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In the sleepy days when the provinces of France 
were still quietly provincial, matrices with Boolean 
entries were a favored occupation of aging professors 
at the universities of Bordeaux and Clermont-
Ferrand. But one day…

Gian-Carlo Rota
Foreword to Boolean matrix 

theory and applications by K. H. Kim, 1982

”
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PART I
DEFINITIONS AND THEORY
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MOTIVATING EXAMPLE

Images by John Tenniel, openclipart.org, and Wikipedia
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BINARY MATRIX
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BOOLEAN MATRIX 
FACTORISATION

1 1 0

1 1 1

0 1 1
( )

1 0

1 1

0 1( ) 1 1 0

0 1 1( )o=
long-haired
well-known

male

A      B      C

Alice & Bob: long-haired and well-known
Bob & Charles: well-known males
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MODULO-2 EXAMPLE
1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

( )
( )1 1 1 0 0

0 1 1 1 0
0 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

( )⊗=
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MATRIX FACTORISATIONS

≈

×
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DEFINITION

• A factorisation of matrix A represents it as a product of 
two (or more) factor matrices: A = BC

• A is n-by-m, B is n-by-k, and C is k-by-m

• k is the size (or rank) of the factorisation

• Factorisation can be exact (A = BC) or approximate 
(A ≈ BC)
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K RANK-1 FACTORISATIONS

A ≈ b1

c1

b2 bk

c2 ck

+ + … +
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BINARY MATRIX 
FACTORISATIONS

≈

o
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BINARY MATRIX 
FACTORISATIONS

• All involved matrices (A, B, and C) are binary (0/1)

• Loss function is sum of absolute differences 
                  |A – B×C| = ∑ij |aij - (B×C)ij|

• Or squared Frobenius

• The algebra is different for different factorisations

• We consider normal, modulo-2, and Boolean algebras 
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NORMAL ALGEBRA

• Algebra is normal (1+1 = 2)
⇒ B×C is not necessarily binary

Binary matrix factorisation under ℝ (RMF).
Given an n-by-m binary matrix A and integer k, find 
n-by-k and k-by-m binary matrices B and C such that 
|A – B×C| is minimised.
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BOOLEAN ALGEBRA

• Algebra is Boolean (1+1 = 1)
⇒ B○C is always binary

Boolean matrix factorisation (BMF).
Given an n-by-m binary matrix A and integer k, find 
n-by-k and k-by-m binary matrices B and C such that 
|A – B○C| is minimised.
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MODULO-2 ALGEBRA

• Algebra is modulo-2 (1+1 = 0)
⇒ B⊗C is always binary

Binary matrix factorisation under 
modulo-2 algebra (XMF).
Given an n-by-m binary matrix A and integer k, find 
n-by-k and k-by-m binary matrices B and C such that 
|A – B⊗C| is minimised.



Pauli Miettinen 24 September 2012

OTHER OPTIONS

• Other definitions of underlying algebra are possible

• Example: define addition to be logical implication

• Non-commutative

• A + B ≠ B + A

• (AB)T ≠ BTAT

0 1
0
1

1 1
0 1
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COMPARISON

RMF BMF XMF

Addition

Algebra

Closed?

1+1=2 1+1=1 1+1=0

semi-ring semi-ring field

not closed closed closed
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DIFFERENT VIEWS OF BINARY 
DATA
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BIPARTITE GRAPHS

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C 1

2

3

A

B

C

G(A)A
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SETS AND COLLECTIONS

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C

1 3

2
A C

B

U(A) is an induced universe (rows)
C(A) is an induced collection of sets (columns)
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TILING & CLUSTERING AS 
MATRIX FACTORISATIONS

Image by Wikipedia user PJM
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K-MEANS AS MATRIX 
FACTORISATION

• Given m data points (in Rn), partition them in k clusters such that 

is minimised

• Equivalently, minimise ||X – MC||2, where

• X is the data (n-by-m), M (n-by-k) has the centroids as its 
columns, and C (k-by-m) is a cluster assignment matrix 

• Each column of C has exactly one 1, and rest is 0s

P
k

i=1

P
xj2Ci

k
x

j

- µ

i

k22
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TILING AS MATRIX 
FACTORISATION

• Maximum k-tiling: find at most k tiles such that the tiling has 
maximum area [1]

• Data is binary matrix, tiles are submatrices full of 1s

• Area of a tiling is the number of 1s in the data that belong to at least 
one tile

• We turn this to minimum-error tiling

•  Minimise the number of 1s in the data that do not belong to any tile

[1]	

 F. Geerts et al., Tiling databases, in: DS '04, 77–122.
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TILING AS MATRIX 
FACTORISATION

• We want to find factor matrices A and B such that (AB)ij = 1 iff 
element (i, j) belongs to at least one tile

• Minimise |X – AB|

• Single tile is an outer product of two binary vectors: abT 

• bj = 1 if an item j belongs to the tile; ai = 1 if a transaction i 
belongs to the tile

• But how to combine the tiles?
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COMBINING THE TILES

• The problem:                  is not necessarily binary

• RMF: |X – AB| will add an error every time xij = 1 belongs 
to more than one tile

• BMF: don’t count multiplicity (1+1 = 1)

• XMF: consider parity (1+1 = 0)

Pk
i=1 aib

T
i
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RNF, BMF, AND XMF AS TILING

• Unlike tiling, all methods allow holes in the tiles

• BMF is otherwise like tiling

• RMF penalises for overlapping tiles

• XMF removes the overlapping part of pairs of tiles

• For nested tiles, this would be removing exceptional areas
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MATRIX RANKS

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( )

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( )
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DEFINITIONS
Normal matrix rank.
The rank of a matrix A, rankR(A), is the least integer k 
such that A can be expressed exactly with a 
decomposition of size k.

Boolean matrix rank.
The Boolean rank of a binary matrix A, rankB(A), is 
the least integer k such that A can be expressed exactly 
with a Boolean decomposition of size k.
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DEFINITIONS
Boolean matrix rank.
The Boolean rank of a binary matrix A, rankB(A), is 
the least integer k such that A can be expressed exactly 
with a Boolean decomposition of size k.

Modulo-2 matrix rank.
The modulo-2 rank of a binary matrix A, rankX(A), is 
the least integer k such that A can be expressed exactly 
with a modulo-2 decomposition of size k.
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DEFINITIONS
Modulo-2 matrix rank.
The modulo-2 rank of a binary matrix A, rankX(A), is 
the least integer k such that A can be expressed exactly 
with a modulo-2 decomposition of size k.

Binary matrix rank over normal algebra.
The binary rank of a binary matrix A, rankN(A), is the 
least integer k such that A can be expressed exactly with 
a binary decomposition (with normal algebra) of size k.
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EXAMPLE OF BOOLEAN RANK

1 1 0

1 1 1

0 1 1
( )

1 0

1 1

0 1( ) 1 1 0

0 1 1( )o=

rankB(A) = 2
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EXAMPLE OF XOR RANK
1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

( )
( )1 1 1 0 0

0 1 1 1 0
0 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

( )⊗=

rankX(A) = 3
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EXAMPLE OF BINARY RANK

1 1 0

1 1 0

0 1 1
( )

1 0

1 0

0 1( ) 1 1 0

0 1 1( )×=

rankN(A) = 2
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COMPARISON OF RANKS

• How do these ranks compare?

• Is one always the smallest? 

• Is one always the largest?

• How big the differences can be?

• How about the normal rank?
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BOOLEAN VS NORMAL

• Incommensurable [1]

• For some A, rankR(A) < rankB(A)

• For some A, rankR(A) > rankB(A)

• Extrema:

• Exists n-by-n matrix A: rankB(A) = log2(rankR(A)) [1]

• Exists n-by-n matrix A, when n ➝ ∞: rankR(A) = rankB(A) / 2 [2]
[1]	

 S.D. Monson et al., A Survey of Clique and Biclique Coverings 
and Factorizations of (0,1)-Matrices, Bull. ICA. 14 (1995), 17–86.
[2]	

 P. Kaski, personal communication.

As good as it gets

?
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BINARY VS THE OTHERS

• Binary rank is always the biggest

• rankN(A) ≥ rankB(A) for all A [1]

• rankN(A) ≥ rankX(A) for all A

• All use binary numbers and binary doesn’t allow overlap

• rankN(A) ≥ rankR(A) for all A [1]

• Both use the same arithmetic
[1]	

 D.A. Gregory, N.J. Pullman, Semiring rank: Boolean rank and nonnegative 
rank factorizations, J. Combin. Inform. System Sci. 8 (1983) 223–233.
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SUMMARY

Normal Boolean XOR Binary

Normal

Boolean

XOR

Binary

= ⋛ ⋛ ≤

⋛ = ⋛ ≤

⋛ ⋛ = ≤

≥ ≥ ≥ =
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DIFFERENT VIEWS TO THE 
BOOLEAN RANK
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BOOLEAN RANK AND 
BICLIQUES

• The Boolean rank of a matrix 
A is the least number of 
complete bipartite 
subgraphs needed to 
cover every edge of the 
induced bipartite graph G(A)

1

2

3

A

B

C
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1

2

3

BOOLEAN RANK AND 
BICLIQUES

1 0

1 1

0 1( )

1

2

3

A

B

C

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C

1 1 0

0 1 1( )o=

A B C
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BOOLEAN RANK AND SETS

• The Boolean rank of a matrix A is 
the least number of subsets 
of U(A) needed to cover 
every set of the induced 
collection C(A)

• For every C in C(A), if S is the 
collection of subsets, have 
subcollection SC such that

1 3

2

S
S2SC

S = C
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1

2

3

A

B

C

1

2

3

1 0

1 1

0 1( )

1 1 0

1 1 1

0 1 1
( )1

2

3

A B C

1 1 0

0 1 1( )o=

A B C

1 3

2

ALL EQUIVALENT
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XOR AND BINARY

• XOR rank

• Replace set union with symmetric difference and covering with 
parity

• Binary rank

• Non-overlapping subsets / bicliques are sufficient, not necessary

• Clustering
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XOR RANK EXAMPLE
1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

( )
( )1 1 1 0 0

0 1 1 1 0
0 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

( )⊗=
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BINARY RANK EXAMPLE

1 1 0

1 1 0

0 1 1
( )

1 0

1 0

0 1( ) 1 1 0

0 1 1( )×=
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A NOTE ON INVERSES

1 1 0

1 1 1

0 1 1
( ) 0 1 1

1 1 1

1 1 0
( )

1 0 0

0 1 0

0 0 1
( )

⊗

=
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A NOTE ON INVERSES

• Every full-XOR-rank matrix has an inverse 

• Can be found e.g. using Gauss–Jordan elimination

• Only permutation matrices have an inverse in Boolean algebra 
[1]

• Only permutation matrices have binary inverses under 
normal algebra

[1]	

 K.H. Kim, Boolean matrix theory and applications, 
Marcel Dekker, 1982, p. 105.
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FINDING THE RANKS

• XOR rank: polynomial time

• Standard Gaussian elimination over modulo-2 arithmetic

• Boolean rank: NP-hard [1]

• As hard to approximate as the clique (Ω(n1–ε) for all ε > 0) [2]

• Binary rank: Unknown

• Restriction to non-overlapping factors is NP-hard (clustering) [3]
[1]	

 D.S. Nau et al., A Mathematical Analysis of Human Leukocyte 
Antigen Serology, Math. Biosci. 40 (1978) 243–270.
[2]	

 H.U. Simon, On approximate solutions for combinatorial 
optimization problems, SIAM J. Discrete Math. 3 (1990) 294–310.
[3]	

 M. et al., The Discrete Basis Problem, IEEE Trans. Knowl. Data En. 
20 (2008) 1348–1362.
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BOOLEAN RANK AND TILING

• The Boolean rank of a matrix also tells us the minimum number of 
tiles needed to completely cover the matrix

• Minimum number of tiles can be approximated within 
O(log nm) [1, Thm. 2]

• This requires an oracle that gives the largest-area tile [1]

• Without the oracle, the reduction requires exponential time

• Except for certain sparse matrices…

[1]	

 F. Geerts et al., Tiling databases, in: DS '04, 77–122.
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MINIMUM-ERROR BMF

• NP-hard to approximate within any polynomially computable 
function [1]

• Because it’s NP-hard to recognise the zero-error case

• NP-hard to approximate within additive factor of 
max{∜n, ∜m} [1]

[1]	

 M., Matrix Decomposition Methods for Data Mining: Computational 
Complexity and Algorithms, PhD thesis, U. Helsinki, 2009.
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MINIMUM-ERROR 
PROJECTIONS

• Problem: Given the data matrix A and one factor matrix 
(B), find the other factor matrix (C) that minimises the error

• Per column: given a column vector a and a matrix B, find a 
column vector c such that a ≈ Bc

• ”Binary programming”

• Needed for alternating projections type algorithms (ALS)
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BOOLEAN PROJECTION, OR 
±PSC

• The minimum-error projection under Boolean algebra is 
equivalent to the following problem

Positive-Negative Partial Set Cover (±PSC).
Given a triple (P, N, Q), where P and N are disjoint sets 

and Q ⊆ 2P∪N, find a subcollection D ⊆ Q that minimises 

|P \ (∪D)| + |N ∩ (∪D)|.
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+ +

++

EXAMPLE

-

-

-
-

-

- 0
0
1
1
1
1
0
0
0
0

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a B

defines 
the sign

defines 
the sets
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COMPLEXITY OF ±PSC

• NP-hard to approximate within Ω(2log1-ε|P|) for any ε > 0 [1]

• There exists a polynomial-time approximation algorithm that 
achieves 2√[(|Q|+|P|) log |P|] approximation ratio [1,2]
⇒ In Boolean case, even simple projections are hard

[1]	

 P. Miettinen, On the positive-negative partial set cover 
problem, Inform. Process. Lett. 108 (2008) 219–221.
[2]	

 D. Peleg, Approximation algorithms for the Label-CoverMAX 
and Red-Blue Set Cover problems, J. Discrete Alg. 5 (2007) 55–64.
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THE BINARY CASE

• The zero-error case is NP-hard

• Simple reduction from Exact Cover by 3-sets (X3C)

• A variant is the Closest Vector problem (CVP), where columns 
of B have to be linearly independent and the vectors take 
integer values

• CVP is NP-hard to approximate within n1/loglog n [1]

[1]	

 I. Dinur et al., Approximating CVP to Within Almost-Polynomial 
Factors is NP-Hard, Combinatorica. 23 (2003) 205–243.
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THE MODULO-2 CASE

• The problem of finding binary vector x such that, for given a 
and B, the Hamming distance between a and B⊗x is 
minimised, is known as the Closest Codeword problem

• NP-hard to approximate to within any constant factor [1]

• And quasi-NP-hard to approximate within 2logεn for 
0 < ε < 1/2

• Admits polynomial-time n/log(n) factorisation [2]
[1]	

 S. Arora et al., The Hardness of Approximate Optima in Lattices, 
Codes, and Systems of Linear Equations, in: FOCS '93, 724–733.
[2]	

 N. Alon et al., Deterministic Approximation Algorithms for the 
Nearest Codeword Problem, in: APPROX RANDOM '09, 339–351.
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SUMMARY
RMF BMF XMF

Rank

Min. error 
decomp. 

Closest 
projection

Projection 
approx.

?
NP-hard even 

to approximate Polynomial

?
NP-hard even 

to approximate ?

NP-hard
NP-hard to 

approx. 
Ω(2log1-ε|P|)

NP-hard to 
approx. w/ 

constant factor

?
  2√[(|Q|+|P|)  
       × log |P|]

O(n/log(n))
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OPEN PROBLEMS

?
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RANKS

• P1.1 What is the largest possible ratio rankB(A)/rankR(A)

• Best known is 2 

• P1.2 What are the extrema of the XOR rank w.r.t. the other 
ranks?

• It’s incommensurable to normal and Boolean rank
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COMPLEXITY

• P1.3 Is binary rank NP-hard to compute?

• P1.4 Is RMF NP-hard?

• Probably, given that NMF is [1]

• P1.5 Is XMF NP-hard?

• P1.6 What’s the approximability of binary projections?

• P1.7 What’s the approximability of maximum similarity problems?
[1]	

 S.A. Vavasis, On the Complexity of Nonnegative Matrix 
Factorization, SIAM J. Optim. 20 (2010) 1364–1377.
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MISCELLANEOUS

• P1.8 Are there meaningful (in data mining) definitions of the 
addition (or multiplication) not covered here?
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PART II
ALGORITHMS AND 

EXTENSIONS
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CONTENTS

1. Rank-1 factorisations

2. Algorithms for RMF
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4. Algorithms for XMF
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7. Open problems
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RANK-1 DECOMPOSITIONS

≈
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RANK-1 DECOMPOSITIONS

• In rank-1 decompositions, addition doesn’t matter

• We can also use squared Frobenius for distance

• One could hope to use rank-1 approximations as building 
blocks for higher-rank decompositions

• Problem: good rank-1 decomposition does not need to be a 
part of any good rank-2 decompositions
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EXAMPLE

1 1 0

1 1 1

0 1 1
( )

1 0

1 1

0 1( ) 1 1 0

0 1 1( )o=
1

1

1
() 1 1 1( )o

≈
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PROXIMUS

• The PROXIMUS algorithm [1] finds the binary rank-1 
factorisation using iterative updates

• To find b and c such that A ≈ bcT, fix c and set

and similarly for b fixed

• Proper initialisation is important
[1]	

 M. Koyutürk, A. Grama, PROXIMUS: a framework for analyzing 
very high dimensional discrete-attributed datasets, in: KDD '03, 147–
156.

bi =

�
1, if 2(Ac)i > kck22
0, otherwise
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IP, LP, AND MAX FLOW 
ALGORITHMS

• Minimum-error rank-1 binary factorisation can be presented as an 
integer programming 

• Can be relaxed to a linear program that gives an upper bound for the 
error

• This LP is totally unimodular ⇒ solution is binary

• The solution is a 2-approximation 

• A regularised version can be approximated with a max flow algorithm
B.-H. Shen et al., Mining Discrete Patterns via Binary Matrix 
Factorization, in: KDD '09, 757–765.
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NORMAL ALGEBRA

min J(B,C) =
X

i,j

(Aij - (BC)ij)
2

s.t. B2
ij - Bij = 0

C2
ij -Cij = 0

P
i,j

�
Aij

-
�
✓(B

- b)✓(
C- c)

�
ij

�2
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PROXIMUS

• PROXIMUS uses rank-1 factorisations to make a hierarchical 
factorisation of the full data

• Matrix rows are divided into two sets based on the column factor

• Rank-1 decomposition is applied to those two sets separately (or 
recursion is stopped)

• Ensures that columns of B don’t overlap ⇒ representation is binary

M. Koyutürk, A. Grama, PROXIMUS: a framework for analyzing very 
high dimensional discrete-attributed datasets, in: KDD '03, 147–156.
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RMF AND NMF

Boundedness [1]. If X is a matrix taking values from [0,1] 
and if X admits a rank-k factorisation to nonnegative matrices, 
then there exists a nonnegative rank-k factorisation such that 

no value in the factor matrices is larger than 1. 

[1]	

 Z.-Y. Zhang et al., Binary matrix factorization for analyzing gene 
expression data, Data Min. Knowl. Discov. 20 (2010) 28–52.
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NON-LINEAR PROGRAMMING

min J(B,C) =
X

i,j

(Aij - (BC)ij)
2

s.t. B2
ij - Bij = 0

C2
ij -Cij = 0

X

i,j

(Aij - (BC)ij)
2 +

1

2
�
�
(B2

ij - Bij) + (C2
ij -Cij)

�

Solved by minimising (alternatively for B and C):

Z.-Y. Zhang et al., Binary matrix factorization for analyzing gene 
expression data, Data Min. Knowl. Discov. 20 (2010) 28–52.
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THRESHOLD METHOD

• Change the objective to

• θ(X) is the (element-wise) Heaviside function

• Can be optimised using gradient descent after the Heaviside is 
replaced with �(x) = 1/

�
1+ e-�x

�

P
i,j

�
Aij -

�
✓(B- b)✓(C- c)

�
ij

�2

Z.-Y. Zhang et al., Binary matrix factorization for analyzing gene 
expression data, Data Min. Knowl. Discov. 20 (2010) 28–52.
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BOOLEAN ALGEBRA

Images by Wikipedia users Arab Ace and  Sheilalau
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THE BOOLEAN PROJECTION

• Peleg’s algorithm approximates within 2√[(k+a(log a)]  [1]

• a is the maximum number of 1s in A’s columns

• Optimal solution

• Either an O(2kknm) exhaustive search [1], or an integer program 
[2]

• Greedy algorithm: select each column of B if it improves the 
residual error [1]

[1]	

 M., Matrix Decomposition Methods for Data Mining: Computational 
Complexity and Algorithms, PhD thesis, U. Helsinki, 2009.
[2]	

 H. Lu et al., Optimal Boolean Matrix Decomposition: Application 
to Role Engineering, in: ICDE '08, 297–306.
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THE ASSO ALGORITHM

• Heuristic – too many hardness results to hope for good 
provable results in any case

• Intuition: If two columns share a factor, they have 1s in 
same rows

• Noise makes detecting this harder

• Pairwise row association rules reveal (some of) the factors

M. et al., The Discrete Basis Problem, IEEE Trans. Knowl. Data En. 20 
(2008) 1348–1362.



Pauli Miettinen 24 September 2012

THE ASSO ALGORITHM

1. Compute pairwise association accuracies between rows of A

2. Round these (from a user-defined point t) to get a binary    
n-by-n matrix of candidate columns

3. Select greedily the candidate column that covers most of the 
not-yet covered 1s of A

4. Mark the 1s covered by the selected vector and return to 3 
or quit if enough factors have been selected

M. et al., The Discrete Basis Problem, IEEE Trans. Knowl. Data En. 20 
(2008) 1348–1362.
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o
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M., Matrix Decomposition Methods for Data Mining: Computational 
Complexity and Algorithms, PhD thesis, U. Helsinki, 2009, p. 72.
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THE PANDA ALGORITHM

• Intuition: every good factor has a noise-free core

• Two-phase algorithm:
   1. Find error-free core pattern (maximum area itemset/tile)
   2. Extend the core with noisy rows/columns

• The core patterns are found using a greedy method

• The 1s already belonging to some factor/tile are removed 
from the residual data where the cores are mined

C. Lucchese et al., Mining Top-K Patterns from Binary Datasets in 
presence of Noise, in: SDM '10, 165–176.
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EXTENDING CORES IN 
PANDA

• The cores are extended in a greedy manner

• A new column is added to a row factor in c

• All rows not yet in the corresponding column factor b are 
tried

• As extending a core always covers some 0s, the quality is 
decided by trying to minimise the number of 1s in factors b 
and c plus the noise

C. Lucchese et al., Mining Top-K Patterns from Binary Datasets in 
presence of Noise, in: SDM '10, 165–176.
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NOTES ON PANDA

• Can automatically choose the rank of the decomposition

• Parameter-free

• Uses sorting to speed up the computation

• Consider the most promising candidates first

• Can be randomised

C. Lucchese et al., Mining Top-K Patterns from Binary Datasets in 
presence of Noise, in: SDM '10, 165–176.
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EXAMPLE

≈

o
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MODULO-2 ALGEBRA

X
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NO SPECIAL ALGORITHMS

• That I’m aware of, at least

• One could truncate any rank-k decomposition

• No guarantees on quality, might cause more error than the 
trivial decomposition  

• No Eckart–Young theorem
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SELECTING THE RANK

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( )

1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
( ) 1 1 0

1 1 1

0 1 1
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PRINCIPLES OF GOOD K

• Goal: Separate noise from structure

• We assume data has correct type of structure

• There are k factors explaining the structure

• Rest of the data does not follow the structure (noise)

• But how to decide where structure ends and noise starts? 
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WHAT HAS BEEN DONE 
BEFORE?

• Model order selection for matrix factorisations is studied 
before (mostly with SVD/PCA)

• Methods such as Guttman–Kaiser criterion [see 1] or Cattell’s 
scree test [2] are not very good

• Poor performance and need for subjective decisions

[1]	

 K.A. Yeomans, P.A. Golder, The Guttman–Kaiser criterion as a 
predictor of the number of common factors, The Statistician 31 
(1982) 221–229.
[2]	

 R.B. Cattell, The Scree Test For The Number Of Factors, 
Multivar. Behav. Res. 1 (1966) 245–276.
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CROSS VALIDATION

• Idea: hold part of the data, learn a model on the remaining, and fit the 
model to the withheld data

• Problems with matrix factorisations:

• If we hold out only rows (or columns), no cost for fitting higher-order 
factorisations

• If we hold out both, fitting the model becomes hard

• Bi-cross-validation [1] does that, but requires singular data matrix and 
optimal projections

[1]	

 A.B. Owen, P.O. Perry, Bi-cross-validation of the SVD and the 
nonnegative matrix factorization, Ann. Appl. Stat. 3 (2009) 564–594.
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MINIMUM TRANSFER COST 
PRINCIPLE

• A variation of cross validation

• The withheld rows are mapped to their closest pairs in 
training data

• For evaluation, the rows are represented using the 
representation of their pairs in training data
⇒ Penalises for over-fitting

M. Frank et al., The Minimum Transfer Cost Principle for Model-Order 
Selection, in: ECML PKDD '11, 423–438.
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MINIMUM DESCRIPTION 
LENGTH PRINCIPLE

• The best model (order) is the one that allows you to explain your 
data with least number of bits

• Two-part (crude) MDL: the cost of model L(H) plus the cost of 

data given the model L(D | H)

• Problem: how to do the encoding

• Has been done for BMF [1], similar encodings work for other 
binary factorisations 

[1]     M., J. Vreeken, Model Order Selection for Boolean Matrix 
Factorization, in: KDD '11, 51–59.
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FITTING BMF TO MDL

≈

o

⊗=

B �CA E

•MDL requires exact representation

o
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FITTING BMF TO MDL

o

model L(H)

⊗

B �C E

•Two-part MDL: minimise L(H) + L(D | H)

data given model 
L(D | H)
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EXAMPLE: ASSO & MDL
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M., J. Vreeken, Model Order Selection for Boolean Matrix 
Factorization, in: KDD '11, 51–59.
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SPARSE MATRICES
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MOTIVATION

• Many real-world binary matrices are sparse

• Representing sparse matrices with sparse factors is desirable

• Saves space, improves usability, …

• Sparse matrices should be computationally easier 
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SPARSE FACTORISATIONS

• Any binary matrix A that admits rank-k BMF has factorisation 
to matrices B and C such that the total number of 1s in B and 
C is at most twice that of A  [1]

• Can be extended to approximate factorisations

• Tight result (consider a case when A has exactly one 1)

• Holds also for exact RMF factorisations

[1]	

 M., Sparse Boolean Matrix Factorizations, in: ICDM '10, 935–
940.
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APPROXIMATING THE 
BOOLEAN RANK

• Recall: we have log(n) approximation given an oracle

• We say n-by-m binary matrix A is log(n) uniformly sparse if 
each column of A has at most log(n) 1s

Theorem [1]. The Boolean rank of a log(n) uniformly sparse 
binary matrix A can be approximated within log(n).

[1]	

 M., Sparse Boolean Matrix Factorizations, in: ICDM '10, 935–
940.
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PROOF

• Each RHS node has ≤ log(n) 
neighbours
⇒ Optimum solution needs

    ≥ n/log(n) bicliques

• If we use n bicliques we get
n/OPT ≤ n/(n/log(n)) 
           = log(n)             ⃞
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EXTENSIONS

• We can approximate the Maximum k-tiling for log(n) uniformly 
sparse matrices within e/(e – 1)

• If we have at most log(n) columns that have more than log(n) 1s, 
we can still approximate the rank within log2(n) 

• Both results require more complex reduction to the Set Cover 
problem [1]

• Will also work on dense matrices, but will take exponential time
[1]	

 R. Bělohlávek, V. Vychodil, Discovery of optimal factors in binary 
data via a novel method of matrix decomposition, J. Comput. Syst. Sci. 
76 (2010) 3–20.
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OPEN PROBLEMS

?
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ALGORITHMS

• P2.1 Are there good algorithms for XMF?

• P2.2 Can we use the sparsity to really help us?
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MODEL ORDER SELECTION

• P2.3 How hard is it to minimise the MDL score directly?

• Depends on the encoding, obviously

• P2.4 Can we use binary methods to predict missing values 
and would these be better than continuous methods?
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