

Assume we have obtained ℓ estimates of the accuracy of two models \mathcal{M}_{A} and \mathcal{M}_{B} on different randomly sampled subsets of data (e.g. through repeated hold-out or bootstrap procedures) $\left\{\operatorname{acc}\left(\mathcal{M}_{A}, 1\right), \ldots, \operatorname{acc}\left(\mathcal{M}_{A}, \ell\right)\right\}$ and $\left\{\operatorname{acc}\left(\mathcal{M}_{B}, 1\right), \ldots, \operatorname{acc}\left(\mathcal{M}_{B}, \ell\right)\right\}$ Let δ_{i} be the difference in accuracy in round i, i.e.

$$
\delta_{i}=\operatorname{acc}\left(\mathcal{M}_{A}, i\right)-\operatorname{acc}\left(\mathcal{M}_{B}, i\right)
$$

the average difference in accuracy is $\Delta=\sum_{i=1}^{i=\ell} \delta_{i} / \ell$ and the standard deviation of the difference in accuracy is

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{i=\ell}\left(\delta_{i}-\Delta\right)^{2}}{\ell-1}}
$$

Comparing models

We assume that δ_{i} are sampled from a normal distribution with estimated mean and standard deviation Δ and σ, respectively According to the central limit theorem, the standard deviation of the estimated mean accuracy difference Δ is $\sigma / \sqrt{\ell}$

The number of standard deviations by which Δ is different from the break-even value of 0 is $\sqrt{\ell}|\Delta-0| / \sigma$

For sufficiently large number of rounds ℓ, the probability that one model is truly better than the other can be quantified using the standard normal distribution

Comparing models

For sufficiently large number of rounds ℓ, the probability that one model is truly better than the other can be quantified using the standard normal distribution

It is generally too computationally expensive to run sufficiently many rounds to robustly estimate σ so the Student's t-distribution with $\ell-1$ degrees of freedom is used instead of the normal distribution

Diagnostic

Classification can be seen as the problem of learning a function between the data attributes and the class label

$$
y=\mathrm{g}(x)+\epsilon
$$

g represents the true, unknown, relationship between data attributes and class label ϵ represents the intrinsic error in the data, the noise, cannot be modelled

Diagnostic

Classification can be seen as the problem of learning a function between the data attributes and the class label

$$
y=g(x)+\epsilon
$$

g represents the true, unknown, relationship between data attributes and class label, even the form of g is unknown ϵ represents the intrinsic error in the data, the noise, cannot be modelled

Classification algorithms construct models while relying on modeling assumptions about the form of the relationship

$$
z=\mathrm{f}_{\mathcal{D}}(x)
$$

Diagnostic

Classification algorithms construct models while relying on modeling assumptions about the form of the relationship

$$
z=f_{\mathcal{D}}(x)
$$

The function might be defined algorithmically or in closed form The parameters of the function are estimated from the data
choice of approach Family
choice of setup Species
estimation from \mathcal{D} Individual

Diagnostic

Classification algorithms construct models while relying on modeling assumptions about the form of the relationship

$$
z=f_{\mathcal{D}}(x)
$$

The function might be defined algorithmically or in closed form The parameters of the function are estimated from the data

choice of approach	Family	decision tree
choice of setup	Species	max depth, max leaf size
estimation from \mathcal{D}	Individual	intermediate tests, decisions

$$
f_{\mathcal{D}}(x) \text { is defined algorithmically }
$$

Diagnostic

Classification algorithms construct models while relying on modeling assumptions about the form of the relationship

$$
z=f_{\mathcal{D}}(x)
$$

The function might be defined algorithmically or in closed form The parameters of the function are estimated from the data
choice of approach Family linear SVM
choice of setup Species
estimation from \mathcal{D} Individual a_{1}, \ldots, a_{n}, b

$$
f_{\mathcal{D}}(x)=\operatorname{sign}\left(b+\sum_{j=1}^{j=n} a_{j} y_{j} x^{(j)} \cdot x\right)
$$

Diagnostic

Classification algorithms construct models while relying on modeling assumptions about the form of the relationship

$$
z=f_{\mathcal{D}}(x)
$$

The function might be defined algorithmically or in closed form The parameters of the function are estimated from the data
choice of approach Family kernelized SVM
choice of setup Species kernel function K
estimation from \mathcal{D} Individual a_{1}, \ldots, a_{n}, b

$$
f_{\mathcal{D}}(x)=\operatorname{sign}\left(b+\sum_{j=1}^{j=n} a_{j} y_{j} K\left(x^{(j)}, x^{(i)}\right)\right)
$$

Diagnostic

Classification algorithms
rely on modeling assumptions
estimate the parameters from the data

Diagnostic

Classification algorithms
rely on modeling assumptions
estimate the parameters from the data
Assumptions may not reflect the true form of the relationship

Oversimplifying assumptions do not allow to capture the underlying structure of the data \rightarrow Underfitting

Diagnostic

Classification algorithms rely on modeling assumptions
estimate the parameters from the data
Even with correct modeling assumptions, the true parameters cannot be estimated exactly from the training data With increasingly complex models, i.e. more parameters, the model might fit too closely to the training data

Captures the structure of the data but also noise Does not generalize to unseen data
\rightarrow Overfitting

Diagnostic

Imagine we had a very large dataset and could repeat the whole model training many times, we could estimate the expected prediction $E_{\mathcal{D}}\left[{ }^{\mathcal{D}}(x)\right]$

Because of differences between the assumed model and the true model, $\mathrm{g}(x)$ and $E_{\mathcal{D}}\left[f_{\mathcal{D}}(x)\right]$ would differ
\rightarrow Bias
For a fixed test instance x, the value $\mathrm{f}_{\mathcal{D}}(x)$ would vary for different instanciations of the training data \mathcal{D}
\rightarrow Variance

Bias and variance

Diagnostic

The expected mean squared error of the prediction for test data points $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{l}, y_{l}\right)\right\}$ can be written as
$E_{\mathcal{D}}[$ MSE $]=$
$\frac{1}{l} \sum_{i=1}^{i=l}(\underbrace{\left(g(x)-E_{\mathcal{D}}\left[f_{\mathcal{D}}(x)\right]\right.}_{\text {bias }})^{2}+\underbrace{E_{\mathcal{D}}\left[\left(f_{\mathcal{D}}\left(x_{i}\right)-E_{\mathcal{D}}\left[f_{\mathcal{D}}\left(x_{i}\right)\right]\right)^{2}\right]}_{\text {variance }}+(\underbrace{y_{i}-g\left(x_{i}\right)}_{\text {noise }})^{2}$

Diagnostic

OVERFITTING

High bias model-Underfitting

Quick convergence to high error on training and validation sets More training data brings little improvement Increase model complexity to allow better fit

High variance model-Overfitting

Performance gap between training and validation sets
More training data can bring improvement Limit model complexity by using e.g. regularization, pruning, early-stopping

Bias vs. variance

higher bias
 lower variance

lower bias
 higher variance

lower model complexity
shallow decision tree
k-NN with many neighbors
linear SVM
SVM RBF kernel large σ
higher model complexity
deep decision tree
k-NN with few neighbors
kernel SVM
SVM RBF kernel small σ

