Local Patterns in Data

Esther Galbrun

Spring 2023

Part II

Information theory for data mining in a nutshell

Measuring information

Seminal paper by Claude Shannon in 1948, A Mathematical Theory of Communication

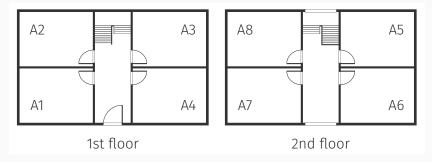
A basic idea in information theory is that information can be treated very much like a physical quantity, such as mass or energy.

What is information?

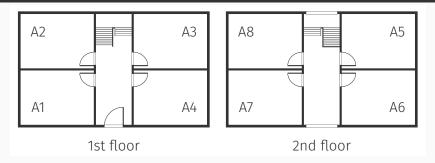
For any communication channel

- there is a definite upper limit on the amount of information that can be communicated through that channel, the *channel capacity*
- 2. this limit shrinks as the amount of noise in the channel increases
- 3. this limit can very nearly be reached by judiciously encoding data

Imagine you are visiting a friend who lives in a two storey house, with eight units, as shown on the floor plan below



What is information?



A neighbor tells you that your friend lives on the top floor The number of choices went down from 8 to 4 Your uncertainty is reduced,

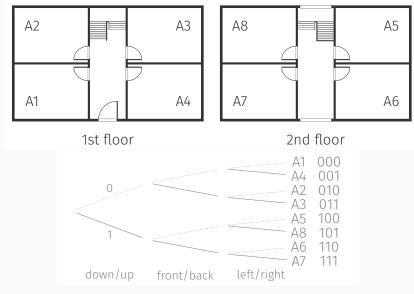
the neighbor conveyed information to you

Information is the reduction of uncertainty

- Entropy measures the amount of uncertainty in a variable It is measured in **bits**
- Bit comes from binary digit

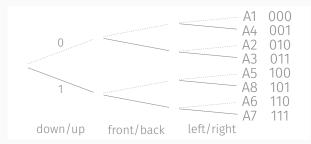
One bit is the amount of information in the outcome of an event with two equally probable outcomes e.g. the flip of a fair coin

Entropy, a measure of information



UEF//School of Computing LPD:Information theory

Entropy, a measure of information



One bit allows to choose between two alternatives Three bits allow to choose between eight alternatives k bits allow to select one option among 2^k

Given n options, $log_2(n)$ bits are needed to specify one, assuming an agreed ordering Consider a random variable X,

such that value x occurs with probability p_x

The Shannon information or surprisal of an outcome x is

$$\log_2(\frac{1}{p_x}) = -\log_2(p_x)$$
 bits

The entropy is the average Shannon information over the outcomes, also measured in bits

$$H(X) = \sum_{x \in X} -p_x \log_2(p_x)$$

Example: Fair coin

The possible outcomes are head and tail

$$p_{\rm H} = p(X = {\sf head}) = p_{\rm T} = p(X = {\sf tail}) = 1/2$$

Surprisal of outcomes

$$-\log_2(p_{\rm H}) = -\log_2(p_{\rm T}) = -\log_2(1/2) = 1$$

Entropy of the coin

$$H(X) = -p_{\rm H} \cdot \log_2(p_{\rm H}) - p_{\rm T} \cdot \log_2(p_{\rm T})$$

= -1/2 \cdot -1 - 1/2 \cdot -1 = 1

Example: Biased coin

The possible outcomes are head and tail

 $p_{\rm H} = p(X = \text{head}) = 0.9$ $p_{\rm T} = p(X = \text{tail}) = 0.1$

Surprisal of outcomes

$$-\log_2(p_{\rm H}) = -\log_2(0.9) = 0.1520$$
$$-\log_2(p_{\rm T}) = -\log_2(0.1) = 3.3219$$

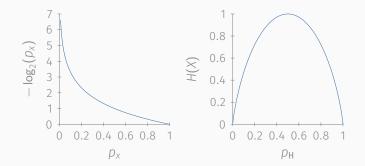
Entropy of the coin

$$H(X) = -p_{\rm H} \cdot \log_2(p_{\rm H}) - p_{\rm T} \cdot \log_2(p_{\rm T})$$

= -0.9 \cdot -0.1520 - 0.1 \cdot -3.3219 = 0.4690

The possible outcomes are head and tail

 $p_{\rm H} = p(X = \text{head})$ $p_{\rm T} = p(X = \text{tail}) = 1 - p(X = \text{head})$



The possible outcomes are 36 ordered pair of values Y_A and Y_B

 $\{1\!:\!1,1\!:\!2,1\!:\!3,\ldots,6\!:\!6\}$

Sum of dice $X = Y_A + Y_B$, possible outcomes are $\{2, 3, ..., 12\}$

The frequency of an outcome is the number of pairs that sum to the corresponding value

Example: Throwing a pair of dice

Y _A ar	_A and Y _B represent the values of two dice, X their sum								
Х	$\{y_A: y_B\}$	Frequency	p _x	Surprisal					
2	1:1	1	0.03	5.17					
3	1:2,2:1	2	0.06	4.17					
4	1:3, 2:2, 3:1	3	0.08	3.58					
5	1:4, 2:3, 3:2, 4:1	4	0.11	3.17					
6	1:5, 2:4, 3:3, 4:2, 5:1	5	0.14	2.85					
7	1:6, 2:5, 3:4, 4:3, 5:2, 6:1	6	0.17	2.58					
8	2:6,3:5,4:4,5:3,6:2	5	0.14	2.85					
9	3:6,4:5,5:4,6:3	4	0.11	3.17					
10	4:6,5:5,6:4	3	0.08	3.58					
11	5:6,6:5	2	0.06	4.17					
12	6:6	1	0.03	5.17					

UEF//School of Computing

$$H(Y_A) = H(Y_B) = \sum_{y \in \{1,...,6\}} -p_y \log_2(p_y) = 2.585$$

$$H(X) = \sum_{y \in \{2, \dots, 12\}} -p_X \log_2(p_X) = 3.274$$

UEF//School of Computing LPD:Information theory

Conditional entropy

How much uncertainty do we have in one variable given knowledge of another?

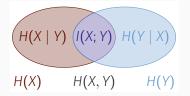
$$H(X \mid Y) = -\sum_{(x,y) \in X \times Y} p(x,y) \log_2 (p(x \mid y))$$

Mutual information

How much does uncertainty in one variable reduce given another variable?

$$I(X; Y) = H(X) - H(X | Y)$$

= H(Y) - H(Y | X)
= H(X) + H(Y) - H(X, Y)



Example: Throwing a pair of dice

 Y_A and Y_B represent the values of two dice Y_A and Y_B are independent, hence

 $p(Y_A, Y_B) = p(Y_A) \cdot p(Y_B)$ and $p(Y_A | Y_B) = p(Y_A)$ $H(Y_A \mid Y_B) = - \sum p(y_A, y_B) \log_2 (p(y_A \mid y_B))$ $(V_A, V_B) \in \{1, \dots, 6\}^2$ $= - \sum p(y_A) \cdot p(y_B) \log_2 (p(y_A))$ $(V_A, V_B) \in \{1, \dots, 6\}^2$ $= - \sum p(y_B) \sum p(y_A) \log_2 (p(y_A))$ $y_B \in \{1,...,6\}$ $y_A \in \{1,...,6\}$ $= H(Y_{\Delta})$

Example: Throwing a pair of dice

 Y_A and Y_B represent the values of two dice Y_A and Y_B are independent, hence

 $p(Y_{A}, Y_{B}) = p(Y_{A}) \cdot p(Y_{B}) \text{ and } p(Y_{A} | Y_{B}) = p(Y_{A})$ $H(Y_{A} | Y_{B}) = H(Y_{A})$ $H(Y_{A}, Y_{B}) = -\sum_{(y_{A}, y_{B}) \in \{1, \dots, 6\}^{2}} p(y_{A}, y_{B}) \log_{2} (p(y_{A}, y_{B}))$ $= -\sum_{(y_{A}, y_{B}) \in \{1, \dots, 6\}^{2}} p(y_{A}) \cdot p(y_{B}) \log_{2} (p(y_{A}) \cdot p(y_{B}))$ $= H(Y_{A}) + H(Y_{B})$

 Y_A and Y_B represent the values of two dice Y_A and Y_B are independent, hence

$$p(Y_A, Y_B) = p(Y_A) \cdot p(Y_B) \text{ and } p(Y_A | Y_B) = p(Y_A)$$

$$H(Y_A | Y_B) = H(Y_A)$$

$$H(Y_A, Y_B) = H(Y_A) + H(Y_B)$$

$$I(Y_A; Y_B) = H(Y_A) - H(Y_A | Y_B) = H(Y_A) + H(Y_B) - H(Y_A, Y_B)$$

$$= 0$$

 Y_A and Y_B represent the values of two dice Y_A and Y_B are independent, hence

 $p(Y_A, Y_B) = p(Y_A) \cdot p(Y_B) \text{ and } p(Y_A | Y_B) = p(Y_A)$ $H(Y_A | Y_B) = H(Y_A)$ $H(Y_A, Y_B) = H(Y_A) + H(Y_B)$ $I(Y_A; Y_B) = 0$

$y_B \setminus X$	2	3	4	5	6	7	8	9	10	11	12	#
1	1	1	1	1	1	1	_	_	-	_	-	6
2	-	1	1	1	1	1	1	-	-	-	-	6
3	-	-	1	1	1	1	1	1	-	-	-	6
4	-	-	-	1	1	1	1	1	1	-	-	6
5	-	-	-	-	1	1	1	1	1	1	-	6
6	-	-	-	-	-	1	1	1	1	1	1	6
#	1	2	3	4	5	6	5	4	3	2	1	

$$H(Y_A) = H(Y_B) = 2.585 \quad H(X) = 3.274$$
$$H(X, Y_B) = -\sum_{(x, y_B)} p(x, y_B) \log_2(p(x, y_B))$$
$$= -36 \cdot 1/36 \cdot \log_2(1/36)$$
$$= 5.170 = H(Y_A) + H(Y_B)$$

$$H(Y_A) = H(Y_B) = 2.585 \quad H(X) = 3.274$$
$$H(X, Y_B) = 5.170 = H(Y_A) + H(Y_B)$$
$$H(X \mid Y_B) = -\sum_{(x, y_B)} p(x, y_B) \log_2 (p(x \mid y_B)) = -36 \cdot 1/36 \cdot \log_2(1/6)$$
$$= 2.585 = H(Y_A)$$

Example: Throwing a pair of dice

$$H(Y_A) = H(Y_B) = 2.585 \quad H(X) = 3.274$$

$$H(X, Y_B) = 5.170 = H(Y_A) + H(Y_B)$$

$$H(X \mid Y_B) = 2.585 = H(Y_A)$$

$$H(Y_B \mid X) = -\sum_{(x,y_B)} p(x, y_B) \log_2 (p(y_B \mid x))$$

$$= -1/36(2 \cdot \log_2(1) + 4 \cdot \log_2(1/2) + 6 \cdot \log_2(1/3) + 8 \cdot \log_2(1/4) + 10 \cdot \log_2(1/5) + 6 \cdot \log_2(1/6))$$

$$= 1.896$$

Example: Throwing a pair of dice

$$H(Y_A) = H(Y_B) = 2.585 \quad H(X) = 3.274$$

$$H(X, Y_B) = 5.170 = H(Y_A) + H(Y_B)$$

$$H(X \mid Y_B) = 2.585 = H(Y_A)$$

$$H(Y_B \mid X) = 1.896$$

$$I(X; Y_B) = H(X) + H(Y_B) - H(X, Y_B) = 3.274 + 2.585 - 5.170 = 0.689$$

$$= H(X) - H(X \mid Y_B) = 3.274 - 2.585 = 0.689$$

$$= H(Y_B) - H(Y_B \mid X) = 2.585 - 1.896 = 0.689$$

Coding

Alphabet

Finite or countable set of elements called symbols

Coding

Take a sequence of symbols from alphabet ${\cal A}$ and represent it by another sequence of symbols from alphabet ${\cal B}$

Typically, $\mathcal{B} = \{0, 1\}^*$, i.e. binary sequences

A coding system is a relation between $\mathcal A$ and $\mathcal B$, i.e. $\mathsf C\subset \mathcal A\times \mathcal B$

Message sequence of 10 values in [1, 6] Source alphabet $\mathcal{A} = \{1, 2, 3, 4, 5, 6\}$ Target alphabet $\mathcal{B} = \{0, 1\}^*$

Turn each value into its binary representation and concatenate

Turn each value into its binary representation and concatenate

Source symbol	1	2	3	4	5	6
Target symbol	1	10	11	100	101	110

Source sequence (3, 2, 1, 2, 4, 5, 1, 5, 6, 6)

(11, 10, 1, 10, 100, 101, 1, 101, 110, 110)

Target sequence 11101101001011101110110

Turn each value into its binary representation and concatenate

Source symbol	1	2	3	4	5	6
Target symbol	1	10	11	100	101	110

Source sequence (3, 2, 1, 2, 4, 5, 1, 5, 6, 6)

(11, 10, 1, 10, 100, 101, 1, 101, 110, 110)

Target sequence 1110110100101110110110

! Ensure the message can be reconstructed at the other end

Turn each value into a binary codeword and concatenate

Assign a 3 bits codeword to each outcome

Source symbol	1	2	3	4	5	6
Target symbol	001	010	011	100	101	110

Source sequence (3, 2, 1, 2, 4, 5, 1, 5, 6, 6)

(011, 010, 001, 010, 100, 101, 001, 101, 110, 110)

Target sequence 0110100010100101001010110110

Turn each value into a binary codeword and concatenate

Integer value x is encoded as x 1's, followed by a 0 as separator

Source symbol	1	2	3	4	5	6
Target symbol	10	110	1110	11110	111110	1111110

Source sequence (3, 2, 1, 2, 4, 5, 1, 5, 6, 6)

A coding system is a relation between A and B, i.e. $C \subset A \times B$

A coding system C is **singular** (or **lossy**) if there exist $a, a' \in A$ with $a \neq a'$ and $b \in B$ such that $(a, b) \in C$ and $(a', b) \in C$

A coding system C is **partial** if there exist $a \in A$ and no $b \in B$ such that $(a, b) \in C$

We consider coding systems, which we refer to as codes, such that each $a \in A$ is associated to **at most one** $b \in B$, and vice-versa each $b \in B$ is associated to **at most one** $a \in A$

Let C be a code for ${\mathcal A}$

If $(a, b) \in C$, we say that b is a **codeword** for a, and that a is **encoded** or **described** as b

We denote $L_C(a)$ the **length of the codeword** associated to *a* measured in bits if $\mathcal{B} = \{0, 1\}^*$

Transmit the outcome of 10 throws of a pair of dice via a binary (noiseless) channel

Message sequence of 10 values in [2, 12] Source alphabet $\mathcal{A} = \{2, 3, ..., 12\}$ Target alphabet $\mathcal{B} = \{0, 1\}^*$

Turn each value into a binary codeword and concatenate

Transmit the outcome of 10 throws of a pair of dice via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate

Assign a 4 bits codeword to each outcome

Source symbol		2	3	4	5	6
Target symbol		0010	0011	0100	0101	0110
Source symbol	7	8	9	10	11	12
Target symbol	0111	1000	1001	1010	1011	1100

Source sequence (3, 9, 7, 11, 8, 6, 9, 5, 11, 5)

 Transmit the outcome of 10 throws of a pair of dice via a binary (noiseless) channel

Turn each value into a binary codeword and concatenate

Assign a 4 bits codeword to each outcome

Source symbol		2	3	4	5	6
Target symbol		0000	0001	0010	0011	0100
Source symbol	7	8	9	10	11	12
Target symbol	0101	0110	0111	1000	1001	1010

Source sequence (3, 9, 7, 11, 8, 6, 9, 5, 11, 5)

 Transmit symbols x_1 and x_2 respectively with codes C_1 and C_2 by concatenating them, i.e. $C(x_1x_2) = C_1(x_1)C_2(x_2)$

We want C to be **non-singular** only one way to split $C(x_1x_2)$ into codewords $C_1(x_1)$ and $C_2(x_2)$

! Cannot use separator such as comma since that would be mapping into $\{0, 1, ","\}^*$ rather than $\{0, 1\}^*$

Transmit symbols x_1 and x_2 respectively with codes C_1 and C_2 by concatenating them, i.e. $C(x_1x_2) = C_1(x_1)C_2(x_2)$

We want C to be **non-singular** only one way to split $C(x_1x_2)$ into codewords $C_1(x_1)$ and $C_2(x_2)$

This is guaranteed if C₁ is such that no extension of a codeword can itself be a codeword Prefix code a.k.a. prefix-free code or instantaneous code

Conditional code

Transmit sequence of symbols $x_1, x_2, \ldots x_n$

- encode x_1 with C_1
- encode x_2 with C_{2,x_1} , a code that is allowed to depend on the value of x_1
- encode x_3 with $C_{2,(x_1,x_2)}$, a code that is allowed to depend on the value of x_1 and x_2

Transmit a collection of polygons

- encode the number of polygons *n*
- encode the number of vertices in each polygon as a list
- encode the coordinates of the vertices of each polygon as a list

Universal code

Encode positive integers when the upper bound cannot be determined apriori

Elias gamma coding for $x \ge 1$

- Let $n = \lfloor \log_2(x) \rfloor$ (i.e. $2^n \le x \le 2^{n+1}$)
- Write out *n* zeros
- Append the binary representation of x

Х	1	2	3	4	5	10	20
$C_E(x)$	1	010	011	00100	00101	0001010	000010100

 $L_{C_E}(x) = 2 \cdot \lfloor \log_2(x) \rfloor + 1$

Uniform code, a.k.a. fixed-length code Each symbol in \mathcal{A} is associated to a codeword of length k

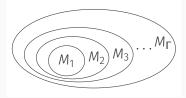
- $\cdot\,$ Order the elements of \mathcal{A} , e.g. lexicographic order
- Order bit-strings of length $k = \left\lceil \log_2 \left(\left| \mathcal{A} \right| \right) \right\rceil$
- Map elements to bit-strings

Sender and recipient need to agree on code being used in this case, that means agreeing on how to order elements

This is a **prefix code**, no codeword is a prefix of another It minimizes the worst-case codeword length (longest codeword is as short as possible)

Quasi-uniform code

Assume elements of \mathcal{A} are organized into a family of sets $M_1 \subset M_2 \cdots \subset M_{\Gamma}$ such that $M_{\gamma} \neq \emptyset$ and $\bigcup_{\gamma} M_{\gamma} = \mathcal{A}$



For element x in \mathcal{A}

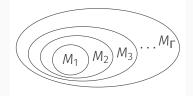
- Let γ be the smallest integer such that $x \in M_{\gamma}$
- Encode x as $C_l(\gamma)C_{\gamma}(x)$

 $C_l(\gamma)$ is a code over non-negative integers $C_{\gamma}(x)$ is equivalent to uniform code on M_{γ}

Quasi-uniform code

Assume elements of \mathcal{A} are organized into a family of sets $M_1 \subset M_2 \cdots \subset M_{\Gamma}$ such that $M_{\gamma} \neq \emptyset$ and $\bigcup_{\gamma} M_{\gamma} = \mathcal{A}$

Encode x as $C_l(\gamma)C_{\gamma}(x)$,



where γ is the smallest integer such that $x \in M_{\gamma}$

Luckiness principle

For any element *x*, encoding is not going to cost much more than with uniform code (extra $C_l(\gamma)$) If we are lucky and $x \in M_{\gamma}$ such that $\gamma \ll \Gamma$, we need substantially fewer bits to encode it If we are lucky we save a lot,

if we are not lucky we don't loose too much

Only very few elements can have short codes

Similar to probabilities, only very few elements can have high probabilities since they sum to one

For any code C for a finite alphabet \mathcal{A} , the codeword lengths must satisfy the inequality

$$\sum_{x \in \mathcal{A}} 2^{-L_{\mathcal{C}}(x)} \leq 1$$

Conversely, given codeword lengths satisfying this inequality, there exists a prefix code with these codeword lengths

Let *P* be a probability distribution over discrete alphabet A, there exists a code *C* such that for all $x \in A$

$$L_C(x) = \left\lceil -\log_2(P(x)) \right\rceil$$

How to design an optimal prefix code,

i.e. with minimum expected codeword lengths

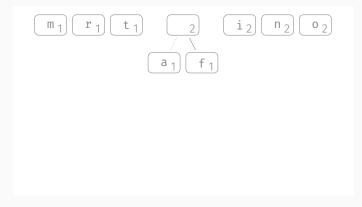
Given source alphabet A, where each symbol x_i has an associated weight w_i

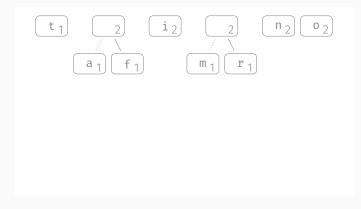
We want a code C such that for any other code C'

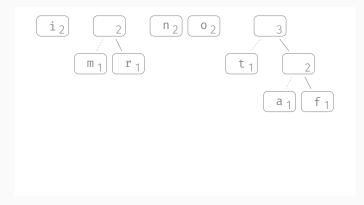
$$\sum_{x_i \in \mathcal{A}} w_i L_C(x_i) \leq \sum_{x_i \in \mathcal{A}} w_i L_{C'}(x_i)$$

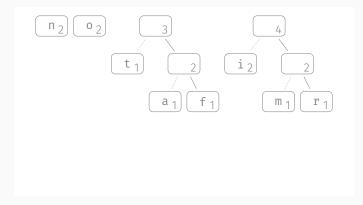
Simple algorithm

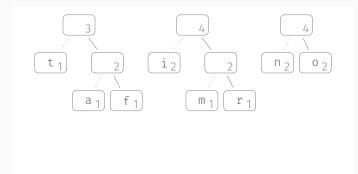
- Iteratively combine the two least frequent symbols
- Obtain variable-depth tree with source symbols as leaves
- $\cdot\,$ Read codeword for symbol along path from root to leaf

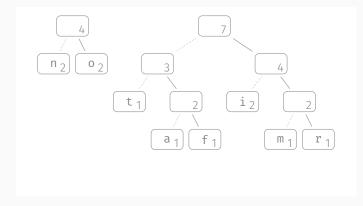


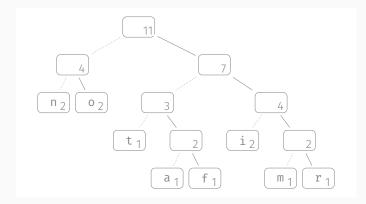






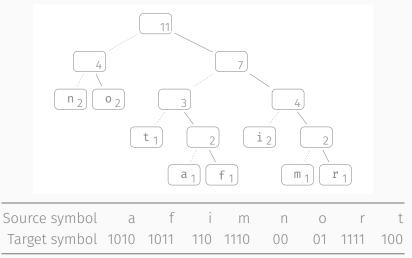






Huffman coding

Read codeword for symbol along path from root to leaf



Source symbol a f i m o r t Target symbol 1010 1011 110 1110 00 01 1111 100

Let's decode the following sequence

11000101101111111010101001100100

Source symbol a f i m o r t Target symbol 1010 1011 110 1110 00 01 1111 100

Let's decode the following sequence

110 00 1011 01 1111 1110 1010 100 110 01 00 information

Minimum Description Length principle

The **Kolmogorov complexity** of a sequence is the length of the shortest program that prints the sequence and then halts.

Consider the following two binary sequences of length 10 000

Program to print the first sequence

print '01110100110100100110...101100010' ; halt

Program to print the second sequence
||for i = 1 to 2500 ; do { print '0001' } ; halt

More regularity, less randomness, lower complexity

! Asymptotically, the programming language does not matter, as long as it is universal

The Kolmogorov complexity cannot be computed in general

There is no computer program that, for any given sequence *D*, returns the shortest program that prints *D* and halts Nor any program that returns the length of such a program

Assuming such a program exists leads to a contradiction

The Kolmogorov complexity cannot be computed in general

There is no computer program that, for any given sequence *D*, returns the shortest program that prints *D* and halts Nor any program that returns the length of such a program

Assuming such a program exists leads to a contradiction

To make it practical, consider more restricted description methods rather than general purpose computer languages

Given a set of models \mathcal{M} and dataset D find the model $M \in \mathcal{M}$ that compresses D most

Given a set of models \mathcal{M} and dataset Dfind the model $M \in \mathcal{M}$ that compresses D most i.e. model for which the description length is mimimized Hence the name Minimum Description Length (MDL)

Crude two-part version of the MDL principle

The best model $M \in \mathcal{M}$ to explain the data D is the one which minimizes the sum $L(M) + L(D \mid M)$, where

L(M) is the length of the description of the model $L(D \mid M)$ is the length of the description of the data encoded with the help of the model

Crude two-part version of the MDL principle

The best model $M \in \mathcal{M}$ to explain the data D is the one which minimizes the sum $L(M) + L(D \mid M)$

The best model achieves the best *lossless* compression Compression has to be lossless for fair comparison **Crude two-part version of the MDL principle** The best model $M \in \mathcal{M}$ to explain the data *D* is the one which minimizes the sum $L(M) + L(D \mid M)$

Find a balance between

complexity of the model and fit to the data

complex modelfits the data wellL(M) high $L(D \mid M)$ lowsimple modelfits the data poorlyL(M) low $L(D \mid M)$ high

Crude two-part version of the MDL principle The best model $M \in \mathcal{M}$ to explain the data *D* is the one which minimizes the sum $L(M) + L(D \mid M)$

MDL learning as data compression

When using the Minimum Description Length principle, as the name suggests, we care about code lengths, not actual codes We drop the rounding, ignore the integer requirements

$$L_C(X) = \left\lceil -\log_2(P(X)) \right\rceil$$

When using the Minimum Description Length principle, as the name suggests, we care about code lengths, not actual codes We drop the rounding, ignore the integer requirements

$$L_C(x) = -\log_2\left(P(x)\right)$$

Direct correspondence between probabilities and code lengths

Suppose *X* is distributed according to *P*, then among all possible codes, the code with codelengths

$$L_C(x) = -\log_2\left(P(x)\right)$$

on average gives the shortest encoding of outcomes of *P* For all probability distributions *P* and *Q* with $Q \neq P$

$$E_{P}\left[-\log_{2}\left(Q(X)\right)\right] > E_{P}\left[-\log_{2}\left(P(X)\right)\right]$$

The entropy of *P* is the expected number of bits needed to encode an outcome generated by *P* with optimal code

J. V. Stone. *Information Theory: A Tutorial Introduction*. Sebtel Press, 2013.

J. V. Stone. *Information Theory: A Tutorial Introduction*. arXiv: 1802.05968. 2018.

P. D. Grünwald. *The Minimum Description Length Principle*. The MIT Press, 2007.

P. D. Grünwald. A Tutorial Introduction to the Minimum Description Length Principle. arXiv: math/0406077. 2004.