Local Patterns in Data

Esther Galbrun

Spring 2023

Part II

Information theory for data mining in a nutshell

Measuring information

What is information?

Seminal paper by Claude Shannon in 1948, A Mathematical Theory of Communication

A basic idea in information theory is that information can be treated very much like a physical quantity, such as mass or energy.

What is information?

For any communication channel

1. there is a definite upper limit on the amount of information that can be communicated through that channel, the channel capacity
2. this limit shrinks as the amount of noise in the channel increases
3. this limit can very nearly be reached by judiciously encoding data

What is information?

Imagine you are visiting a friend who lives in a two storey house, with eight units, as shown on the floor plan below

What is information?

A neighbor tells you that your friend lives on the top floor
The number of choices went down from 8 to 4
Your uncertainty is reduced,
the neighbor conveyed information to you
Information is the reduction of uncertainty

Entropy, a measure of information

Entropy measures the amount of uncertainty in a variable It is measured in bits

Bit comes from binary digit
One bit is the amount of information in the outcome of an event with two equally probable outcomes
e.g. the flip of a fair coin

Entropy, a measure of information

2nd floor	
A1	000
A4	001
A2	010
A3	011
A5	100
A8	101
A6	110
A7	111

down/up front/back left/right

Entropy, a measure of information

One bit allows to choose between two alternatives
Three bits allow to choose between eight alternatives
k bits allow to select one option among 2^{k}
Given n options, $\log _{2}(n)$ bits are needed to specify one, assuming an agreed ordering

Entropy, a measure of information

Consider a random variable X,

such that value x occurs with probability p_{x}

The Shannon information or surprisal of an outcome x is

$$
\log _{2}\left(\frac{1}{p_{x}}\right)=-\log _{2}\left(p_{x}\right) \text { bits }
$$

The entropy is the average Shannon information over the outcomes, also measured in bits

$$
H(X)=\sum_{x \in X}-p_{x} \log _{2}\left(p_{x}\right)
$$

Example: Fair coin

The possible outcomes are head and tail

$$
p_{\mathrm{H}}=p(X=\text { head })=p_{\mathrm{T}}=p(X=\text { tail })=1 / 2
$$

Surprisal of outcomes

$$
-\log _{2}\left(p_{H}\right)=-\log _{2}\left(p_{\mathrm{T}}\right)=-\log _{2}(1 / 2)=1
$$

Entropy of the coin

$$
\begin{aligned}
H(X) & =-p_{H} \cdot \log _{2}\left(p_{H}\right)-p_{T} \cdot \log _{2}\left(p_{T}\right) \\
& =-1 / 2 \cdot-1-1 / 2 \cdot-1=1
\end{aligned}
$$

Example: Biased coin

The possible outcomes are head and tail

$$
p_{\mathrm{H}}=p(X=\text { head })=0.9 \quad p_{\mathrm{T}}=p(X=\text { tail })=0.1
$$

Surprisal of outcomes

$$
\begin{aligned}
& -\log _{2}\left(p_{H}\right)=-\log _{2}(0.9)=0.1520 \\
& -\log _{2}\left(p_{T}\right)=-\log _{2}(0.1)=3.3219
\end{aligned}
$$

Entropy of the coin

$$
\begin{aligned}
H(X) & =-p_{H} \cdot \log _{2}\left(p_{H}\right)-p_{T} \cdot \log _{2}\left(p_{T}\right) \\
& =-0.9 \cdot-0.1520-0.1 \cdot-3.3219=0.4690
\end{aligned}
$$

Example: (Un)biased coin

The possible outcomes are head and tail

$$
p_{\mathrm{H}}=p(X=\text { head }) \quad p_{\mathrm{T}}=p(X=\text { tail })=1-p(X=\text { head })
$$

Example: Throwing a pair of dice

The possible outcomes are 36 ordered pair of values Y_{A} and Y_{B}

$$
\{1: 1,1: 2,1: 3, \ldots, 6: 6\}
$$

Sum of dice $X=Y_{A}+Y_{B}$, possible outcomes are $\{2,3, \ldots, 12\}$
The frequency of an outcome is the number of pairs that sum to the corresponding value

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice, X their sum

x	$\left\{y_{A}: y_{B}\right\}$	Frequency	p_{x}	Surprisal
2	$1: 1$	1	0.03	5.17
3	$1: 2,2: 1$	2	0.06	4.17
4	$1: 3,2: 2,3: 1$	3	0.08	3.58
5	$1: 4,2: 3,3: 2,4: 1$	4	0.11	3.17
6	$1: 5,2: 4,3: 3,4: 2,5: 1$	5	0.14	2.85
7	$1: 6,2: 5,3: 4,4: 3,5: 2,6: 1$	6	0.17	2.58
8	$2: 6,3: 5,4: 4,5: 3,6: 2$	5	0.14	2.85
9	$3: 6,4: 5,5: 4,6: 3$	4	0.11	3.17
10	$4: 6,5: 5,6: 4$	3	0.08	3.58
11	$5: 6,6: 5$	2	0.06	4.17
12	$6: 6$	1	0.03	5.17

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice, X their sum

$$
\begin{gathered}
H\left(Y_{A}\right)=H\left(Y_{B}\right)=\sum_{y \in\{1, \ldots, 6\}}-p_{y} \log _{2}\left(p_{y}\right)=2.585 \\
H(X)=\sum_{y \in\{2, \ldots, 12\}}-p_{x} \log _{2}\left(p_{x}\right)=3.274
\end{gathered}
$$

Conditional entropy, mutual information

Conditional entropy

How much uncertainty do we have in one variable given knowledge of another?

$$
H(X \mid Y)=-\sum_{(x, y) \in X \times Y} p(x, y) \log _{2}(p(x \mid y))
$$

Mutual information

How much does uncertainty in one variable reduce given another variable?

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice
Y_{A} and Y_{B} are independent, hence

$$
\begin{aligned}
p\left(Y_{A}, Y_{B}\right) & =p\left(Y_{A}\right) \cdot p\left(Y_{B}\right) \text { and } p\left(Y_{A} \mid Y_{B}\right)=p\left(Y_{A}\right) \\
H\left(Y_{A} \mid Y_{B}\right) & =-\sum_{\left(y_{A}, y_{B}\right) \in\{1, \ldots, 6\}^{2}} p\left(y_{A}, y_{B}\right) \log _{2}\left(p\left(y_{A} \mid y_{B}\right)\right) \\
& =-\sum_{\left(y_{A}, y_{B}\right) \in\{1, \ldots, 6\}^{2}} p\left(y_{A}\right) \cdot p\left(y_{B}\right) \log _{2}\left(p\left(y_{A}\right)\right) \\
& =-\sum_{y_{B} \in\{1, \ldots, 6\}} p\left(y_{B}\right) \sum_{y_{A} \in\{1, \ldots, 6\}} p\left(y_{A}\right) \log _{2}\left(p\left(y_{A}\right)\right) \\
& =H\left(Y_{A}\right)
\end{aligned}
$$

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice
Y_{A} and Y_{B} are independent, hence

$$
\begin{aligned}
p\left(Y_{A}, Y_{B}\right) & =p\left(Y_{A}\right) \cdot p\left(Y_{B}\right) \quad \text { and } p\left(Y_{A} \mid Y_{B}\right)=p\left(Y_{A}\right) \\
H\left(Y_{A} \mid Y_{B}\right) & =H\left(Y_{A}\right) \\
H\left(Y_{A}, Y_{B}\right) & =-\sum_{\left(y_{A}, Y_{B}\right) \in\{1, \ldots, 6\}^{2}} p\left(y_{A}, Y_{B}\right) \log _{2}\left(p\left(y_{A}, Y_{B}\right)\right) \\
& =-\sum_{\left(y_{A}, Y_{B}\right) \in\{1, \ldots, 6\}^{2}} p\left(y_{A}\right) \cdot p\left(y_{B}\right) \log _{2}\left(p\left(y_{A}\right) \cdot p\left(y_{B}\right)\right) \\
= & H\left(Y_{A}\right)+H\left(Y_{B}\right)
\end{aligned}
$$

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice Y_{A} and Y_{B} are independent, hence

$$
\begin{aligned}
p\left(Y_{A}, Y_{B}\right) & =p\left(Y_{A}\right) \cdot p\left(Y_{B}\right) \quad \text { and } \quad p\left(Y_{A} \mid Y_{B}\right)=p\left(Y_{A}\right) \\
H\left(Y_{A} \mid Y_{B}\right) & =H\left(Y_{A}\right) \\
H\left(Y_{A}, Y_{B}\right) & =H\left(Y_{A}\right)+H\left(Y_{B}\right) \\
I\left(Y_{A} ; Y_{B}\right) & =H\left(Y_{A}\right)-H\left(Y_{A} \mid Y_{B}\right)=H\left(Y_{A}\right)+H\left(Y_{B}\right)-H\left(Y_{A}, Y_{B}\right) \\
& =0
\end{aligned}
$$

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice Y_{A} and Y_{B} are independent, hence

$$
\begin{aligned}
p\left(Y_{A}, Y_{B}\right) & =p\left(Y_{A}\right) \cdot p\left(Y_{B}\right) \quad \text { and } \quad p\left(Y_{A} \mid Y_{B}\right)=p\left(Y_{A}\right) \\
H\left(Y_{A} \mid Y_{B}\right) & =H\left(Y_{A}\right) \\
H\left(Y_{A}, Y_{B}\right) & =H\left(Y_{A}\right)+H\left(Y_{B}\right) \\
I\left(Y_{A} ; Y_{B}\right) & =0
\end{aligned}
$$

Example: Throwing a pair of dice

```
YA}\mathrm{ and }\mp@subsup{Y}{B}{}\mathrm{ represent the values of two dice, }X\mathrm{ their sum
yB\x 23 4 5 6 7 89 101112 #
    1 111111 - - - 6
    2-111111 - - - 6
    3--111111 - - 6
    4 - - 1111111 1- - 6
    5 - - - - 1 1111111 1 - 6
    6 - - - - - 1 1 1 1 1 1 1 1 1 6
    # 12345654 3 2 1
```


Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice, X their sum

$$
\begin{aligned}
H\left(Y_{A}\right) & =H\left(Y_{B}\right)=2.585 \quad H(X)=3.274 \\
H\left(X, Y_{B}\right) & =-\sum_{\left(x, y_{B}\right)} p\left(x, y_{B}\right) \log _{2}\left(p\left(x, y_{B}\right)\right) \\
& =-36 \cdot 1 / 36 \cdot \log _{2}(1 / 36) \\
& =5.170=H\left(Y_{A}\right)+H\left(Y_{B}\right)
\end{aligned}
$$

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice, X their sum

$$
\begin{aligned}
H\left(Y_{A}\right) & =H\left(Y_{B}\right)=2.585 \quad H(X)=3.274 \\
H\left(X, Y_{B}\right) & =5.170=H\left(Y_{A}\right)+H\left(Y_{B}\right) \\
H\left(X \mid Y_{B}\right) & =-\sum_{\left(x, y_{B}\right)} p\left(x, y_{B}\right) \log _{2}\left(p\left(x \mid y_{B}\right)\right)=-36 \cdot 1 / 36 \cdot \log _{2}(1 / 6) \\
& =2.585=H\left(Y_{A}\right)
\end{aligned}
$$

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice, X their sum

$$
\begin{aligned}
H\left(Y_{A}\right) & =H\left(Y_{B}\right)=2.585 \quad H(X)=3.274 \\
H\left(X, Y_{B}\right) & =5.170=H\left(Y_{A}\right)+H\left(Y_{B}\right) \\
H\left(X \mid Y_{B}\right) & =2.585=H\left(Y_{A}\right) \\
H\left(Y_{B} \mid X\right) & =-\sum_{\left(x, y_{B}\right)} p\left(x, y_{B}\right) \log _{2}\left(p\left(y_{B} \mid x\right)\right) \\
& =-1 / 36\left(2 \cdot \log _{2}(1)+4 \cdot \log _{2}(1 / 2)+6 \cdot \log _{2}(1 / 3)\right. \\
& \left.+8 \cdot \log _{2}(1 / 4)+10 \cdot \log _{2}(1 / 5)+6 \cdot \log _{2}(1 / 6)\right) \\
& =1.896
\end{aligned}
$$

Example: Throwing a pair of dice

Y_{A} and Y_{B} represent the values of two dice, X their sum

$$
\begin{aligned}
H\left(Y_{A}\right) & =H\left(Y_{B}\right)=2.585 \quad H(X)=3.274 \\
H\left(X, Y_{B}\right) & =5.170=H\left(Y_{A}\right)+H\left(Y_{B}\right) \\
H\left(X \mid Y_{B}\right) & =2.585=H\left(Y_{A}\right) \\
H\left(Y_{B} \mid X\right) & =1.896 \\
I\left(X ; Y_{B}\right) & =H(X)+H\left(Y_{B}\right)-H\left(X, Y_{B}\right)=3.274+2.585-5.170=0.689 \\
& =H(X)-H\left(X \mid Y_{B}\right)=3.274-2.585=0.689 \\
& =H\left(Y_{B}\right)-H\left(Y_{B} \mid X\right)=2.585-1.896=0.689
\end{aligned}
$$

Coding

Coding basics

Alphabet

Finite or countable set of elements called symbols
Coding
Take a sequence of symbols from alphabet \mathcal{A} and represent it by another sequence of symbols from alphabet \mathcal{B}

Typically, $\mathcal{B}=\{0,1\}^{*}$, i.e. binary sequences
A coding system is a relation between \mathcal{A} and \mathcal{B}, i.e. $\mathbb{C} \subset \mathcal{A} \times \mathcal{B}$

Example: Throwing dice

Transmit the outcome of 10 throws of a die via a binary (noiseless) channel

Message sequence of 10 values in $[1,6]$
Source alphabet $\mathcal{A}=\{1,2,3,4,5,6\}$
Target alphabet $\mathcal{B}=\{0,1\}^{*}$
Turn each value into its binary representation and concatenate

Example: Throwing dice

Transmit the outcome of 10 throws of a die via a binary (noiseless) channel

Turn each value into its binary representation and concatenate

Source symbol	1	2	3	4	5	6
Target symbol	1	10	11	100	101	110

Source sequence $\langle 3,2,1,2,4,5,1,5,6,6\rangle$ $\langle 11,10,1,10,100,101,1,101,110,110\rangle$
Target sequence 11101101001011101110110

Example: Throwing dice

Transmit the outcome of 10 throws of a die via a binary (noiseless) channel

Turn each value into its binary representation and concatenate

Source symbol	1	2	3	4	5	6
Target symbol	1	10	11	100	101	110

Source sequence $\langle 3,2,1,2,4,5,1,5,6,6\rangle$

$$
\langle 11,10,1,10,100,101,1,101,110,110\rangle
$$

Target sequence 11101101001011101110110
! Ensure the message can be reconstructed at the other end

Example: Throwing dice

Transmit the outcome of 10 throws of a die via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate
Assign a 3 bits codeword to each outcome

Source symbol	1	2	3	4	5	6
Target symbol	001	010	011	100	101	110

Source sequence $\langle 3,2,1,2,4,5,1,5,6,6\rangle$

$$
\langle 011,010,001,010,100,101,001,101,110,110\rangle
$$

Target sequence 011010001010100101001101110110

Example: Throwing dice

Transmit the outcome of 10 throws of a die via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate
Integer value x is encoded as x 1's, followed by a 0 as separator
Source symbol
Target symbol
10
110
111011110
1111101111110

Source sequence $\langle 3,2,1,2,4,5,1,5,6,6\rangle$
$\langle 1110,110,10,110,11110,111110,10,111110,1111110,1111110\rangle$
Target sequence 111011010110111101111101011111011111101111110

Coding basics

A coding system is a relation between \mathcal{A} and \mathcal{B}, i.e. $\subset \subset \mathcal{A} \times \mathcal{B}$ A coding system C is singular (or lossy) if there exist $a, a^{\prime} \in \mathcal{A}$ with $a \neq a^{\prime}$ and $b \in \mathcal{B}$ such that $(a, b) \in \mathcal{C}$ and $\left(a^{\prime}, b\right) \in C$ A coding system C is partial if there exist $a \in \mathcal{A}$ and no $b \in \mathcal{B}$ such that $(a, b) \in C$

Coding basics

We consider coding systems, which we refer to as codes, such that each $a \in \mathcal{A}$ is associated to at most one $b \in \mathcal{B}$, and vice-versa each $b \in \mathcal{B}$ is associated to at most one $a \in \mathcal{A}$

Let C be a code for \mathcal{A}
If $(a, b) \in C$, we say that b is a codeword for a, and that a is encoded or described as b

We denote $L_{C}(a)$ the length of the codeword associated to a measured in bits if $\mathcal{B}=\{0,1\}^{*}$

Example: Throwing dice

Transmit the outcome of 10 throws of a pair of dice via a binary (noiseless) channel

Message sequence of 10 values in $[2,12]$
Source alphabet $\mathcal{A}=\{2,3, \ldots, 12\}$
Target alphabet $\mathcal{B}=\{0,1\}^{*}$
Turn each value into a binary codeword and concatenate

Example: Throwing dice

Transmit the outcome of 10 throws of a pair of dice via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate
Assign a 4 bits codeword to each outcome

Source symbol	2	3	4	5	6	
Target symbol		0010	0011	0100	0101	0110
Source symbol	7	8	9	10	11	12
Target symbol	0111	1000	1001	1010	1011	1100

Source sequence $\langle 3,9,7,11,8,6,9,5,11,5\rangle$
$\langle 0011,1001,0111,1011,1000,0110,1001,0101,1011,0101\rangle$
Target sequence 0011100101111011100001101001010110110101

Example: Throwing dice

Transmit the outcome of 10 throws of a pair of dice via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate
Assign a 4 bits codeword to each outcome

Source symbol	2	3	4	5	6
Target symbol		0000	0001	0010	0011

Source sequence $\langle 3,9,7,11,8,6,9,5,11,5\rangle$
$\langle 1110,110,10,110,11110,111110,10,111110,1111110,1111110\rangle$
Target sequence 111011010110111101111101011111011111101111110

Concatenating codes

Transmit symbols x_{1} and x_{2} respectively with codes C_{1} and C_{2} by concatenating them, i.e. $C\left(x_{1} x_{2}\right)=C_{1}\left(x_{1}\right) C_{2}\left(x_{2}\right)$

We want C to be non-singular only one way to split $C\left(x_{1} x_{2}\right)$ into codewords $C_{1}\left(x_{1}\right)$ and $C_{2}\left(x_{2}\right)$
! Cannot use separator such as comma since that would be mapping into $\{0,1, \text { "," }\}^{*}$ rather than $\{0,1\}^{*}$

Concatenating codes

Transmit symbols x_{1} and x_{2} respectively with codes C_{1} and C_{2} by concatenating them, i.e. $C\left(x_{1} x_{2}\right)=C_{1}\left(x_{1}\right) C_{2}\left(x_{2}\right)$

We want C to be non-singular
only one way to split $C\left(x_{1} x_{2}\right)$ into codewords $C_{1}\left(x_{1}\right)$ and $C_{2}\left(x_{2}\right)$
This is guaranteed if C_{1} is such that no extension of a codeword can itself be a codeword Prefix code a.k.a. prefix-free code or instantaneous code

Coding basics

Conditional code

Transmit sequence of symbols $x_{1}, x_{2}, \ldots x_{n}$

- encode x_{1} with C_{1}
- encode x_{2} with $C_{2, x_{1}}$, a code that is allowed to depend on the value of x_{1}
- encode x_{3} with $C_{2,\left(x_{1}, x_{2}\right)}$, a code that is allowed to depend on the value of x_{1} and x_{2}

Coding basics

Transmit a collection of polygons

- encode the number of polygons n
- encode the number of vertices in each polygon as a list
- encode the coordinates of the vertices of each polygon as a list

Codes

Universal code

Encode positive integers when the upper bound cannot be determined apriori

Elias gamma coding for $x \geq 1$

- Let $n=\left\lfloor\log _{2}(x)\right\rfloor\left(\right.$ i.e. $\left.2^{n} \leq x \leq 2^{n+1}\right)$
- Write out n zeros
- Append the binary representation of x

x	1	2	3	4	5	10	20
$C_{E}(x)$	1	010	011	00100	00101	0001010	000010100

$$
L_{C_{E}}(x)=2 \cdot\left\lfloor\log _{2}(x)\right\rfloor+1
$$

Codes

Uniform code, a.k.a. fixed-length code
Each symbol in \mathcal{A} is associated to a codeword of length k

- Order the elements of \mathcal{A}, e.g. lexicographic order
- Order bit-strings of length $k=\left\lceil\log _{2}(|\mathcal{A}|)\right\rceil$
- Map elements to bit-strings

Sender and recipient need to agree on code being used in this case, that means agreeing on how to order elements

This is a prefix code, no codeword is a prefix of another It minimizes the worst-case codeword length (longest codeword is as short as possible)

Codes

Quasi-uniform code

Assume elements of \mathcal{A} are organized into a family of sets $M_{1} \subset M_{2} \cdots \subset M_{\Gamma}$ such that $M_{\gamma} \neq \emptyset$ and $\bigcup_{\gamma} M_{\gamma}=\mathcal{A}$

For element x in \mathcal{A}

- Let γ be the smallest integer such that $x \in M_{\gamma}$
- Encode x as $C_{I}(\gamma) C_{\gamma}(x)$
$C_{l}(\gamma)$ is a code over non-negative integers
$C_{\gamma}(x)$ is equivalent to uniform code on M_{γ}

Codes

Quasi-uniform code

Assume elements of \mathcal{A} are organized into a family of sets $M_{1} \subset M_{2} \cdots \subset M_{\Gamma}$ such that $M_{\gamma} \neq \emptyset$ and $\bigcup_{\gamma} M_{\gamma}=\mathcal{A}$

Encode x as $C_{I}(\gamma) C_{\gamma}(x)$,
where γ is the smallest integer such that $x \in M_{\gamma}$

Luckiness principle

For any element x, encoding is not going to cost much more than with uniform code (extra $C_{l}(\gamma)$)
If we are lucky and $x \in M_{\gamma}$ such that $\gamma \ll \Gamma$, we need
substantially fewer bits to encode it
If we are lucky we save a lot,
if we are not lucky we don't loose too much

Codes

Only very few elements can have short codes
Similar to probabilities, only very few elements can have high probabilities since they sum to one

Kraft inequality

For any code \mathcal{C} for a finite alphabet \mathcal{A}, the codeword lengths must satisfy the inequality

$$
\sum_{x \in \mathcal{A}} 2^{-L C(x)} \leq 1
$$

Conversely, given codeword lengths satisfying this inequality, there exists a prefix code with these codeword lengths

Codes

Let P be a probability distribution over discrete alphabet \mathcal{A}, there exists a code C such that for all $x \in \mathcal{A}$

$$
L_{C}(x)=\left\lceil-\log _{2}(P(x))\right\rceil
$$

Huffman coding

How to design an optimal prefix code, i.e. with minimum expected codeword lengths

Given source alphabet \mathcal{A}, where each symbol x_{i} has an associated weight w_{i}
We want a code C such that for any other code C^{\prime}

$$
\sum_{x_{i} \in \mathcal{A}} w_{i} L_{C}\left(x_{i}\right) \leq \sum_{x_{i} \in \mathcal{A}} w_{i} L_{C^{\prime}}\left(x_{i}\right)
$$

Huffman coding

Simple algorithm

- Iteratively combine the two least frequent symbols
- Obtain variable-depth tree with source symbols as leaves
- Read codeword for symbol along path from root to leaf

Huffman coding

Iteratively combine the two least frequent symbols

$$
\begin{array}{lllllll}
& a_{1} & f_{1} & m_{1} & r_{1} & t_{1} & i_{2} \\
n_{2} & \mathrm{o}_{2}
\end{array}
$$

Huffman coding

Iteratively combine the two least frequent symbols

Huffman coding

Iteratively combine the two least frequent symbols

Huffman coding

Iteratively combine the two least frequent symbols

Huffman coding

Iteratively combine the two least frequent symbols

Huffman coding

Iteratively combine the two least frequent symbols

Huffman coding

Iteratively combine the two least frequent symbols

Huffman coding

Iteratively combine the two least frequent symbols

Huffman coding

Read codeword for symbol along path from root to leaf

Source symbol	a	f	i	m	n	o	r	t
Target symbol	1010	1011	110	1110	00	01	1111	100

Huffman coding

Source symbol	a	f	i	m	n	0	r	t
Target symbol	1010	1011	110	1110	00	01	1111	100

Let's decode the following sequence

$$
110001011011111111010101001100100
$$

Huffman coding

Source symbol	a	f	i	m	n	o	r	t
Target symbol	1010	1011	110	1110	00	01	1111	100

Let's decode the following sequence

110001011011111111010101001100100 information

Minimum Description Length principle

Kolmogorov complexity

The Kolmogorov complexity of a sequence is the length of the shortest program that prints the sequence and then halts.

Kolmogorov complexity

Consider the following two binary sequences of length 10000

$$
\begin{aligned}
& 01110100110100100110 \text {. . . } 101100010 \\
& 00010001000100010001 \text {. . } 100010001
\end{aligned}
$$

Program to print the first sequence
||print '01110100110100100110...101100010' ; halt
Program to print the second sequence
|for i = 1 to 2500 ; do \{ print '0001' \} ; halt
More regularity, less randomness, lower complexity
! Asymptotically, the programming language does not matter, as long as it is universal

Kolmogorov complexity

The Kolmogorov complexity cannot be computed in general
There is no computer program that, for any given sequence D, returns the shortest program that prints D and halts Nor any program that returns the length of such a program Assuming such a program exists leads to a contradiction

Kolmogorov complexity

The Kolmogorov complexity cannot be computed in general
There is no computer program that, for any given sequence D, returns the shortest program that prints D and halts Nor any program that returns the length of such a program Assuming such a program exists leads to a contradiction

To make it practical, consider more restricted description methods rather than general purpose computer languages

MDL principle

Given a set of models \mathcal{M} and dataset D find the model $M \in \mathcal{M}$ that compresses D most

MDL principle

Given a set of models \mathcal{M} and dataset D find the model $M \in \mathcal{M}$ that compresses D most
i.e. model for which the description length is mimimized Hence the name Minimum Description Length (MDL)

MDL principle

Crude two-part version of the MDL principle
The best model $M \in \mathcal{M}$ to explain the data D is the one which minimizes the sum $L(M)+L(D \mid M)$, where
$L(M)$ is the length of the description of the model
$L(D \mid M)$ is the length of the description of the data encoded with the help of the model

MDL principle

Crude two-part version of the MDL principle
The best model $M \in \mathcal{M}$ to explain the data D is the one which minimizes the sum $L(M)+L(D \mid M)$

The best model achieves the best lossless compression Compression has to be lossless for fair comparison

MDL principle

Crude two-part version of the MDL principle
The best model $M \in \mathcal{M}$ to explain the data D is the one which minimizes the sum $L(M)+L(D \mid M)$

Find a balance between
complexity of the model and fit to the data
complex model fits the data well
$L(M)$ high $L(D \mid M)$ low
simple model fits the data poorly $L(M)$ low $L(D \mid M)$ high

MDL principle

Crude two-part version of the MDL principle
The best model $M \in \mathcal{M}$ to explain the data D is the one which minimizes the sum $L(M)+L(D \mid M)$

MDL learning as data compression

MDL principle

When using the Minimum Description Length principle, as the name suggests, we care about code lengths, not actual codes

We drop the rounding, ignore the integer requirements

$$
L_{c}(x)=\left\lceil-\log _{2}(P(x))\right\rceil
$$

MDL principle

When using the Minimum Description Length principle, as the name suggests, we care about code lengths, not actual codes

We drop the rounding, ignore the integer requirements

$$
L_{c}(x)=-\log _{2}(P(x))
$$

Direct correspondence between probabilities and code lengths

MDL principle

Suppose X is distributed according to P, then among all possible codes, the code with codelengths

$$
L_{C}(x)=-\log _{2}(P(x))
$$

on average gives the shortest encoding of outcomes of P
For all probability distributions P and Q with $Q \neq P$

$$
E_{P}\left[-\log _{2}(Q(X))\right]>E_{P}\left[-\log _{2}(P(X))\right]
$$

The entropy of P is the expected number of bits needed to encode an outcome generated by P with optimal code

References

J. V. Stone. Information Theory: A Tutorial Introduction. Sebtel Press, 2013.
J. V. Stone. Information Theory: A Tutorial Introduction. arXiv: 1802.05968. 2018.
P. D. Grünwald. The Minimum Description Length Principle. The MIT Press, 2007.
P. D. Grünwald. A Tutorial Introduction to the Minimum Description Length Principle. arXiv: math/0406077. 2004.

