
Local Patterns in Data

Esther Galbrun
Spring 2023

Last updated on 2022-12-22 14:27

Part II

Information theory for data mining
in a nutshell

UEF//School of Computing LPD:Information theory 1/39

Measuring information

What is information?

Seminal paper by Claude Shannon in 1948,
A Mathematical Theory of Communication

A basic idea in information theory is that information
can be treated very much like a physical quantity, such
as mass or energy.

UEF//School of Computing LPD:Information theory 2/39

What is information?

encoding decoding
channelmessage message

For any communication channel

1. there is a definite upper limit on the amount of
information that can be communicated through that
channel, the channel capacity

2. this limit shrinks as the amount of noise in the channel
increases

3. this limit can very nearly be reached by judiciously
encoding data

UEF//School of Computing LPD:Information theory 3/39

What is information?

Imagine you are visiting a friend who lives in a two storey
house, with eight units, as shown on the floor plan below

A1

A2

A4

A3

1st floor

A7

A8

A6

A5

2nd floor

UEF//School of Computing LPD:Information theory 4/39

What is information?

A1

A2

A4

A3

1st floor

A7

A8

A6

A5

2nd floor

A neighbor tells you that your friend lives on the top floor
The number of choices went down from 8 to 4
Your uncertainty is reduced,

the neighbor conveyed information to you

Information is the reduction of uncertainty

UEF//School of Computing LPD:Information theory 4/39

Entropy, a measure of information

Entropy measures the amount of uncertainty in a variable
It is measured in bits

Bit comes from binary digit

One bit is the amount of information in the outcome of an
event with two equally probable outcomes
e.g. the flip of a fair coin

UEF//School of Computing LPD:Information theory 5/39

Entropy, a measure of information

A1

A2

A4

A3

1st floor

A7

A8

A6

A5

2nd floor
A1
A4
A2
A3
A5
A8
A6
A7

000
001
010
011
100
101
110
111

0

1

down/up front/back left/right

UEF//School of Computing LPD:Information theory 6/39

Entropy, a measure of information

A1
A4
A2
A3
A5
A8
A6
A7

000
001
010
011
100
101
110
111

0

1

down/up front/back left/right

One bit allows to choose between two alternatives
Three bits allow to choose between eight alternatives
k bits allow to select one option among 2k

Given n options, log2(n) bits are needed to specify one,
assuming an agreed ordering

UEF//School of Computing LPD:Information theory 6/39

Entropy, a measure of information

Consider a random variable X,
such that value x occurs with probability px

The Shannon information or surprisal of an outcome x is

log2(
1
px

) = − log2(px) bits

The entropy is the average Shannon information over the
outcomes, also measured in bits

H(X) =
∑
x∈X

−px log2(px)

UEF//School of Computing LPD:Information theory 7/39

Example: Fair coin

The possible outcomes are head and tail

pH = p(X = head) = pT = p(X = tail) = 1/2

Surprisal of outcomes

− log2(pH) = − log2(pT) = − log2(1/2) = 1

Entropy of the coin

H(X) = −pH · log2(pH)− pT · log2(pT)
= −1/2 · −1− 1/2 · −1 = 1

UEF//School of Computing LPD:Information theory 8/39

Example: Biased coin

The possible outcomes are head and tail

pH = p(X = head) = 0.9 pT = p(X = tail) = 0.1

Surprisal of outcomes

− log2(pH) = − log2(0.9) = 0.1520
− log2(pT) = − log2(0.1) = 3.3219

Entropy of the coin

H(X) = −pH · log2(pH)− pT · log2(pT)
= −0.9 · −0.1520− 0.1 · −3.3219 = 0.4690

UEF//School of Computing LPD:Information theory 8/39

Example: (Un)biased coin

The possible outcomes are head and tail

pH = p(X = head) pT = p(X = tail) = 1− p(X = head)

0 0.2 0.4 0.6 0.8 1
0
1
2
3
4
5
6
7

px

−
lo
g
2(
p x
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pH

H(
X)

UEF//School of Computing LPD:Information theory 9/39

Example: Throwing a pair of dice

The possible outcomes are 36 ordered pair of values YA and YB

{1 :1, 1 :2, 1 :3, . . . , 6 :6}

Sum of dice X = YA + YB, possible outcomes are {2, 3, . . . , 12}

The frequency of an outcome is the number of pairs that sum
to the corresponding value

UEF//School of Computing LPD:Information theory 10/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice, X their sum
x {yA :yB} Frequency px Surprisal

2 1 :1 1 0.03 5.17
3 1 :2, 2 :1 2 0.06 4.17
4 1 :3, 2 :2, 3 :1 3 0.08 3.58
5 1 :4, 2 :3, 3 :2, 4 :1 4 0.11 3.17
6 1 :5, 2 :4, 3 :3, 4 :2, 5 :1 5 0.14 2.85
7 1 :6, 2 :5, 3 :4, 4 :3, 5 :2, 6 :1 6 0.17 2.58
8 2 :6, 3 :5, 4 :4, 5 :3, 6 :2 5 0.14 2.85
9 3 :6, 4 :5, 5 :4, 6 :3 4 0.11 3.17
10 4 :6, 5 :5, 6 :4 3 0.08 3.58
11 5 :6, 6 :5 2 0.06 4.17
12 6 :6 1 0.03 5.17

UEF//School of Computing LPD:Information theory 11/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice, X their sum

H(YA) = H(YB) =
∑

y∈{1,...,6}
−py log2(py) = 2.585

H(X) =
∑

y∈{2,...,12}
−px log2(px) = 3.274

UEF//School of Computing LPD:Information theory 11/39

Conditional entropy, mutual information

Conditional entropy
How much uncertainty do we have in one variable given
knowledge of another?

H(X | Y) = −
∑

(x,y)∈X×Y
p(x, y) log2

(
p(x | y)

)
Mutual information
How much does uncertainty in one variable reduce given
another variable?

I(X; Y) = H(X)− H(X | Y)
= H(Y)− H(Y | X)
= H(X) + H(Y)− H(X, Y) H(X, Y)H(X) H(Y)

H(X | Y) H(Y | X)I(X; Y)

UEF//School of Computing LPD:Information theory 12/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice
YA and YB are independent, hence

p(YA, YB) = p(YA) · p(YB) and p(YA | YB) = p(YA)

H(YA | YB) = −
∑

(yA,yB)∈{1,...,6}2
p(yA, yB) log2

(
p(yA | yB)

)
= −

∑
(yA,yB)∈{1,...,6}2

p(yA) · p(yB) log2
(
p(yA)

)
= −

∑
yB∈{1,...,6}

p(yB)
∑

yA∈{1,...,6}
p(yA) log2

(
p(yA)

)
= H(YA)

UEF//School of Computing LPD:Information theory 13/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice
YA and YB are independent, hence

p(YA, YB) = p(YA) · p(YB) and p(YA | YB) = p(YA)

H(YA | YB) = H(YA)

H(YA, YB) = −
∑

(yA,yB)∈{1,...,6}2
p(yA, yB) log2

(
p(yA, yB)

)
= −

∑
(yA,yB)∈{1,...,6}2

p(yA) · p(yB) log2
(
p(yA) · p(yB)

)
= H(YA) + H(YB)

UEF//School of Computing LPD:Information theory 13/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice
YA and YB are independent, hence

p(YA, YB) = p(YA) · p(YB) and p(YA | YB) = p(YA)

H(YA | YB) = H(YA)

H(YA, YB) = H(YA) + H(YB)

I(YA; YB) = H(YA)− H(YA | YB) = H(YA) + H(YB)− H(YA, YB)
= 0

UEF//School of Computing LPD:Information theory 13/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice
YA and YB are independent, hence

p(YA, YB) = p(YA) · p(YB) and p(YA | YB) = p(YA)

H(YA | YB) = H(YA)

H(YA, YB) = H(YA) + H(YB)

I(YA; YB) = 0

UEF//School of Computing LPD:Information theory 13/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice, X their sum

yB\x 2 3 4 5 6 7 8 9 10 11 12 #

1 1 1 1 1 1 1 - - - - - 6
2 - 1 1 1 1 1 1 - - - - 6
3 - - 1 1 1 1 1 1 - - - 6
4 - - - 1 1 1 1 1 1 - - 6
5 - - - - 1 1 1 1 1 1 - 6
6 - - - - - 1 1 1 1 1 1 6
1 2 3 4 5 6 5 4 3 2 1

UEF//School of Computing LPD:Information theory 14/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice, X their sum

H(YA) = H(YB) = 2.585 H(X) = 3.274

H(X, YB) = −
∑
(x,yB)

p(x, yB) log2
(
p(x, yB)

)
= −36 · 1/36 · log2(1/36)
= 5.170 = H(YA) + H(YB)

UEF//School of Computing LPD:Information theory 14/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice, X their sum

H(YA) = H(YB) = 2.585 H(X) = 3.274

H(X, YB) = 5.170 = H(YA) + H(YB)

H(X | YB) = −
∑
(x,yB)

p(x, yB) log2
(
p(x | yB)

)
= −36 · 1/36 · log2(1/6)

= 2.585 = H(YA)

UEF//School of Computing LPD:Information theory 14/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice, X their sum

H(YA) = H(YB) = 2.585 H(X) = 3.274

H(X, YB) = 5.170 = H(YA) + H(YB)

H(X | YB) = 2.585 = H(YA)

H(YB | X) = −
∑
(x,yB)

p(x, yB) log2
(
p(yB | x)

)
= −1/36

(
2 · log2(1) + 4 · log2(1/2) + 6 · log2(1/3)

+ 8 · log2(1/4) + 10 · log2(1/5) + 6 · log2(1/6)
)

= 1.896

UEF//School of Computing LPD:Information theory 14/39

Example: Throwing a pair of dice

YA and YB represent the values of two dice, X their sum

H(YA) = H(YB) = 2.585 H(X) = 3.274

H(X, YB) = 5.170 = H(YA) + H(YB)

H(X | YB) = 2.585 = H(YA)

H(YB | X) = 1.896

I(X; YB) = H(X) + H(YB)− H(X, YB) = 3.274+ 2.585− 5.170 = 0.689
= H(X)− H(X | YB) = 3.274− 2.585 = 0.689
= H(YB)− H(YB | X) = 2.585− 1.896 = 0.689

UEF//School of Computing LPD:Information theory 14/39

Coding

Coding basics

Alphabet
Finite or countable set of elements called symbols

Coding
Take a sequence of symbols from alphabet A and represent it
by another sequence of symbols from alphabet B

Typically, B = {0, 1}∗, i.e. binary sequences

A coding system is a relation between A and B, i.e. C ⊂ A× B

UEF//School of Computing LPD:Information theory 15/39

Example: Throwing dice

Transmit the outcome of 10 throws of a die
via a binary (noiseless) channel

Message sequence of 10 values in [1, 6]
Source alphabet A = {1, 2, 3, 4, 5, 6}
Target alphabet B = {0, 1}∗

Turn each value into its binary representation and concatenate

UEF//School of Computing LPD:Information theory 16/39

Example: Throwing dice

Transmit the outcome of 10 throws of a die
via a binary (noiseless) channel

Turn each value into its binary representation and concatenate

Source symbol 1 2 3 4 5 6
Target symbol 1 10 11 100 101 110

Source sequence ⟨3, 2, 1, 2, 4, 5, 1, 5, 6, 6⟩
⟨11, 10, 1, 10, 100, 101, 1, 101, 110, 110⟩

Target sequence 11101101001011101110110

! Ensure the message can be reconstructed at the other end

UEF//School of Computing LPD:Information theory 16/39

Example: Throwing dice

Transmit the outcome of 10 throws of a die
via a binary (noiseless) channel

Turn each value into its binary representation and concatenate

Source symbol 1 2 3 4 5 6
Target symbol 1 10 11 100 101 110

Source sequence ⟨3, 2, 1, 2, 4, 5, 1, 5, 6, 6⟩
⟨11, 10, 1, 10, 100, 101, 1, 101, 110, 110⟩

Target sequence 11101101001011101110110

! Ensure the message can be reconstructed at the other end

UEF//School of Computing LPD:Information theory 16/39

Example: Throwing dice

Transmit the outcome of 10 throws of a die
via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate

Assign a 3 bits codeword to each outcome

Source symbol 1 2 3 4 5 6
Target symbol 001 010 011 100 101 110

Source sequence ⟨3, 2, 1, 2, 4, 5, 1, 5, 6, 6⟩
⟨011, 010, 001, 010, 100, 101, 001, 101, 110, 110⟩

Target sequence 011010001010100101001101110110

! Ensure the message can be reconstructed at the other end

UEF//School of Computing LPD:Information theory 16/39

Example: Throwing dice

Transmit the outcome of 10 throws of a die
via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate

Integer value x is encoded as x 1’s, followed by a 0 as separator

Source symbol 1 2 3 4 5 6
Target symbol 10 110 1110 11110 111110 1111110

Source sequence ⟨3, 2, 1, 2, 4, 5, 1, 5, 6, 6⟩
⟨1110, 110, 10, 110, 11110, 111110, 10, 111110, 1111110, 1111110⟩

Target sequence 111011010110111101111101011111011111101111110

! Ensure the message can be reconstructed at the other end

UEF//School of Computing LPD:Information theory 16/39

Coding basics

A coding system is a relation between A and B, i.e. C ⊂ A× B

A coding system C is singular (or lossy) if there exist a,a′ ∈ A
with a ̸= a′ and b ∈ B such that (a,b) ∈ C and (a′,b) ∈ C

A coding system C is partial if there exist a ∈ A and no b ∈ B
such that (a,b) ∈ C

UEF//School of Computing LPD:Information theory 17/39

Coding basics

We consider coding systems, which we refer to as codes, such
that each a ∈ A is associated to at most one b ∈ B, and
vice-versa each b ∈ B is associated to at most one a ∈ A

Let C be a code for A

If (a,b) ∈ C, we say that b is a codeword for a, and that a is
encoded or described as b

We denote LC(a) the length of the codeword associated to a
measured in bits if B = {0, 1}∗

UEF//School of Computing LPD:Information theory 18/39

Example: Throwing dice

Transmit the outcome of 10 throws of a pair of dice
via a binary (noiseless) channel

Message sequence of 10 values in [2, 12]
Source alphabet A = {2, 3, . . . , 12}
Target alphabet B = {0, 1}∗

Turn each value into a binary codeword and concatenate

UEF//School of Computing LPD:Information theory 19/39

Example: Throwing dice

Transmit the outcome of 10 throws of a pair of dice
via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate

Assign a 4 bits codeword to each outcome

Source symbol 2 3 4 5 6
Target symbol 0010 0011 0100 0101 0110

Source symbol 7 8 9 10 11 12
Target symbol 0111 1000 1001 1010 1011 1100

Source sequence ⟨3, 9, 7, 11, 8, 6, 9, 5, 11, 5⟩
⟨0011, 1001, 0111, 1011, 1000, 0110, 1001, 0101, 1011, 0101⟩

Target sequence 0011100101111011100001101001010110110101
UEF//School of Computing LPD:Information theory 19/39

Example: Throwing dice

Transmit the outcome of 10 throws of a pair of dice
via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate

Assign a 4 bits codeword to each outcome

Source symbol 2 3 4 5 6
Target symbol 0000 0001 0010 0011 0100

Source symbol 7 8 9 10 11 12
Target symbol 0101 0110 0111 1000 1001 1010

Source sequence ⟨3, 9, 7, 11, 8, 6, 9, 5, 11, 5⟩
⟨1110, 110, 10, 110, 11110, 111110, 10, 111110, 1111110, 1111110⟩

Target sequence 111011010110111101111101011111011111101111110
UEF//School of Computing LPD:Information theory 19/39

Concatenating codes

Transmit symbols x1 and x2 respectively with codes C1 and C2
by concatenating them, i.e. C(x1x2) = C1(x1)C2(x2)

We want C to be non-singular
only one way to split C(x1x2) into codewords C1(x1) and C2(x2)

! Cannot use separator such as comma since that would be
mapping into {0, 1, “,”}∗ rather than {0, 1}∗

UEF//School of Computing LPD:Information theory 20/39

Concatenating codes

Transmit symbols x1 and x2 respectively with codes C1 and C2
by concatenating them, i.e. C(x1x2) = C1(x1)C2(x2)

We want C to be non-singular
only one way to split C(x1x2) into codewords C1(x1) and C2(x2)

This is guaranteed if C1 is such that no extension of a
codeword can itself be a codeword
Prefix code a.k.a. prefix-free code or instantaneous code

UEF//School of Computing LPD:Information theory 20/39

Coding basics

Conditional code
Transmit sequence of symbols x1, x2, . . . xn

• encode x1 with C1
• encode x2 with C2,x1 , a code that is allowed to depend on
the value of x1

• encode x3 with C2,(x1,x2), a code that is allowed to depend
on the value of x1 and x2

…

UEF//School of Computing LPD:Information theory 21/39

Coding basics

Transmit a collection of polygons

• encode the number of polygons n
• encode the number of vertices in each polygon as a list
• encode the coordinates of the vertices of each polygon as
a list

UEF//School of Computing LPD:Information theory 22/39

Codes

Universal code
Encode positive integers when the upper bound cannot be
determined apriori

Elias gamma coding for x ≥ 1

• Let n = ⌊log2(x)⌋ (i.e. 2n ≤ x ≤ 2n+1)
• Write out n zeros
• Append the binary representation of x

x 1 2 3 4 5 10 20
CE(x) 1 010 011 00100 00101 0001010 000010100

LCE(x) = 2 · ⌊log2(x)⌋+ 1

UEF//School of Computing LPD:Information theory 23/39

Codes

Uniform code, a.k.a. fixed-length code
Each symbol in A is associated to a codeword of length k

• Order the elements of A, e.g. lexicographic order
• Order bit-strings of length k =

⌈
log2

(
|A|

)⌉
• Map elements to bit-strings

Sender and recipient need to agree on code being used
in this case, that means agreeing on how to order elements

This is a prefix code, no codeword is a prefix of another
It minimizes the worst-case codeword length (longest
codeword is as short as possible)

UEF//School of Computing LPD:Information theory 24/39

Codes

Quasi-uniform code
Assume elements of A are organized
into a family of sets M1 ⊂ M2 · · · ⊂ MΓ

such that Mγ ̸= ∅ and
∪

γ Mγ = A
M1 M2 M3

. . .MΓ

For element x in A

• Let γ be the smallest integer such that x ∈ Mγ

• Encode x as CI(γ)Cγ(x)
CI(γ) is a code over non-negative integers
Cγ(x) is equivalent to uniform code on Mγ

UEF//School of Computing LPD:Information theory 25/39

Codes

Quasi-uniform code
Assume elements of A are organized
into a family of sets M1 ⊂ M2 · · · ⊂ MΓ

such that Mγ ̸= ∅ and
∪

γ Mγ = A
M1 M2 M3

. . .MΓ

Encode x as CI(γ)Cγ(x),
where γ is the smallest integer such that x ∈ Mγ

Luckiness principle
For any element x, encoding is not going to cost much more
than with uniform code (extra CI(γ))
If we are lucky and x ∈ Mγ such that γ ≪ Γ, we need
substantially fewer bits to encode it
If we are lucky we save a lot,

if we are not lucky we don’t loose too much
UEF//School of Computing LPD:Information theory 25/39

Codes

Only very few elements can have short codes

Similar to probabilities, only very few elements can have high
probabilities since they sum to one

UEF//School of Computing LPD:Information theory 26/39

Kraft inequality

For any code C for a finite alphabet A, the codeword lengths
must satisfy the inequality∑

x∈A
2−LC(x) ≤ 1

Conversely, given codeword lengths satisfying this inequality,
there exists a prefix code with these codeword lengths

UEF//School of Computing LPD:Information theory 27/39

Codes

Let P be a probability distribution over discrete alphabet A,
there exists a code C such that for all x ∈ A

LC(x) =
⌈
− log2

(
P(x)

)⌉

UEF//School of Computing LPD:Information theory 28/39

Huffman coding

How to design an optimal prefix code,
i.e. with minimum expected codeword lengths

Given source alphabet A, where each symbol xi has an
associated weight wi
We want a code C such that for any other code C′∑

xi∈A
wiLC(xi) ≤

∑
xi∈A

wiLC′(xi)

UEF//School of Computing LPD:Information theory 29/39

Huffman coding

Simple algorithm

• Iteratively combine the two least frequent symbols
• Obtain variable-depth tree with source symbols as leaves
• Read codeword for symbol along path from root to leaf

UEF//School of Computing LPD:Information theory 30/39

Huffman coding

Iteratively combine the two least frequent symbols

a 1 f 1 m 1 r 1 t 1 i 2 n 2 o 2

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Iteratively combine the two least frequent symbols

m 1 r 1 t 1

a 1 f 1

2 i 2 n 2 o 2

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Iteratively combine the two least frequent symbols

t 1

a 1 f 1

2 i 2

m 1 r 1

2 n 2 o 2

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Iteratively combine the two least frequent symbols

i 2

m 1 r 1

2 n 2 o 2

t 1

a 1 f 1

2

3

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Iteratively combine the two least frequent symbols

n 2 o 2

t 1

a 1 f 1

2

3

m 1 r 1

2i 2

4

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Iteratively combine the two least frequent symbols

t 1

a 1 f 1

2

3

m 1 r 1

2i 2

4

n 2 o 2

4

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Iteratively combine the two least frequent symbols

n 2 o 2

4

t 1

a 1 f 1

2

3

m 1 r 1

2i 2

4

7

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Iteratively combine the two least frequent symbols

n 2 o 2

4

t 1

a 1 f 1

2

3

m 1 r 1

2i 2

4

7

11

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Read codeword for symbol along path from root to leaf

n 2 o 2

4

t 1

a 1 f 1

2

3

m 1 r 1

2i 2

4

7

11

Source symbol a f i m n o r t
Target symbol 1010 1011 110 1110 00 01 1111 100

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Source symbol a f i m n o r t
Target symbol 1010 1011 110 1110 00 01 1111 100

Let’s decode the following sequence

110001011011111111010101001100100

information

UEF//School of Computing LPD:Information theory 31/39

Huffman coding

Source symbol a f i m n o r t
Target symbol 1010 1011 110 1110 00 01 1111 100

Let’s decode the following sequence

110 00 1011 01 1111 1110 1010 100 110 01 00
information

UEF//School of Computing LPD:Information theory 31/39

Minimum Description Length
principle

Kolmogorov complexity

The Kolmogorov complexity of a sequence is the length of the
shortest program that prints the sequence and then halts.

UEF//School of Computing LPD:Information theory 32/39

Kolmogorov complexity

Consider the following two binary sequences of length 10 000

01110100110100100110...101100010
00010001000100010001...100010001

Program to print the first sequence
print '01110100110100100110...101100010' ; halt

Program to print the second sequence
for i = 1 to 2500 ; do { print '0001' } ; halt

More regularity, less randomness, lower complexity

! Asymptotically, the programming language does not matter,
as long as it is universal

UEF//School of Computing LPD:Information theory 33/39

Kolmogorov complexity

The Kolmogorov complexity cannot be computed in general

There is no computer program that, for any given sequence D,
returns the shortest program that prints D and halts
Nor any program that returns the length of such a program

Assuming such a program exists leads to a contradiction

To make it practical, consider more restricted description
methods rather than general purpose computer languages

UEF//School of Computing LPD:Information theory 34/39

Kolmogorov complexity

The Kolmogorov complexity cannot be computed in general

There is no computer program that, for any given sequence D,
returns the shortest program that prints D and halts
Nor any program that returns the length of such a program

Assuming such a program exists leads to a contradiction

To make it practical, consider more restricted description
methods rather than general purpose computer languages

UEF//School of Computing LPD:Information theory 34/39

MDL principle

Given a set of modelsM and dataset D
find the model M ∈ M that compresses D most

UEF//School of Computing LPD:Information theory 35/39

MDL principle

Given a set of modelsM and dataset D
find the model M ∈ M that compresses D most

i.e. model for which the description length is mimimized

Hence the name Minimum Description Length (MDL)

UEF//School of Computing LPD:Information theory 35/39

MDL principle

Crude two-part version of the MDL principle
The best model M ∈ M to explain the data D is the one which
minimizes the sum L(M) + L(D | M), where

L(M) is the length of the description of the model
L(D | M) is the length of the description of the data

encoded with the help of the model

UEF//School of Computing LPD:Information theory 36/39

MDL principle

Crude two-part version of the MDL principle
The best model M ∈ M to explain the data D is the one which
minimizes the sum L(M) + L(D | M)

The best model achieves the best lossless compression
Compression has to be lossless for fair comparison

UEF//School of Computing LPD:Information theory 36/39

MDL principle

Crude two-part version of the MDL principle
The best model M ∈ M to explain the data D is the one which
minimizes the sum L(M) + L(D | M)

Find a balance between
complexity of the model and fit to the data

complex model fits the data well
L(M) high L(D | M) low

simple model fits the data poorly
L(M) low L(D | M) high

UEF//School of Computing LPD:Information theory 36/39

MDL principle

Crude two-part version of the MDL principle
The best model M ∈ M to explain the data D is the one which
minimizes the sum L(M) + L(D | M)

MDL learning as data compression

UEF//School of Computing LPD:Information theory 36/39

MDL principle

When using the Minimum Description Length principle, as the
name suggests, we care about code lengths, not actual codes

We drop the rounding, ignore the integer requirements

LC(x) =
⌈
− log2

(
P(x)

)⌉

Direct correspondence between probabilities and code lengths

UEF//School of Computing LPD:Information theory 37/39

MDL principle

When using the Minimum Description Length principle, as the
name suggests, we care about code lengths, not actual codes

We drop the rounding, ignore the integer requirements

LC(x) = − log2
(
P(x)

)
Direct correspondence between probabilities and code lengths

UEF//School of Computing LPD:Information theory 37/39

MDL principle

Suppose X is distributed according to P, then among all
possible codes, the code with codelengths

LC(x) = − log2
(
P(x)

)
on average gives the shortest encoding of outcomes of P

For all probability distributions P and Q with Q ̸= P

EP
[
− log2

(
Q(X)

)]
> EP

[
− log2

(
P(X)

)]
The entropy of P is the expected number of bits needed to
encode an outcome generated by P with optimal code

UEF//School of Computing LPD:Information theory 38/39

References

J. V. Stone. Information Theory: A Tutorial Introduction. Sebtel
Press, 2013.

J. V. Stone. Information Theory: A Tutorial Introduction. arXiv:
1802.05968. 2018.

P. D. Grünwald. The Minimum Description Length Principle.
The MIT Press, 2007.

P. D. Grünwald. A Tutorial Introduction to the Minimum
Description Length Principle. arXiv: math/0406077. 2004.

UEF//School of Computing LPD:Information theory 39/39

	Information theory
	Measuring information
	Coding
	Minimum Description Length principle

