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Part III

Classification Basics
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Problem



A simple example
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A dataset with two classes
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A simple example

data points: Iris flowers
attributes: physical properties,

length of the petal and length of the sepal in cm
class: species, versicolor vs. virginica
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A simple example
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A simple example
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?

Class information, i.e. species, is absent for some points
Can we use the available information to predict it?
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Different methods

Look at the most similar data points
→ k nearest neighbors (k-NN)
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Different methods

Apply a sequence of tests on attributes’ values
→ classification tree
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Different methods

Look at class probabilities conditioned on attributes’ values
→ Naive bayes
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P(• | sl, sp) ≤ P(• | sl, sp)
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Different methods

Look at the sign of a linear combination of the attributes
→ perceptron
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0.671 · sl− 1.365 ·pl+ 2.39 < 0
0.671 · sl− 1.365 ·pl+ 2.39 ≥ 0
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Different methods

Look at the sign of a linear combination of the attributes
→ support vector machine (SVM)
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sl − 4 · pl + 13.3 < 0
sl − 4 · pl + 13.3 ≥ 0
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Different methods …

k-NN decision tree naive Bayes perceptron SVM
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…but it is all about learning a decision boundary

k-NN decision tree naive Bayes perceptron SVM
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Some notations

The data set, denoted as D, contains n data points and m
attributes, i.e. it is a n×m matrix

A data point is a m-dimensional vector x = ⟨x1, x2, . . . , xm⟩
We denote x(j) the jth data point of D, i.e. the jth row
Data points are sometimes called instances or examples

Class labels are arranged into a n-dimensional vector
y = ⟨y1, y2, . . . , yn⟩ ∈ Ln, where l = |L| is the number of classes
That is, yj is the class label associated with data point x(j)
In binary classification, class labels take value −1 or +1
(sometimes 0 or 1 instead), i.e. L = {−1,+1} (respectively
L = {0, 1}) and the two classes might be referred to as
negative and positive, respectively
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Methods



k nearest neighbors
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Input: data set D, data point x
Parameters: distance function d, number of neighbors k
No training
Prediction: return majority class among k points in D that

minimize d(x, x′)
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k nearest neighbors

K ← {k points x′ ∈ D that minimize d(x, x′)}
return majority class in K

k = 1 k = 3

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

k = 5 k = 9

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

UEF//School of Computing JADe:Classification Basics 12/66



k nearest neighbors

K ← {k points x′ ∈ D that minimize d(x, x′)}
return majority class in K

Euclidean distance (ℓ2 norm) Manhattan distance (ℓ1 norm)
d(x, x′) =

√∑i=m
i=1 (xi − x′i)2 d(x, x′) =

∑i=m
i=1

∣∣xi − x′i∣∣
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Decision tree
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max depth d, min leaf size l
Training: construct tree T by recursively finding tests that

yield best splits in D
Prediction: apply sequence of tests from T to x until reaching

a leaf, return associated class
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Decision tree

Decision tree: structure representing a succession of tests and
possible classification or regression outcomes

Leaf node decision (class/value)
Other node test on an attribute’s value

yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60
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Decision tree: Split evaluation measures

yes

no

Xi ≥ v
Nyes,•/Nyes,•

Nno,•/Nno,•
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Decision tree: Split evaluation measures

yes

no

Xi ≥ v
Nyes,•/Nyes,•

Nno,•/Nno,•

• •

yes Nyes,• Nyes,• Nyes
no Nno,• Nno,• Nno

N• N• N
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Decision tree: Split evaluation measures
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Decision tree: Split evaluation measures
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Decision tree: Split evaluation measures

yes

no

Xi ≥ v
Nyes,•/Nyes,•

Nno,•/Nno,•

• •

yes Nyes,• Nyes,• Nyes
no Nno,• Nno,• Nno

N• N• N
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7 2
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ER 0.000 0.100 0.300 0.500 0.000 0.350 0.250
G 0.000 0.180 0.420 0.500 0.000 0.451 0.374
E 0.000 0.469 0.881 1.000 0.000 0.927 0.809
IG 1.000 0.531 0.119 0.000 1.000 0.073 0.191

UEF//School of Computing JADe:Classification Basics 15/66



Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Try splitting on different attributes and values
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Decision tree: Training

Select best split,
divide the data accordingly and recurse on the subsets
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Decision tree: Training

Considering only the ‘no’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘no’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘no’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘no’ branch,
select best split…

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85
3/38

sl ≥ 4.95

40/1

1/1

UEF//School of Computing JADe:Classification Basics 16/66



Decision tree: Training

Node is below the minimum size,
add leaf with dominant class as decision
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Decision tree: Training

Considering only the current branch,
try splitting on different attributes and values
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Decision tree: Training

No improving split can be found,
add leaf with dominant class as decision
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Decision tree: Training

Considering only the ‘yes’ branch,
try splitting on different attributes and values

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

sl ≥ 4.95

pl ≥ 4.95 2/35

1/3

G = 0.128

UEF//School of Computing JADe:Classification Basics 16/66



Decision tree: Training

Considering only the ‘yes’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘yes’ branch,
try splitting on different attributes and values
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Decision tree: Training

Considering only the ‘yes’ branch,
select best split…
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Decision tree: Training

Node is pure,
add leaf with class as decision

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

sl ≥ 4.95

0/28pl ≥ 5.15

3/10
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Decision tree: Training

Considering only the current branch,
try splitting on different attributes and values

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

sl ≥ 4.95

pl ≥ 5.15

sl ≥ 6.05

2/5
1/5

G = 0.347
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Decision tree: Training

Considering only the current branch,
try splitting on different attributes and values

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

sl ≥ 4.95

pl ≥ 5.15

sl ≥ 6.60

2/0
1/10

G = 0.139
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Decision tree: Training

Considering only the current branch,
select best split…

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

sl ≥ 4.95

pl ≥ 5.15

2/0
1/10

sl ≥ 6.60
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Decision tree: Training

Maximum depth has been reached,
add leaves with dominant classes as decision

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

sl ≥ 4.95

pl ≥ 5.15

2/0
1/10

sl ≥ 6.60
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Decision tree: Training

Tree is fully grown…

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

sl ≥ 4.95

pl ≥ 5.15

sl ≥ 6.60
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Decision tree: Prediction

Given a point to classify: (sl = 6.0,pl = 4.8)

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60
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Decision tree: Prediction

Apply test and follow branch according to the outcome

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60
pl ≥ 4.85
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Decision tree: Prediction

Apply test and follow branch according to the outcome

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60

sl ≥ 4.95
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Decision tree: Prediction

Apply test and follow branch according to the outcome

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60
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Decision tree: Prediction

Assign the class associated to the leaf

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60
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Decision tree: Prediction

The sequences of tests corresponding to the branches of the
tree define decision boundaries

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60
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Decision tree: Prediction

The sequences of tests corresponding to the branches of the
tree define decision boundaries

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h yes

no

pl ≥ 4.85

pl ≥ 5.15

sl ≥ 4.95

sl ≥ 6.60
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Naive Bayes

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Input: data set D with attributes X1, . . . , Xm and class
labels Y, data point x

Training: estimate the class probabilities P(Y) and
conditional probabilities P(Xi | Y) from D

Prediction: compute conditional probabilities P(Y | X1, . . . , Xm)
according to Bayes’ rule, return class with highest
probability
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Naive Bayes: Bayes’ rule

P(Y | X) = P(Y) · P(X | Y)
P(X)

P(Y = c | X1 = a1, . . . , Xm = am)

=
P(Y = c) · P(X1 = a1, . . . , Xm = am | Y = c)

P(X1 = a1, . . . , Xm = am)

∝ P(Y = c) ·
i=m∏
i=1

P(Xi = ai | Y = c)
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Naive Bayes: Training

Estimate P(Y = c) and P(Xi = ai | Y = c) from the data,
for the different classes c, attributes Xi and values ai
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data

P(Y = c) = #(c)
n
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(•) = 40/84 = 0.476
P(•) = 44/84 = 0.524
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Naive Bayes: Training

P(Xi = ai | Y = c) count occurrences of each values in the data,
for each class and each attribute

P(Xi = ai | Y = c) = #(ai, Y = c)
#(c)
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Naive Bayes: Training

P(Xi = ai | Y = c) count occurrences of each values in the data,
for each class and each attribute

P(Xi = ai | Y = c) = #(ai, Y = c)
#(c)

! Needs much data to get reliable values
! How about rare values?
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Naive Bayes: Training

P(Xi = ai | Y = c) count occurrences of each values in the data,
for each class and each attribute

P(Xi = ai | Y = c) = #(ai, Y = c)
#(c)

! Needs much data to get reliable values
! How about rare values?
→ use Laplacian smoothing

P(Xi = ai | Y = c) = #(ai, Y = c) + α

#(c) + κ · α
where κ is the number of distinct values of attribute Xi
That is, denoting the domain of Xi as Ai, we let κ = |Ai|

so that
∑
ai∈Ai

P(Xi = ai | Y = c) = 1

UEF//School of Computing JADe:Classification Basics 21/66



Naive Bayes: Training

P(Xi = ai | Y = c) count occurrences of each values in the data,
for each class and each attribute

P(Xi = ai | Y = c) = #(ai, Y = c)
#(c)

! Needs much data to get reliable values
! How about continuous domains?
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Naive Bayes: Training

P(Xi = ai | Y = c) count occurrences of each values in the data,
for each class and each attribute

P(Xi = ai | Y = c) = #(ai, Y = c)
#(c)

! Needs much data to get reliable values
! How about continuous domains?
→ model with Gaussian distributions

P(X = v |µ, σ) = 1√
2πσ2

e−
(v−µ)2

2σ2
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(v |µsl, σsl) =
1√
2πσsl2

e
− (v−µsl)

2

2σsl2

µsl =mean(sl | •) = 5.945
σsl

2 =var(sl | •) = 0.285
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(v |µpl, σpl) =
1√
2πσpl2

e
−

(v−µpl)
2

2σpl2

µpl =mean(pl | •) = 4.252
σpl

2 =var(pl | •) = 0.219
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(v |µsl, σsl)
P(v |µpl, σpl)
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h P(v |µsl, σsl) =

1√
2πσsl2

e
− (v−µsl)

2

2σsl2

µsl =mean(sl | •) = 6.628
σsl

2 =var(sl | •) = 0.414
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h P(v |µpl, σpl) =

1√
2πσpl2

e
−

(v−µpl)
2

2σpl2

µpl =mean(pl | •) = 5.575
σpl

2 =var(pl | •) = 0.308

UEF//School of Computing JADe:Classification Basics 22/66



Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(v |µsl, σsl)
P(v |µpl, σpl)
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Naive Bayes: Training

P(Y = c) count occurrences of each class in the data
P(Xi = ai | Y = c) model with Gaussian distributions,

estimating the parameters from the data

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(•) P(•)
P(v |µsl, σsl) P(v |µsl, σsl)
P(v |µpl, σpl) P(v |µpl, σpl)
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes’ rule

P(Y = c | X1 = a1, . . . , Xm = am) ∝ P(Y = c) ·
i=m∏
i=1

P(Xi = ai | Y = c)
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes’ rule

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(• | (5.6, 3.6))
?

⋛P(• | (5.6, 3.6))
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes’ rule

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(• | (5.6, 3.6)) <P(• | (5.6, 3.6))
0.022 <0.978
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes’ rule

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(• | (5.6, 3.6)) <P(• | (5.6, 3.6))
0.022 <0.978
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes’ rule

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

P(• | x) and P(• | x) can be
computed for every point
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Naive Bayes: Prediction

Compute the conditional probability of each class according to
Bayes’ rule

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h P(• | x) and P(• | x) can be

computed for every point

The decision boundary is the line
P(• | x) = P(• | x) = .5
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Perceptron

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Input: data set D, data point x
Parameters: learning rate η

Training: initialize weights vector w and bias b,
iterate among points in D and adjust w and b

Prediction: return class according to sign of w · x+ b
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s37

(3.42,−4.08, 0.85)
↓

(2.79,−4.57, 0.80)

At step t,
compute current prediction

zi = sign(w(t) · x(j) + b(t))

update
w(t+1) = w(t) + η(yj − zj)x(j)

b(t+1) = b(t) + η(yj − zj)
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s38

(2.79,−4.57, 0.80)
↓

(3.43,−4.14, 0.85)

At step t,
compute current prediction

zi = sign(w(t) · x(j) + b(t))

update
w(t+1) = w(t) + η(yj − zj)x(j)

b(t+1) = b(t) + η(yj − zj)
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s39

(3.43,−4.14, 0.85)

At step t,
compute current prediction

zi = sign(w(t) · x(j) + b(t))

update
w(t+1) = w(t) + η(yj − zj)x(j)

b(t+1) = b(t) + η(yj − zj)

Note that if prediction is correct,
w and b are unchanged
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s40

(3.43,−4.14, 0.85)

At step t,
compute current prediction

zi = sign(w(t) · x(j) + b(t))

update
w(t+1) = w(t) + η(yj − zj)x(j)

b(t+1) = b(t) + η(yj − zj)

Note that if prediction is correct,
w and b are unchanged
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s41

(3.43,−4.14, 0.85)
↓

(2.74,−4.68, 0.80)

Might cycle several times through
all points of the training data
Each such cycle is called an epoch
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s42

(2.74,−4.68, 0.80)

If the data is linearly separable,
convergence on some solution is
guaranteed
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s43

(2.74,−4.68, 0.80)

If the data is not linearly separable,
learning will fail
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

e08s44

(2.74,−4.68, 0.80)
↓

(3.26,−4.29, 0.85)

If the data is not linearly separable,
learning will fail
The algorithm will not even
approach an approximate solution
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Perceptron: Training

Iterate among points x(j) from D in a random order
and adjust weights w and bias b
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If the data is not linearly separable,
learning will fail
A quick fix:
store best solution encountered
and return it after chosen
maximum number of epochs
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Perceptron: Prediction

Return class according to sign(w · x+ b)
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0.671 · sl− 1.365 ·pl+ 2.39 < 0
0.671 · sl− 1.365 ·pl+ 2.39 ≥ 0

predict

0.671 · 6.0
−1.365 · 4.8+ 2.39 = −0.136
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Perceptron

The Perceptron can be seen as the simplest neural network,
a single-layer neural network

One input node for each data attribute
One output node computing the activation function

x1

x2

xm

1

z
...

w
1
w2

wm

b

H(·)
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Support Vector Machine (SVM)
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.3

m=0.243
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Input: data set D, data point x
Parameters: penalty coefficient C
Training: solve for vector w and bias b that define a

hyperplane separating points in D from the two
classes with largest margin

Prediction: return class according to sign of w · x+ b
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SVM: linearly separable case

When the data is linearly separable,
there might be multiple different separating hyperplanes

which one to choose?

Larger margin provides more stability
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When the data is linearly separable,
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SVM: linearly separable case

When the data is linearly separable,
there might be multiple different separating hyperplanes

which one to choose?

Larger margin provides more stability
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SVM: linearly separable case

When the data is linearly separable,
there might be multiple different separating hyperplanes

which one to choose? Larger margin provides more stability
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Hard-margin SVM

Determining the maximum margin hyperplane
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H0

H+

H−

we have two hyperplanes,
such that (under suitable scaling)

(H+) w · x(j) + b ≥+ 1 ∀j, yj = +1
(H−) w · x(j) + b ≤− 1 ∀j, yj = −1

In short

yj(w · x(j) + b) ≥ 1 ∀j
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Hard-margin SVM

Determining the maximum margin hyperplane
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2
∥w∥

we have two hyperplanes,
such that (under suitable scaling)

(H+) w · x(j) + b ≥+ 1 ∀j, yj = +1
(H−) w · x(j) + b ≤− 1 ∀j, yj = −1

The distance between H+ and H−

equals 2/ ∥w∥
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Hard-margin SVM

Determining the maximum margin hyperplane
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∥w∥

the problem can be formulated as

minimize 1
2 ∥w∥

2

s.t. yj(w · x(j) + b) ≥ 1 ∀j
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Hard-margin SVM

Determining the maximum margin hyperplane
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H0

H+

H−

2
∥w∥

the problem can be formulated as

minimize 1
2 ∥w∥

2

s.t. yj(w · x(j) + b) ≥ 1 ∀j

this is a quadratic constrained
optimization problem
can be solved by the Lagrangian
multiplier method
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Hard-margin SVM

Primal problem

min LP =
1
2 ∥w∥

2 +

j=n∑
j=1

aj
(
1− yj(w · x(j) + b)

)
s.t. 0 ≤ aj ∀j

Dual problem

max LD =

j=n∑
j=1

aj −
1
2

j=n∑
j=1

i=n∑
i=1

ajaiyjyix(j) · x(i)

s.t. 0 ≤ aj and
j=n∑
j=1

ajyj = 0 ∀j

variables aj are defined in such a way that w =

j=n∑
j=1

ajyjx(j)
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Hard-margin SVM: Training

Training the SVM means solving for the aj by differentiating the
dual problem and setting it to zero

Most of the aj will have value zero
Training points associated to non-zero aj are called support
vectors, since they actually define the separating hyperplane
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w =

j=n∑
j=1

ajyjx(j)

Support vectors satisfy
yj(w · x(j) + b) = 1

which allows to compute b
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Hard-margin SVM: Prediction

Return class according to sign(w · x+ b), where

w · x+ b = b+

j=n∑
j=1

ajyjx(j) · x
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SVM: non linearly separable case

What if the data is not linearly separable?
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No hyperplane such that constraint

yj(w · x(j) + b) ≥ 1

would be satisfied by all points
Some points inside the margin,
or even on the wrong side of the
separating hyperplane
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SVM: non linearly separable case

What if the data is not linearly separable?

Use the hinge loss and introduce a new variable for each point

ξj = max
(
0, 1− yj(w · x(j) + b)

)
the value is

zero if the point satisfies the margin constraint
proportional to the distance to the margin otherwise
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SVM: non linearly separable case

What if the data is not linearly separable?

Hard-margin problem

minimize 1
2 ∥w∥

2

s.t. yj(w · x(j) + b) ≥ 1 ∀j

Soft-margin problem

minimize 1
2 ∥w∥

2 + C
j=n∑
j=1

ξj

s.t. yj(w · x(j) + b) ≥ 1− ξj and 0 ≤ ξj ∀j
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Soft-margin SVM

Primal problem

min LP =
1
2 ∥w∥

2 + C
j=n∑
j=1

ξj +

j=n∑
j=1

aj
(
1− ξj − yj(w · x(j) + b)

)
−

j=n∑
j=1

µjξj

s.t. 0 ≤ aj and 0 ≤ µj ∀j

Dual problem

max LD =

j=n∑
j=1

aj −
1
2

j=n∑
j=1

i=n∑
i=1

ajaiyjyix(j) · x(i)

s.t. 0 ≤ aj ≤ C and
j=n∑
j=1

ajyj = 0 ∀j

variables aj are defined in such a way that w =

j=n∑
j=1

ajyjx(j)
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Soft-margin SVM: Training

Training the SVM means solving for the aj by differentiating the
dual problem and setting it to zero

Most of the aj will have value zero
Training points associated to non-zero aj are called support
vectors, since they actually define the separating hyperplane
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For every support vector

yj(w · x(j) + b) = 1− ξj

if ξj = 0, the point is on the margin
otherwise, it is within the margin

or even on the wrong side
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Soft-margin SVM: Training

Training the SVM means solving for the aj by differentiating the
dual problem and setting it to zero

Most of the aj will have value zero
Training points associated to non-zero aj are called support
vectors, since they actually define the separating hyperplane
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C = 2

Parameter C allows to adjust the
trade-off between width of the
margin and constraint violations
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Soft-margin SVM: Training

Training the SVM means solving for the aj by differentiating the
dual problem and setting it to zero

Most of the aj will have value zero
Training points associated to non-zero aj are called support
vectors, since they actually define the separating hyperplane
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Parameter C allows to adjust the
trade-off between width of the
margin and constraint violations
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Soft-margin SVM: Training

Training the SVM means solving for the aj by differentiating the
dual problem and setting it to zero

Most of the aj will have value zero
Training points associated to non-zero aj are called support
vectors, since they actually define the separating hyperplane
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C = 10

Parameter C allows to adjust the
trade-off between width of the
margin and constraint violations
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Soft-margin SVM: Prediction

Return class according to sign(w · x+ b), where

w · x+ b = b+

j=n∑
j=1

ajyjx(j) · x
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Kernelized SVM

What if a linear decision boundary is not the right option?

Project the data to a different space

φs(⟨x1, x2⟩) = ⟨x21 , x22⟩
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−1.0
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1.0
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x 2
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Kernelized SVM
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Kernelized SVM

What if a linear decision boundary is not the right option?
Train the SVM in the projected space
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What if a linear decision boundary is not the right option?
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Kernelized SVM

If the data cannot be separated in the original space

1. find a projection φ to a space where the data can be
separated

2. apply the SVM method to the transformed dataset
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Kernelized SVM

If the data cannot be separated in the original space

1. find a projection φ to a space where the data can be
separated

2. apply the SVM method to the transformed dataset

Dual problem

max LD =

j=n∑
j=1

aj −
1
2

j=n∑
j=1

i=n∑
i=1

ajai yjyi φ(x(j)) · φ(x(i))

s.t. 0 ≤ aj ≤ C and
j=n∑
j=1

ajyj = 0 ∀j

Prediction sign
(
b+

j=n∑
j=1

ajyj φ(x(j)) · φ(x(i))
)
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Kernelized SVM

Dual problem

max LD =

j=n∑
j=1

aj −
1
2

j=n∑
j=1

i=n∑
i=1

ajai yjyi φ(x(j)) · φ(x(i))

s.t. 0 ≤ aj ≤ C and
j=n∑
j=1

ajyj = 0 ∀j

Prediction sign
(
b+

j=n∑
j=1

ajyj φ(x(j)) · φ(x(i))
)

The transformed values φ(x) appear only in dot products
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Kernelized SVM

The transformed values φ(x) appear only in dot products

If the dot product in the transformed space can be replaced by
a function

K(x, x′) = φ(x) · φ(x′)

we can avoid performing the transformation explicitely
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Kernelized SVM

Dual problem

max LD =

j=n∑
j=1

aj −
1
2

j=n∑
j=1

i=n∑
i=1

ajai yjyi K(x(j), x(i))

s.t. 0 ≤ aj ≤ C and
j=n∑
j=1

ajyj = 0 ∀j

Prediction sign
(
b+

j=n∑
j=1

ajyj K(x(j), x(i))
)
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The Kernel Trick

By replacing the dot product in the transformed space by a
function

K(x, x′) = φ(x) · φ(x′)

we can avoid performing the transformation explicitely

The feature map φ does not need to be explicitly defined
It is enough that K be expressible as an inner product

Mercer’s theorem gives the conditions for K to be a valid
kernel function
In particular, the similarity matrix (a.k.a. Gram matrix)
Sij = K(vi, vj) for a finite input space ⟨v1, . . . , vl⟩ must be
positive semi-definite (PSD)
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The Kernel Trick

Improving the separability of data points typically means
projecting into a high dimensional space
computing with high dimensional vectors is costly
the kernel function operates in the original space

The kernel trick provides the benefits of high-dimensionality
without the costs

Kernels are useful beyond SVMs, in other methods where dot
products, i.e. similarity computations, are involved
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Common kernel functions

Polynomial kernel
K(x, x′) = (x · x′ + c)h

Sigmoid kernel
K(x, x′) = tanh(κ x · x′ − δ)

Gaussian radial basis kernel

K(x, x′) = e∥x−x′∥
2/2σ2
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Kernelized SVM

φs(⟨x1, x2⟩) = ⟨x21 , x22⟩
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Kernelized SVM

φs(⟨x1, x2⟩) = ⟨x21 , x22⟩

Consider the polynomial kernel of degree two

K(x, x′) = (x · x′)2 = (x1x′1 + x2x′2)2

= x21x′
2
1 + x22x′

2
2 + 2x1x′1x2x′2

= ⟨x21 , x22,
√
2x1x2⟩ · ⟨x′21 , x′

2
2,
√
2x′1x′2⟩

= φp(x) · φp(x′) where φp(⟨x1, x2⟩) = ⟨x21 , x22,
√
2x1x2⟩

The terms of the feature map φs is a subset of those of φp
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Kernelized SVM

Using the polynomial kernel

K(x, x′) = (x · x′)2

for the two-dimensional example dataset corresponds to
projecting the points into three dimensional space

φp(⟨ x1, x2 ⟩) = ⟨ x21 , x22,
√
2x1x2 ⟩

before training the SVM
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Kernelized SVM

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

x1

x 2

φp

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−1.0

−0.5

0.0

0.5

1.0

x21 x22

x2 2
√
2x
1x
2

UEF//School of Computing JADe:Classification Basics 44/66



Different kernels
poly h = 2 poly h = 4 poly h = 8 rbf σ = 1 rbf σ = .5 rbf σ = .1
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Evaluation



Model evaluation

Given a dataset, we can build a number of models, that come
with different variants and parameter settings

We need to quantify the accuracy of models, in order to

• measure the effectiveness and tune the parameters of a
particular model

• compare, select, combine various models

UEF//School of Computing JADe:Classification Basics 46/66



Evaluation measures

To evaluate the performance of a model we compare the
known labels of the instances, representing the ground truth,
to the predicted labels

Let y and z denote respectively the true and predicted labels

If there are l distinct classes, there are l · l distinct possible
outcomes for a given instance

The instance might belong to c1 and be predicted as c1
The instance might belong to c1 and be predicted as c2

...
The instance might belong to cl and be predicted as c1

...
The instance might belong to cl and be predicted as cl
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Evaluation measures

Let y and z denote respectively the true and predicted labels

The outcome of the classification of a set of instances across l
classes can be summarized in a l× l contingency matrix

The accuracy is the fraction of correctly classified instances

Ground truth
y = c1 . . . y = ci . . . y = cl

Pr
ed
ic
tio
n z = c1 #(z = c1, y = c1) #(z = c1, y = ci) #(z = c1, y = cl)...

z = ci #(z = ci, y = c1) #(z = ci, y = ci) #(z = ci, y = cl)...
z = cl #(z = cl, y = c1) #(z = cl, y = ci) #(z = cl, y = cl)
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Let y and z denote respectively the true and predicted labels

The outcome of the classification of a set of instances across l
classes can be summarized in a l× l contingency matrix

The accuracy is the fraction of correctly classified instances

Ground truth
y = c1 . . . y = ci . . . y = cl

Pr
ed
ic
tio
n z = c1 #(z = c1, y = c1) #(z = c1, y = ci) #(z = c1, y = cl)...

z = ci #(z = ci, y = c1) #(z = ci, y = ci) #(z = ci, y = cl)...
z = cl #(z = cl, y = c1) #(z = cl, y = ci) #(z = cl, y = cl)
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Evaluation measures

Binary classification is a special case with specific terminology

Two classes: positive and negative
There are four possible outcomes for a given instance
The 2× 2 contingency matrix is called confusion matrix

Ground truth
y = 0 y = 1

Pr
ed
ic
tio
n

z = 0 True negative False negative

z = 1 False positive True positive
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Evaluation measures

Binary classification is a special case with specific terminology

Two classes: positive and negative
There are four possible outcomes for a given instance
The 2× 2 contingency matrix is called confusion matrix

y = 0 y = 1

z = 0 True negative False negative
z = 1 False positive True positive

False positive: type I error (a.k.a. false discovery, false alarm)
False negative: type II error (a.k.a. miss)
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Evaluation measures

A binary classifier is trained on a portion of data (training data)

For example,
consider a linear SVM

Solve for vector w and bias b
defining a separating hyperplane
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Evaluation measures

A binary classifier is trained on a portion of data (training data),
and applied on another portion for which the ground-truth is
also known but hidden from the classifier (test data)

For example,
consider a linear SVM

For instance x, predict class
according to sign of w · x+ b
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A binary classifier is trained on a portion of data (training data),
and applied on another portion for which the ground-truth is
also known but hidden from the classifier (test data)

For example,
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For instance x, predict class
according to sign of w · x+ b
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Evaluation measures

The outcome of the binary classification of a collection of N
instances can be summarized in a confusion matrix

[
NTN NFN
NFP NTP

]
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Evaluation measures

The outcome of the binary classification of a collection of N
instances can be summarized in a confusion matrix

[
NTN NFN
NFP NTP

] y = 0 y = 1

z = 0 True negative False negative
z = 1 False positive True positive
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Evaluation measures

[
NTN NFN
NFP NTP

] y = 0 y = 1

z = 0 True negative False negative
z = 1 False positive True positive

Various measures can be computed from this matrix

precision NTP
NTP+NFP (a.k.a. positive predictive value)

recall NTP
NTP+NFN (a.k.a. sensitivity, true positive rate)

specificity NTN
NTN+NFP (a.k.a. selectivity, true negative rate)

false positive rate NFP
NFP+NTN

false negative rate NFN
NFN+NTP
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Evaluation measures

[
NTN NFN
NFP NTP

] y = 0 y = 1

z = 0 True negative False negative
z = 1 False positive True positive

Various measures can be computed from this matrix

precision NTP
NTP+NFP (a.k.a. positive predictive value)

recall NTP
NTP+NFN (a.k.a. sensitivity, true positive rate)

F1 score harmonic mean of recall and precision

2 · precision · recallprecision+ recall =
2NTP

2NTP + NFP + NFN
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Evaluation measures

[
NTN NFN
NFP NTP

] y = 0 y = 1

z = 0 True negative False negative
z = 1 False positive True positive

Various measures can be computed from this matrix

accuracy fraction of instances in which the predicted label
matches the ground truth

NTP + NTN
N
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Evaluation measures

accuracy fraction of instances in which the predicted label
matches the ground truth∑

c∈C#(y = c, z = c)∑
c∈C#(y = c)

In some cases, not all classes are equally important
misclassification in one class incurs a higher cost than
misclassification in the other class
reflected by weight wc assigned to each class

weighted accuracy (a.k.a. cost-sensitive accuracy)∑
c∈C wc ·#(y = c, z = c)∑

c∈C wc ·#(y = c)
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Evaluation measures

The outcome of the binary classification of a collection of N
instances can be summarized in a confusion matrix
Various measures can be computed from this matrix[

NTN NFN
NFP NTP

]

acc = 0.812
TPR = 0.750
FPR = 0.125
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7
1
2
6

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

sepal length

pe
ta
ll
en
gt
h

UEF//School of Computing JADe:Classification Basics 50/66



Evaluation measures

Instead of crisp class assignments we might consider a
numerical score reflecting the confidence of the classifier
Class probabilities, distance from the decision boundary, etc.

For example,
consider a linear SVM

Use w · x+ b
as score for instance x
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Evaluation measures

Varying the score above which an instance is assigned to the
positive class means moving the decision boundary

For instance x, predict class
according to the outcome of test
w · x+ b ≥ θ

with θ = −9, θ = −3, θ = 5,
or θ = 9, for example
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Evaluation measures

Let’s look at what happens if we modify the level of confidence
required to assign an instance to the positive class

From almost certain that it does
not belong to the negative class
(θ → −∞)
to almost certain that it belongs
to the positive class (θ → +∞)
and cases in between
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Evaluation

Consider a linear SVM, use w · x+ b as score for instance x
Collect the test instances with their scores

False positive rate
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Evaluation

Consider a linear SVM, use w · x+ b as score for instance x
Sort the test instances by increasing values of the score

False positive rate
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Evaluation

As thresholds we can use mid-point values between successive
distinct score values among the test instances

False positive rate
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Evaluation

Set the threshold to the minimum value
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate

Tr
ue

po
si
tiv
e
ra
te

0 1

0
1

FPR = 0.000
TPR = 0.750
acc = 0.875

8
0
2
6

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

1

8

11

17

18

27

28

34

44

49

57

69

70

74

75

80

sepal length

pe
ta
ll
en
gt
h

0.667
0.2591

6.4818

1.81511

−1.37017,57

8.11118

3.74127
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−6.33380
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR
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−6.33380
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Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate

Tr
ue

po
si
tiv
e
ra
te

0 1

0
1

FPR = 0.000
TPR = 0.500
acc = 0.750

8
0
4
4

5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

1

8

11

17

18

27

28

34

44

49

57

69

70

74

75

80

sepal length

pe
ta
ll
en
gt
h

2.407

0.2591

6.4818

1.81511

−1.37017,57

8.11118

3.74127

−0.25928

−2.11134

3.00044

−5.00049

−5.74169

1.07470

−0.77874

−2.77875

−6.33380

UEF//School of Computing JADe:Classification Basics 51/66



Evaluation

Set the threshold to the minimum value, raise it progressively
Record the corresponding FPR and TPR

False positive rate
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Evaluation

FPR and TPR depend on where the ranking is split between
classes, not the specific threshold value

False positive rate
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Evaluation

Hence, successive FPR and TPR can be computed directly from
the ranked instances

False positive rate
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Evaluation

The curve FPR vs. TPR is commonly refered to as receiver
operating characteristic (ROC) curve

False positive rate
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Evaluation

The curve FPR vs. TPR is commonly refered to as (ROC) curve
The area under the curve (AUC) summarizes the ROC curve in a
single number

False positive rate
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Model evaluation

! The goal is not to best mimic the labels of the training data

For evaluation, we need labelled data points not seen during
training

Compromise: the more labelled data for training the better
but some labelled examples need to be hold out for evaluation
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Hold-out

Divide the labelled data into two disjoint sets

training data used to train the model
typically ca. 2/3 – 3/4 of data

test data used to evaluate the model
typically ca. 1/3 – 1/4 of data
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Hold-out

Divide the labelled data into two disjoint sets

training data used to train the model
typically ca. 2/3 – 3/4 of data

test data used to evaluate the model
typically ca. 1/3 – 1/4 of data

! only a fraction of data used for training
! error estimates are pessimistic
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Hold-out

Divide the labelled data into two disjoint sets

training data used to train the model
typically ca. 2/3 – 3/4 of data

test data used to evaluate the model
typically ca. 1/3 – 1/4 of data

! only a fraction of data used for training
! error estimates are pessimistic

Repeat this process over several different hold-out samples

• improve the error estimate
• measure variance and compute statistical confidence
intervals on the error
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Cross-validation

Divide the labelled data into ℓ disjoint sets of equal size ℓ/n
use one set as test data, remaining ℓ− 1 as training data
repeat with each set as test data

In each of ℓ rounds, the training data has size n(ℓ− 1)/ℓ
This is called ℓ-fold cross-validation
e.g. 10-fold cross-validation is common
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Cross-validation

Divide the labelled data into ℓ disjoint sets of equal size ℓ/n
use one set as test data, remaining ℓ− 1 as training data
repeat with each set as test data

In each of ℓ rounds, the training data has size n(ℓ− 1)/ℓ
This is called ℓ-fold cross-validation

For larger values of ℓ,
the training data comprises more examples
→ better error estimation (still pessimistic)

more rounds are needed
→ higher computational cost
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Cross-validation

Divide the labelled data into ℓ disjoint sets of equal size ℓ/n
use one set as test data, remaining ℓ− 1 as training data
repeat with each set as test data

In each of ℓ rounds, the training data has size n(ℓ− 1)/ℓ
This is called ℓ-fold cross-validation

Extreme case: ℓ = n
i.e. ℓ rounds with n− 1 training examples and 1 test example
This is called leave-one-out cross-validation
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Bootstrap

Sample training data of size n from the labelled data uniformly
with replacement

The training data has the same size as the original data
but some original data examples might be duplicated
while others might be missing

The probability that a point is not included in the sample is
(1− 1/n)n, which tends towards 1/e as n increases
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Bootstrap

Sample training data of size n from the labelled data uniformly
with replacement

Use the full original labelled data as test data

The large overlap between training and test data means the
error estimate is highly optimistic

Repeating this process over several different bootstrap
samples allows to compute the mean and variance of the error
estimate
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Leave-one-out bootstrap

Generate ℓ bootstrap samples and use each such sample to
train one classifier

For labelled example x, evaluate acc(x) the performance on x
of the classifiers trained on samples that do not contain x

Average acc(x) over all labelled examples
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Validation

A step of parameter tuning and model selection, called
validation, might be needed

Validation and test should not be carried out on the same set,
since knowledge of the test set has been implicitly used while
building the model

A portion of the data is used to train different models and
select one
The performance of the selected model should be evaluated
on a distinct, so far unseen, portion of the data
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Comparing models

The statistical robustness of models is important
differences in accuracy between models might be due to
random variations

Assume we have obtained ℓ estimates of the accuracy of two
modelsMA andMB on different randomly sampled subsets of
data (e.g. through repeated hold-out or bootstrap procedures)
{acc(MA, 1), . . . , acc(MA, ℓ)} and {acc(MB, 1), . . . , acc(MB, ℓ)}
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Comparing models

Assume we have obtained ℓ estimates of the accuracy of two
modelsMA andMB on different randomly sampled subsets of
data (e.g. through repeated hold-out or bootstrap procedures)
{acc(MA, 1), . . . , acc(MA, ℓ)} and {acc(MB, 1), . . . , acc(MB, ℓ)}

Let δi be the difference in accuracy in round i, i.e.

δi = acc(MA, i)− acc(MB, i)

the average difference in accuracy is ∆ =
∑i=ℓ

i=1 δi/ℓ

and the standard deviation of the difference in accuracy is

σ =

√∑i=ℓ
i=1(δi −∆)2

ℓ− 1
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Comparing models

We assume that δi are sampled from a normal distribution with
estimated mean and standard deviation ∆ and σ, respectively
According to the central limit theorem, the standard deviation
of the estimated mean accuracy difference ∆ is σ/

√
ℓ

The number of standard deviations by which ∆ is different
from the break-even value of 0 is

√
ℓ |∆− 0| /σ

For sufficiently large number of rounds ℓ, the probability that
one model is truly better than the other can be quantified
using the standard normal distribution
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Comparing models

For sufficiently large number of rounds ℓ, the probability that
one model is truly better than the other can be quantified
using the standard normal distribution

It is generally too computationally expensive to run sufficiently
many rounds to robustly estimate σ so the Student’s
t-distribution with ℓ− 1 degrees of freedom is used instead of
the normal distribution
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Diagnostic

Classification can be seen as the problem of learning a
function between the data attributes and the class label

y = g(x) + ϵ

g represents the true, unknown, relationship between data
attributes and class label
ϵ represents the intrinsic error in the data, the noise, cannot
be modelled
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Diagnostic

Classification can be seen as the problem of learning a
function between the data attributes and the class label

y = g(x) + ϵ

g represents the true, unknown, relationship between data
attributes and class label, even the form of g is unknown
ϵ represents the intrinsic error in the data, the noise, cannot
be modelled

Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

z = fD(x)
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Diagnostic

Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

z = fD(x)

The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family
choice of setup Species
estimation from D Individual
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Diagnostic

Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

z = fD(x)

The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family decision tree
choice of setup Species max depth, max leaf size
estimation from D Individual intermediate tests, decisions

fD(x) is defined algorithmically

UEF//School of Computing JADe:Classification Basics 59/66



Diagnostic

Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

z = fD(x)

The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family linear SVM
choice of setup Species
estimation from D Individual a1, . . . , an, b

fD(x) = sign
(
b+

j=n∑
j=1

ajyjx(j) · x
)
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Diagnostic

Classification algorithms construct models while relying on
modeling assumptions about the form of the relationship

z = fD(x)

The function might be defined algorithmically or in closed form
The parameters of the function are estimated from the data

choice of approach Family kernelized SVM
choice of setup Species kernel function K

estimation from D Individual a1, . . . , an, b

fD(x) = sign
(
b+

j=n∑
j=1

ajyj K(x(j), x(i))
)
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Diagnostic

Classification algorithms
rely on modeling assumptions
estimate the parameters from the data
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Diagnostic

Classification algorithms
rely on modeling assumptions
estimate the parameters from the data

Assumptions may not reflect the true form of the relationship
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Oversimplifying assumptions do not allow to
capture the underlying structure of the data
→ Underfitting
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Diagnostic

Classification algorithms
rely on modeling assumptions
estimate the parameters from the data

Even with correct modeling assumptions, the true parameters
cannot be estimated exactly from the training data
With increasingly complex models, i.e. more parameters, the
model might fit too closely to the training data
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Captures the structure of the data but also noise
Does not generalize to unseen data
→ Overfitting
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Diagnostic

Imagine we had a very large dataset and could repeat the
whole model training many times, we could estimate the
expected prediction ED[fD(x)]

Because of differences between the assumed model and the
true model, g(x) and ED[fD(x)] would differ
→ Bias

For a fixed test instance x, the value fD(x) would vary for
different instanciations of the training data D
→ Variance
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Bias and variance

variance

bi
as

low high

hi
gh

lo
w
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Diagnostic

The expected mean squared error of the prediction for test
data points {(x1, y1), . . . , (xl, yl)} can be written as

ED[MSE] =

1
l

i=l∑
i=1

(g(x)− ED[fD(x)]︸ ︷︷ ︸
bias

)2 + ED[(fD(xi)− ED[fD(xi)])2]︸ ︷︷ ︸
variance

+(yi − g(xi)︸ ︷︷ ︸
noise

)2
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Diagnostic

model complexity

er
ro
r

UNDERFITTING OVERFITTING
validation

training
bias variance
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High bias model—Underfitting

Quick convergence to high error on training and validation sets
More training data brings little improvement
Increase model complexity to allow better fit

size of training set

er
ro
r

validation

training
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High variance model–Overfitting

Performance gap between training and validation sets
More training data can bring improvement
Limit model complexity by using e.g. regularization, pruning,
early-stopping

size of training set

er
ro
r

validation

training

gap
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Bias vs. variance

higher bias lower bias
lower variance higher variance

lower model complexity higher model complexity

shallow decision tree deep decision tree
k-NN with many neighbors k-NN with few neighbors
linear SVM kernel SVM
SVM RBF kernel large σ SVM RBF kernel small σ

UEF//School of Computing JADe:Classification Basics 66/66


	Classification Basics
	Problem
	Methods
	Evaluation


