Local Patterns in Data

Esther Galbrun

Spring 2023

Q2.1: Quilt entropy

The colored quilt below can be thought of as a random variable taking one of three possible values in each cell Let us ignore any possible dependencies between the cells

Compute the corresponding entropy

Q2.2: Quilt entropies

Associate each quilt to its entropy

$$
\begin{array}{ll}
H(A)=? & H(B)=? \\
H(C)=? & H(D)=? \\
H(R)=? & H(S)=? \\
H(T)=? & H(U)=? \\
H(W)=? & H(X)=? \\
H(Y)=? & H(Z)=?
\end{array}
$$

Q2.3: Conditional quilts

Let us consider the pairs of values appearing in corresponding positions of two quilts

Compute the corresponding joint entropy, conditional entropies and mutual information

Q2.4: Quilt inequalities (i)

Fill in the following (in)equalities

$$
\begin{array}{ll}
H(A, B)=2.078 & H(A \mid B)=? \\
I(A ; B)=? & H(B \mid A)=? \\
I(A ; C) ? H(A, C) & H(A \mid C) ? H(C \mid A)
\end{array}
$$

Q2.4: Quilt inequalities (ii)

Fill in the following (in)equalities

$$
\begin{aligned}
& H(X \mid Y)=? \quad I(X ; Y)=? \quad H(X \mid Z) ? H(Z \mid Y) \\
& H(X, Y, Z) ? H(X, Z) \quad H(X, Y, Z) ? H(Z \mid X, Y)
\end{aligned}
$$

Q2.5: (De)code (i)

Consider the code \mathcal{C}_{1} and bitstring $S=0010111011000110$

	a	b	c	d	e	f
\mathcal{C}_{1}	11	10	01	001	010	0010

What can you say about the following statements?
\square The bitstring can be decoded uniquely with this code
\square This is a prefix code
\square There exists a prefix code with these code lengths

Q2.5: (De)code (ii)

Consider the code \mathcal{C}_{2} and bitstring $S=0010111011000110$

	a	b	c	d	e	f
\mathcal{C}_{2}	00	01	10	110	111	1001

What can you say about the following statements?
\square The bitstring can be decoded uniquely with this code
\square This is a prefix code
\square There exists a prefix code with these code lengths

Q2.5: (De)code (iii)

Consider the code \mathcal{C}_{3} and bitstring $S=0010111011000110$

	a	b	c	d	e	f
\mathcal{C}_{3}	11	10	01	001	0110	0101

What can you say about the following statements?
\square The bitstring can be decoded uniquely with this code
\square This is a prefix code
\square There exists a prefix code with these code lengths

Q2.5: (De)code (iv)

Consider the code \mathcal{C}_{4} and bitstring $S=0010111011000110$

	a	b	c	d	e	f
\mathcal{C}_{4}	00	01	110	111	101	1000

What can you say about the following statements?
\square The bitstring can be decoded uniquely with this code
\square This is a prefix code
\square There exists a prefix code with these code lengths

Q2.6: (Re)code (i)

Consider the following message: badebfadebcdfabdefbcfcbc and the two codes \mathcal{C}_{3} and \mathcal{C}_{4}

	a	b	c	d	e	f
\mathcal{C}_{3}	11	10	01	001	0110	0101
\mathcal{C}_{4}	00	01	110	111	101	1000

What is the code length of this message, encoded with either of the two codes?

Q2.6: (Re)code (ii)

Consider the following message: badebfadebcdfabdefbcfcbc and the two $\operatorname{codes} \mathcal{C}_{3}$ and \mathcal{C}_{4}

	a	b	c	d	e	f
\mathcal{C}_{3}	11	10	01	001	0110	0101
\mathcal{C}_{4}	00	01	110	111	101	1000
nb. OCCS	3	6	4	4	3	4

Can you design a better code?

Q2.6: (Re)code (iii)

Consider the following message: badebfadebcdfabdefbcfcbc

	a	b	c	d	e	f
nb. occs	3	6	4	4	3	4

What is the theoretical optimal code length for this message?

Q2.7: (Trans)code (i)

Consider this transactional dataset, D
Let us ignore transaction delimiters
and consider ideal, not practical, codes
Let us encode the transactions
by assigning a codeword to each
distinct item, based on its frequency
We call this model M_{0}

tid	transaction
(1)	b
(2)	a d e
(3)	b f
(4)	a d e
(5)	$\mathrm{b} ~ \mathrm{c} \mathrm{d} \mathrm{f}$
(6)	a b d e f
(7)	b c f
(8)	c
(9)	b c

What is the code length of the dataset encoded with M_{0} ?

Q2.7: (Trans)code (ii)

Consider this transactional dataset, D	tid	transaction
Let us ignore transaction delimiters	(1)	b
and consider ideal, not practical, codes	(2)	ade
	(3)	$b f$
Let us encode the transactions	(4)	a de
by assigning a codeword to	(5)	$b c d f$
each distinct entire transaction,	(6)	ab
based on its frequency	(7) (8)	$\begin{aligned} & \text { b c f } \\ & \text { c } \end{aligned}$
We call this model M_{1}	(9)	b c

What is the code length of the dataset encoded with M_{1} ?

Q2.7: (Trans)code (iii)

Consider this transactional dataset, D Let us ignore transaction delimiters and consider ideal, not practical, codes
Let us encode the transactions by assigning codewords to itemsets $\{$ ade, $b f, b, c, d\}$, based on their frequency We call this model M_{2}

tid	transaction
(1)	b
(2)	a d e
(3)	b f
(4)	a d e
(5)	b c d f
(6)	a b d e f
(7)	b c f
(8)	c
(9)	b c

What is the code length of the dataset encoded with M_{2} ?

Q2.7: (Trans)code (iv)

Which is the best model for the dataset D ?

