Local Patterns in Data

Esther Galbrun

Spring 2023

The colored quilt below can be thought of as a random variable taking one of three possible values in each cell Let us ignore any possible dependencies between the cells

Compute the corresponding entropy

Q2.2: Quilt entropies

Associate each quilt to its entropy

$$H(A) = ? \qquad H(B) = ?$$

$$H(C) = ? H(D) = ?$$

$$H(R) = ? H(S) = ?$$

$$H(T) = ? \qquad H(U) = ?$$

$$H(W) = ? \qquad H(X) = ?$$

$$H(Y) = ? H(Z) = ?$$

Let us consider the pairs of values appearing in corresponding positions of two quilts

Compute the corresponding joint entropy, conditional entropies and mutual information

Q2.4: Quilt inequalities (i)

Fill in the following (in)equalities

 $\begin{array}{ll} H(A,B) = 2.078 & H(A \mid B) = ? \\ I(A;B) = ? & H(B \mid A) = ? \\ I(A;C) ? H(A,C) & H(A \mid C) ? H(C \mid A) \end{array}$

4/16

Q2.4: Quilt inequalities (ii)

Fill in the following (in)equalities

 $H(X | Y) = ? \quad I(X; Y) = ? \quad H(X | Z) ? H(Z | Y)$ $H(X, Y, Z) ? H(X, Z) \quad H(X, Y, Z) ? H(Z | X, Y)$ Consider the code \mathcal{C}_1 and bitstring S =0010111011000110

	a	b	С	d	е	f
\mathcal{C}_1	11	10	01	001	010	0010

- □ The bitstring can be decoded uniquely with this code
- □ This is a prefix code
- □ There exists a prefix code with these code lengths

Consider the code \mathcal{C}_2 and bitstring S =0010111011000110

	а	b	С	d	е	f
\mathcal{C}_2	00	01	10	110	111	1001

- □ The bitstring can be decoded uniquely with this code
- □ This is a prefix code
- □ There exists a prefix code with these code lengths

Consider the code \mathcal{C}_3 and bitstring S =0010111011000110

	а	b	С	d	е	f
\mathcal{C}_3	11	10	01	001	0110	0101

- □ The bitstring can be decoded uniquely with this code
- □ This is a prefix code
- □ There exists a prefix code with these code lengths

Consider the code \mathcal{C}_4 and bitstring S =0010111011000110

	a	b	С	d	е	f
\mathcal{C}_4	00	01	110	111	101	1000

- □ The bitstring can be decoded uniquely with this code
- □ This is a prefix code
- □ There exists a prefix code with these code lengths

Consider the following message: badebfadebcdfabdefbcfcbc and the two codes \mathcal{C}_3 and \mathcal{C}_4

	а	b	C	d	е	f
\mathcal{C}_3	11	10	01	001	0110	0101
\mathcal{C}_4	00	01	110	111	101	1000

What is the code length of this message, encoded with either of the two codes?

Consider the following message: badebfadebcdfabdefbcfcbc and the two codes \mathcal{C}_3 and \mathcal{C}_4

	а	b	C	d	е	f
\mathcal{C}_3 \mathcal{C}_4	11 00	10 01	01 110	001 111	0110 101	0101 1000
nb. occs	3	6	4	4	3	4

Can you design a better code?

Consider the following message: badebfadebcdfabdefbcfcbc

	а	b	С	d	е	f
nb. occs	3	6	4	4	3	4

What is the theoretical optimal code length for this message?

Consider this transactional dataset, *D* Let us ignore transaction delimiters and consider ideal, not practical, codes

Let us encode the transactions by assigning a codeword to each distinct item, based on its frequency We call this model *M*₀

tid	transaction
(1)	b
(2)	a d e
(3)	b f
(4)	a d e
(5)	bcdf
(6)	a b d e f
(7)	bcf
(8)	С
(9)	b c

What is the code length of the dataset encoded with M_0 ?

Consider this transactional dataset, *D* Let us ignore transaction delimiters and consider ideal, not practical, codes

Let us encode the transactions by assigning a codeword to each distinct entire transaction, based on its frequency We call this model *M*₁

What is the code length of the dataset encoded with M_1 ?

Consider this transactional dataset, *D* Let us ignore transaction delimiters and consider ideal, not practical, codes

Let us encode the transactions by assigning codewords to itemsets {**ade**, **bf**, **b**, **c**, **d**}, based on their frequency We call this model *M*₂

tid	transaction
(1)	b
(2)	a d e
(3)	b f
(4)	a d e
(5)	bcdf
(6)	a b d e f
(7)	bcf
(8)	С
(9)	b c

What is the code length of the dataset encoded with M_2 ?

Which is the best model for the dataset D?