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In the sleepy days when the provinces of France 
were still quietly provincial, matrices with Boolean 
entries were a favored occupation of aging professors 
at the universities of Bordeaux and Clermont-
Ferrand. But one day…

Gian-Carlo Rota
Foreword to Boolean matrix 

theory and applications by K. H. Kim, 1982

”
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PART I
DEFINITIONS AND THEORY
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MOTIVATING EXAMPLE

Images by John Tenniel, openclipart.org, and Wikipedia
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BINARY MATRIX
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BOOLEAN MATRIX 
FACTORISATION

1 1 0

1 1 1

0 1 1
( )

1 0

1 1

0 1( ) 1 1 0

0 1 1( )o=
long-haired
well-known

male

A      B      C

Alice & Bob: long-haired and well-known
Bob & Charles: well-known males
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MODULO-2 EXAMPLE
1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

( )
( )1 1 1 0 0

0 1 1 1 0
0 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

( )⊗=
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MATRIX FACTORISATIONS

≈

×
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DEFINITION

• A factorisation of matrix A represents it as a product of 
two (or more) factor matrices: A = BC

• A is n-by-m, B is n-by-k, and C is k-by-m

• k is the size (or rank) of the factorisation

• Factorisation can be exact (A = BC) or approximate 
(A ≈ BC)
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K RANK-1 FACTORISATIONS

A ≈ b1

c1

b2 bk

c2 ck

+ + … +
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BINARY MATRIX 
FACTORISATIONS

≈

o
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BINARY MATRIX 
FACTORISATIONS

• All involved matrices (A, B, and C) are binary (0/1)

• Loss function is sum of absolute differences 
                  |A – B×C| = ∑ij |aij - (B×C)ij|

• Or squared Frobenius

• The algebra is different for different factorisations

• We consider normal, modulo-2, and Boolean algebras 
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NORMAL ALGEBRA

• Algebra is normal (1+1 = 2)
⇒ B×C is not necessarily binary

Binary matrix factorisation under ℝ (RMF).
Given an n-by-m binary matrix A and integer k, find 
n-by-k and k-by-m binary matrices B and C such that 
|A – B×C| is minimised.
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BOOLEAN ALGEBRA

• Algebra is Boolean (1+1 = 1)
⇒ B○C is always binary

Boolean matrix factorisation (BMF).
Given an n-by-m binary matrix A and integer k, find 
n-by-k and k-by-m binary matrices B and C such that 
|A – B○C| is minimised.
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MODULO-2 ALGEBRA

• Algebra is modulo-2 (1+1 = 0)
⇒ B⊗C is always binary

Binary matrix factorisation under 
modulo-2 algebra (XMF).
Given an n-by-m binary matrix A and integer k, find 
n-by-k and k-by-m binary matrices B and C such that 
|A – B⊗C| is minimised.
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OTHER OPTIONS

• Other definitions of underlying algebra are possible

• Example: define addition to be logical implication

• Non-commutative

• A + B ≠ B + A

• (AB)T ≠ BTAT

0 1
0
1

1 1
0 1
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COMPARISON

RMF BMF XMF

Addition

Algebra

Closed?

1+1=2 1+1=1 1+1=0

semi-ring semi-ring field

not closed closed closed
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DIFFERENT VIEWS OF BINARY 
DATA
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BIPARTITE GRAPHS

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C 1

2

3

A

B

C

G(A)A
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SETS AND COLLECTIONS

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C

1 3

2
A C

B

U(A) is an induced universe (rows)
C(A) is an induced collection of sets (columns)
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TILING & CLUSTERING AS 
MATRIX FACTORISATIONS

Image by Wikipedia user PJM
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K-MEANS AS MATRIX 
FACTORISATION

• Given m data points (in Rn), partition them in k clusters such that 

is minimised

• Equivalently, minimise ||X – MC||2, where

• X is the data (n-by-m), M (n-by-k) has the centroids as its 
columns, and C (k-by-m) is a cluster assignment matrix 

• Each column of C has exactly one 1, and rest is 0s

P
k

i=1

P
xj2Ci

k
x

j

- µ

i

k22
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TILING AS MATRIX 
FACTORISATION

• Maximum k-tiling: find at most k tiles such that the tiling has 
maximum area [1]

• Data is binary matrix, tiles are submatrices full of 1s

• Area of a tiling is the number of 1s in the data that belong to at least 
one tile

• We turn this to minimum-error tiling

•  Minimise the number of 1s in the data that do not belong to any tile

[1]	
 F. Geerts et al., Tiling databases, in: DS '04, 77–122.
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TILING AS MATRIX 
FACTORISATION

• We want to find factor matrices A and B such that (AB)ij = 1 iff 
element (i, j) belongs to at least one tile

• Minimise |X – AB|

• Single tile is an outer product of two binary vectors: abT 

• bj = 1 if an item j belongs to the tile; ai = 1 if a transaction i 
belongs to the tile

• But how to combine the tiles?
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COMBINING THE TILES

• The problem:                  is not necessarily binary

• RMF: |X – AB| will add an error every time xij = 1 belongs 
to more than one tile

• BMF: don’t count multiplicity (1+1 = 1)

• XMF: consider parity (1+1 = 0)

Pk
i=1 aib

T
i
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RNF, BMF, AND XMF AS TILING

• Unlike tiling, all methods allow holes in the tiles

• BMF is otherwise like tiling

• RMF penalises for overlapping tiles

• XMF removes the overlapping part of pairs of tiles

• For nested tiles, this would be removing exceptional areas
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MATRIX RANKS

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( )

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( )



Pauli Miettinen 24 September 2012

DEFINITIONS
Normal matrix rank.
The rank of a matrix A, rankR(A), is the least integer k 
such that A can be expressed exactly with a 
decomposition of size k.

Boolean matrix rank.
The Boolean rank of a binary matrix A, rankB(A), is 
the least integer k such that A can be expressed exactly 
with a Boolean decomposition of size k.
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DEFINITIONS
Boolean matrix rank.
The Boolean rank of a binary matrix A, rankB(A), is 
the least integer k such that A can be expressed exactly 
with a Boolean decomposition of size k.

Modulo-2 matrix rank.
The modulo-2 rank of a binary matrix A, rankX(A), is 
the least integer k such that A can be expressed exactly 
with a modulo-2 decomposition of size k.
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DEFINITIONS
Modulo-2 matrix rank.
The modulo-2 rank of a binary matrix A, rankX(A), is 
the least integer k such that A can be expressed exactly 
with a modulo-2 decomposition of size k.

Binary matrix rank over normal algebra.
The binary rank of a binary matrix A, rankN(A), is the 
least integer k such that A can be expressed exactly with 
a binary decomposition (with normal algebra) of size k.
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EXAMPLE OF BOOLEAN RANK

1 1 0

1 1 1

0 1 1
( )

1 0

1 1

0 1( ) 1 1 0

0 1 1( )o=

rankB(A) = 2
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EXAMPLE OF XOR RANK
1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

( )
( )1 1 1 0 0

0 1 1 1 0
0 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

( )⊗=

rankX(A) = 3
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EXAMPLE OF BINARY RANK

1 1 0

1 1 0

0 1 1
( )

1 0

1 0

0 1( ) 1 1 0

0 1 1( )×=

rankN(A) = 2
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COMPARISON OF RANKS

• How do these ranks compare?

• Is one always the smallest? 

• Is one always the largest?

• How big the differences can be?

• How about the normal rank?
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BOOLEAN VS NORMAL

• Incommensurable [1]

• For some A, rankR(A) < rankB(A)

• For some A, rankR(A) > rankB(A)

• Extrema:

• Exists n-by-n matrix A: rankB(A) = log2(rankR(A)) [1]

• Exists n-by-n matrix A, when n ➝ ∞: rankR(A) = rankB(A) / 2 [2]
[1]	
 S.D. Monson et al., A Survey of Clique and Biclique Coverings 
and Factorizations of (0,1)-Matrices, Bull. ICA. 14 (1995), 17–86.
[2]	
 P. Kaski, personal communication.

As good as it gets

?
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BINARY VS THE OTHERS

• Binary rank is always the biggest

• rankN(A) ≥ rankB(A) for all A [1]

• rankN(A) ≥ rankX(A) for all A

• All use binary numbers and binary doesn’t allow overlap

• rankN(A) ≥ rankR(A) for all A [1]

• Both use the same arithmetic
[1]	
 D.A. Gregory, N.J. Pullman, Semiring rank: Boolean rank and nonnegative 
rank factorizations, J. Combin. Inform. System Sci. 8 (1983) 223–233.
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SUMMARY

Normal Boolean XOR Binary

Normal

Boolean

XOR

Binary

= ⋛ ⋛ ≤

⋛ = ⋛ ≤

⋛ ⋛ = ≤

≥ ≥ ≥ =
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DIFFERENT VIEWS TO THE 
BOOLEAN RANK
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BOOLEAN RANK AND 
BICLIQUES

• The Boolean rank of a matrix 
A is the least number of 
complete bipartite 
subgraphs needed to 
cover every edge of the 
induced bipartite graph G(A)

1

2

3

A

B

C
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1

2

3

BOOLEAN RANK AND 
BICLIQUES

1 0

1 1

0 1( )

1

2

3

A

B

C

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C

1 1 0

0 1 1( )o=

A B C
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BOOLEAN RANK AND SETS

• The Boolean rank of a matrix A is 
the least number of subsets 
of U(A) needed to cover 
every set of the induced 
collection C(A)

• For every C in C(A), if S is the 
collection of subsets, have 
subcollection SC such that

1 3

2

S
S2SC

S = C
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1

2

3

A

B

C

1

2

3

1 0

1 1

0 1( )

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C

1 1 0

0 1 1( )o=

A B C

1 3

2

ALL EQUIVALENT
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XOR AND BINARY

• XOR rank

• Replace set union with symmetric difference and covering with 
parity

• Binary rank

• Non-overlapping subsets / bicliques are sufficient, not necessary

• Clustering
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XOR RANK EXAMPLE
1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

( )
( )1 1 1 0 0

0 1 1 1 0
0 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

( )⊗=
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BINARY RANK EXAMPLE

1 1 0

1 1 0

0 1 1
( )

1 0

1 0

0 1( ) 1 1 0

0 1 1( )×=
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A NOTE ON INVERSES

1 1 0

1 1 1

0 1 1
( ) 0 1 1

1 1 1

1 1 0
( )

1 0 0

0 1 0

0 0 1
( )

⊗

=
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A NOTE ON INVERSES

• Every full-XOR-rank matrix has an inverse 

• Can be found e.g. using Gauss–Jordan elimination

• Only permutation matrices have an inverse in Boolean algebra 
[1]

• Only permutation matrices have binary inverses under 
normal algebra

[1]	
 K.H. Kim, Boolean matrix theory and applications, 
Marcel Dekker, 1982, p. 105.
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FINDING THE RANKS

• XOR rank: polynomial time

• Standard Gaussian elimination over modulo-2 arithmetic

• Boolean rank: NP-hard [1]

• As hard to approximate as the clique (Ω(n1–ε) for all ε > 0) [2]

• Binary rank: Unknown

• Restriction to non-overlapping factors is NP-hard (clustering) [3]
[1]	
 D.S. Nau et al., A Mathematical Analysis of Human Leukocyte 
Antigen Serology, Math. Biosci. 40 (1978) 243–270.
[2]	
 H.U. Simon, On approximate solutions for combinatorial 
optimization problems, SIAM J. Discrete Math. 3 (1990) 294–310.
[3]	
 M. et al., The Discrete Basis Problem, IEEE Trans. Knowl. Data En. 
20 (2008) 1348–1362.
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BOOLEAN RANK AND TILING

• The Boolean rank of a matrix also tells us the minimum number of 
tiles needed to completely cover the matrix

• Minimum number of tiles can be approximated within 
O(log nm) [1, Thm. 2]

• This requires an oracle that gives the largest-area tile [1]

• Without the oracle, the reduction requires exponential time

• Except for certain sparse matrices…

[1]	
 F. Geerts et al., Tiling databases, in: DS '04, 77–122.
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MINIMUM-ERROR BMF

• NP-hard to approximate within any polynomially computable 
function [1]

• Because it’s NP-hard to recognise the zero-error case

• NP-hard to approximate within additive factor of 
max{∜n, ∜m} [1]

[1]	
 M., Matrix Decomposition Methods for Data Mining: Computational 
Complexity and Algorithms, PhD thesis, U. Helsinki, 2009.
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MINIMUM-ERROR 
PROJECTIONS

• Problem: Given the data matrix A and one factor matrix 
(B), find the other factor matrix (C) that minimises the error

• Per column: given a column vector a and a matrix B, find a 
column vector c such that a ≈ Bc

• ”Binary programming”

• Needed for alternating projections type algorithms (ALS)
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BOOLEAN PROJECTION, OR 
±PSC

• The minimum-error projection under Boolean algebra is 
equivalent to the following problem

Positive-Negative Partial Set Cover (±PSC).
Given a triple (P, N, Q), where P and N are disjoint sets 

and Q ⊆ 2P∪N, find a subcollection D ⊆ Q that minimises 

|P \ (∪D)| + |N ∩ (∪D)|.
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+ +

++

EXAMPLE

-

-

-
-

-

- 0
0
1
1
1
1
0
0
0
0

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a B

defines 
the sign

defines 
the sets
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COMPLEXITY OF ±PSC

• NP-hard to approximate within Ω(2log1-ε|P|) for any ε > 0 [1]

• There exists a polynomial-time approximation algorithm that 
achieves 2√[(|Q|+|P|) log |P|] approximation ratio [1,2]
⇒ In Boolean case, even simple projections are hard

[1]	
 P. Miettinen, On the positive-negative partial set cover 
problem, Inform. Process. Lett. 108 (2008) 219–221.
[2]	
 D. Peleg, Approximation algorithms for the Label-CoverMAX 
and Red-Blue Set Cover problems, J. Discrete Alg. 5 (2007) 55–64.
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THE BINARY CASE

• The zero-error case is NP-hard

• Simple reduction from Exact Cover by 3-sets (X3C)

• A variant is the Closest Vector problem (CVP), where columns 
of B have to be linearly independent and the vectors take 
integer values

• CVP is NP-hard to approximate within n1/loglog n [1]

[1]	
 I. Dinur et al., Approximating CVP to Within Almost-Polynomial 
Factors is NP-Hard, Combinatorica. 23 (2003) 205–243.
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THE MODULO-2 CASE

• The problem of finding binary vector x such that, for given a 
and B, the Hamming distance between a and B⊗x is 
minimised, is known as the Closest Codeword problem

• NP-hard to approximate to within any constant factor [1]

• And quasi-NP-hard to approximate within 2logεn for 
0 < ε < 1/2

• Admits polynomial-time n/log(n) factorisation [2]
[1]	
 S. Arora et al., The Hardness of Approximate Optima in Lattices, 
Codes, and Systems of Linear Equations, in: FOCS '93, 724–733.
[2]	
 N. Alon et al., Deterministic Approximation Algorithms for the 
Nearest Codeword Problem, in: APPROX RANDOM '09, 339–351.
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SUMMARY
RMF BMF XMF

Rank

Min. error 
decomp. 

Closest 
projection

Projection 
approx.

?
NP-hard even 

to approximate Polynomial

?
NP-hard even 

to approximate ?

NP-hard
NP-hard to 

approx. 
Ω(2log1-ε|P|)

NP-hard to 
approx. w/ 

constant factor

?
  2√[(|Q|+|P|)  
       × log |P|]

O(n/log(n))
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OPEN PROBLEMS

?
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RANKS

• P1.1 What is the largest possible ratio rankB(A)/rankR(A)

• Best known is 2 

• P1.2 What are the extrema of the XOR rank w.r.t. the other 
ranks?

• It’s incommensurable to normal and Boolean rank
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COMPLEXITY

• P1.3 Is binary rank NP-hard to compute?

• P1.4 Is RMF NP-hard?

• Probably, given that NMF is [1]

• P1.5 Is XMF NP-hard?

• P1.6 What’s the approximability of binary projections?

• P1.7 What’s the approximability of maximum similarity problems?
[1]	
 S.A. Vavasis, On the Complexity of Nonnegative Matrix 
Factorization, SIAM J. Optim. 20 (2010) 1364–1377.
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MISCELLANEOUS

• P1.8 Are there meaningful (in data mining) definitions of the 
addition (or multiplication) not covered here?
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PART II
ALGORITHMS AND 

EXTENSIONS
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1. Rank-1 factorisations
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4. Algorithms for XMF
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7. Open problems
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RANK-1 DECOMPOSITIONS

≈
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RANK-1 DECOMPOSITIONS

• In rank-1 decompositions, addition doesn’t matter

• We can also use squared Frobenius for distance

• One could hope to use rank-1 approximations as building 
blocks for higher-rank decompositions

• Problem: good rank-1 decomposition does not need to be a 
part of any good rank-2 decompositions
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EXAMPLE

1 1 0

1 1 1

0 1 1
( )

1 0

1 1

0 1( ) 1 1 0

0 1 1( )o=
1

1

1
() 1 1 1( )o

≈
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PROXIMUS

• The PROXIMUS algorithm [1] finds the binary rank-1 
factorisation using iterative updates

• To find b and c such that A ≈ bcT, fix c and set

and similarly for b fixed

• Proper initialisation is important
[1]	
 M. Koyutürk, A. Grama, PROXIMUS: a framework for analyzing 
very high dimensional discrete-attributed datasets, in: KDD '03, 147–
156.

bi =

�
1, if 2(Ac)i > kck22
0, otherwise
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IP, LP, AND MAX FLOW 
ALGORITHMS

• Minimum-error rank-1 binary factorisation can be presented as an 
integer programming 

• Can be relaxed to a linear program that gives an upper bound for the 
error

• This LP is totally unimodular ⇒ solution is binary

• The solution is a 2-approximation 

• A regularised version can be approximated with a max flow algorithm
B.-H. Shen et al., Mining Discrete Patterns via Binary Matrix 
Factorization, in: KDD '09, 757–765.
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NORMAL ALGEBRA

min J(B,C) =
X

i,j

(Aij - (BC)ij)
2

s.t. B2
ij - Bij = 0

C2
ij -Cij = 0

P
i,j

�
Aij

-
�
✓(B

- b)✓(
C- c)

�
ij

�2
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PROXIMUS

• PROXIMUS uses rank-1 factorisations to make a hierarchical 
factorisation of the full data

• Matrix rows are divided into two sets based on the column factor

• Rank-1 decomposition is applied to those two sets separately (or 
recursion is stopped)

• Ensures that columns of B don’t overlap ⇒ representation is binary

M. Koyutürk, A. Grama, PROXIMUS: a framework for analyzing very 
high dimensional discrete-attributed datasets, in: KDD '03, 147–156.
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RMF AND NMF

Boundedness [1]. If X is a matrix taking values from [0,1] 
and if X admits a rank-k factorisation to nonnegative matrices, 
then there exists a nonnegative rank-k factorisation such that 

no value in the factor matrices is larger than 1. 

[1]	
 Z.-Y. Zhang et al., Binary matrix factorization for analyzing gene 
expression data, Data Min. Knowl. Discov. 20 (2010) 28–52.
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NON-LINEAR PROGRAMMING

min J(B,C) =
X

i,j

(Aij - (BC)ij)
2

s.t. B2
ij - Bij = 0

C2
ij -Cij = 0

X

i,j

(Aij - (BC)ij)
2 +

1

2
�
�
(B2

ij - Bij) + (C2
ij -Cij)

�

Solved by minimising (alternatively for B and C):

Z.-Y. Zhang et al., Binary matrix factorization for analyzing gene 
expression data, Data Min. Knowl. Discov. 20 (2010) 28–52.
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THRESHOLD METHOD

• Change the objective to

• θ(X) is the (element-wise) Heaviside function

• Can be optimised using gradient descent after the Heaviside is 
replaced with �(x) = 1/

�
1+ e-�x

�

P
i,j

�
Aij -

�
✓(B- b)✓(C- c)

�
ij

�2

Z.-Y. Zhang et al., Binary matrix factorization for analyzing gene 
expression data, Data Min. Knowl. Discov. 20 (2010) 28–52.
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BOOLEAN ALGEBRA

Images by Wikipedia users Arab Ace and  Sheilalau
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THE BOOLEAN PROJECTION

• Peleg’s algorithm approximates within 2√[(k+a(log a)]  [1]

• a is the maximum number of 1s in A’s columns

• Optimal solution

• Either an O(2kknm) exhaustive search [1], or an integer program 
[2]

• Greedy algorithm: select each column of B if it improves the 
residual error [1]

[1]	
 M., Matrix Decomposition Methods for Data Mining: Computational 
Complexity and Algorithms, PhD thesis, U. Helsinki, 2009.
[2]	
 H. Lu et al., Optimal Boolean Matrix Decomposition: Application 
to Role Engineering, in: ICDE '08, 297–306.
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THE ASSO ALGORITHM

• Heuristic – too many hardness results to hope for good 
provable results in any case

• Intuition: If two columns share a factor, they have 1s in 
same rows

• Noise makes detecting this harder

• Pairwise row association rules reveal (some of) the factors

M. et al., The Discrete Basis Problem, IEEE Trans. Knowl. Data En. 20 
(2008) 1348–1362.
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THE ASSO ALGORITHM

1. Compute pairwise association accuracies between rows of A

2. Round these (from a user-defined point t) to get a binary    
n-by-n matrix of candidate columns

3. Select greedily the candidate column that covers most of the 
not-yet covered 1s of A

4. Mark the 1s covered by the selected vector and return to 3 
or quit if enough factors have been selected

M. et al., The Discrete Basis Problem, IEEE Trans. Knowl. Data En. 20 
(2008) 1348–1362.



Pauli Miettinen 24 September 2012

≈
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M., Matrix Decomposition Methods for Data Mining: Computational 
Complexity and Algorithms, PhD thesis, U. Helsinki, 2009, p. 72.
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THE PANDA ALGORITHM

• Intuition: every good factor has a noise-free core

• Two-phase algorithm:
   1. Find error-free core pattern (maximum area itemset/tile)
   2. Extend the core with noisy rows/columns

• The core patterns are found using a greedy method

• The 1s already belonging to some factor/tile are removed 
from the residual data where the cores are mined

C. Lucchese et al., Mining Top-K Patterns from Binary Datasets in 
presence of Noise, in: SDM '10, 165–176.
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EXTENDING CORES IN 
PANDA

• The cores are extended in a greedy manner

• A new column is added to a row factor in c

• All rows not yet in the corresponding column factor b are 
tried

• As extending a core always covers some 0s, the quality is 
decided by trying to minimise the number of 1s in factors b 
and c plus the noise

C. Lucchese et al., Mining Top-K Patterns from Binary Datasets in 
presence of Noise, in: SDM '10, 165–176.
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NOTES ON PANDA

• Can automatically choose the rank of the decomposition

• Parameter-free

• Uses sorting to speed up the computation

• Consider the most promising candidates first

• Can be randomised

C. Lucchese et al., Mining Top-K Patterns from Binary Datasets in 
presence of Noise, in: SDM '10, 165–176.



Pauli Miettinen 24 September 2012

EXAMPLE

≈

o
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MODULO-2 ALGEBRA

X
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NO SPECIAL ALGORITHMS

• That I’m aware of, at least

• One could truncate any rank-k decomposition

• No guarantees on quality, might cause more error than the 
trivial decomposition  

• No Eckart–Young theorem
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SELECTING THE RANK

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( )

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
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PRINCIPLES OF GOOD K

• Goal: Separate noise from structure

• We assume data has correct type of structure

• There are k factors explaining the structure

• Rest of the data does not follow the structure (noise)

• But how to decide where structure ends and noise starts? 
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WHAT HAS BEEN DONE 
BEFORE?

• Model order selection for matrix factorisations is studied 
before (mostly with SVD/PCA)

• Methods such as Guttman–Kaiser criterion [see 1] or Cattell’s 
scree test [2] are not very good

• Poor performance and need for subjective decisions

[1]	
 K.A. Yeomans, P.A. Golder, The Guttman–Kaiser criterion as a 
predictor of the number of common factors, The Statistician 31 
(1982) 221–229.
[2]	
 R.B. Cattell, The Scree Test For The Number Of Factors, 
Multivar. Behav. Res. 1 (1966) 245–276.
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CROSS VALIDATION

• Idea: hold part of the data, learn a model on the remaining, and fit the 
model to the withheld data

• Problems with matrix factorisations:

• If we hold out only rows (or columns), no cost for fitting higher-order 
factorisations

• If we hold out both, fitting the model becomes hard

• Bi-cross-validation [1] does that, but requires singular data matrix and 
optimal projections

[1]	
 A.B. Owen, P.O. Perry, Bi-cross-validation of the SVD and the 
nonnegative matrix factorization, Ann. Appl. Stat. 3 (2009) 564–594.



Pauli Miettinen 24 September 2012

MINIMUM TRANSFER COST 
PRINCIPLE

• A variation of cross validation

• The withheld rows are mapped to their closest pairs in 
training data

• For evaluation, the rows are represented using the 
representation of their pairs in training data
⇒ Penalises for over-fitting

M. Frank et al., The Minimum Transfer Cost Principle for Model-Order 
Selection, in: ECML PKDD '11, 423–438.



Pauli Miettinen 24 September 2012

MINIMUM DESCRIPTION 
LENGTH PRINCIPLE

• The best model (order) is the one that allows you to explain your 
data with least number of bits

• Two-part (crude) MDL: the cost of model L(H) plus the cost of 

data given the model L(D | H)

• Problem: how to do the encoding

• Has been done for BMF [1], similar encodings work for other 
binary factorisations 

[1]     M., J. Vreeken, Model Order Selection for Boolean Matrix 
Factorization, in: KDD '11, 51–59.
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FITTING BMF TO MDL

≈

o

⊗=

B �CA E

•MDL requires exact representation

o
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FITTING BMF TO MDL

o

model L(H)

⊗

B �C E

•Two-part MDL: minimise L(H) + L(D | H)

data given model 
L(D | H)
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EXAMPLE: ASSO & MDL
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M., J. Vreeken, Model Order Selection for Boolean Matrix 
Factorization, in: KDD '11, 51–59.
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SPARSE MATRICES
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MOTIVATION

• Many real-world binary matrices are sparse

• Representing sparse matrices with sparse factors is desirable

• Saves space, improves usability, …

• Sparse matrices should be computationally easier 
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SPARSE FACTORISATIONS

• Any binary matrix A that admits rank-k BMF has factorisation 
to matrices B and C such that the total number of 1s in B and 
C is at most twice that of A  [1]

• Can be extended to approximate factorisations

• Tight result (consider a case when A has exactly one 1)

• Holds also for exact RMF factorisations

[1]	
 M., Sparse Boolean Matrix Factorizations, in: ICDM '10, 935–
940.
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APPROXIMATING THE 
BOOLEAN RANK

• Recall: we have log(n) approximation given an oracle

• We say n-by-m binary matrix A is log(n) uniformly sparse if 
each column of A has at most log(n) 1s

Theorem [1]. The Boolean rank of a log(n) uniformly sparse 
binary matrix A can be approximated within log(n).

[1]	
 M., Sparse Boolean Matrix Factorizations, in: ICDM '10, 935–
940.
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PROOF

• Each RHS node has ≤ log(n) 
neighbours
⇒ Optimum solution needs

    ≥ n/log(n) bicliques

• If we use n bicliques we get
n/OPT ≤ n/(n/log(n)) 
           = log(n)             ⃞
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EXTENSIONS

• We can approximate the Maximum k-tiling for log(n) uniformly 
sparse matrices within e/(e – 1)

• If we have at most log(n) columns that have more than log(n) 1s, 
we can still approximate the rank within log2(n) 

• Both results require more complex reduction to the Set Cover 
problem [1]

• Will also work on dense matrices, but will take exponential time
[1]	
 R. Bělohlávek, V. Vychodil, Discovery of optimal factors in binary 
data via a novel method of matrix decomposition, J. Comput. Syst. Sci. 
76 (2010) 3–20.
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OPEN PROBLEMS

?
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ALGORITHMS

• P2.1 Are there good algorithms for XMF?

• P2.2 Can we use the sparsity to really help us?
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MODEL ORDER SELECTION

• P2.3 How hard is it to minimise the MDL score directly?

• Depends on the encoding, obviously

• P2.4 Can we use binary methods to predict missing values 
and would these be better than continuous methods?
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