BOOLEANTENSOR FACTORIZATIONS

Pauli Miettinen
|4 December 20||

BACKGROUND:TENSORS AND TENSOR FACTORIZATIONS

BACKGROUND:TENSORS AND TENSOR FACTORIZATIONS

BACKGROUND: BOOLEAN MATRIX FACTORIZATIONS

- Given a binary matrix \mathbf{X} and a positive integer R, find two binary matrices \mathbf{A} and \mathbf{B} such that \mathbf{A} has R columns and \mathbf{B} has R rows and $\mathbf{X} \approx \mathbf{A} \circ \mathbf{B}$.
- $\mathbf{A} \circ \mathbf{B}$ is the Boolean matrix product of \mathbf{A} and \mathbf{B},

$$
(\mathbf{A} \circ \mathbf{B})_{\mathfrak{i j}}=\bigvee_{r=1}^{R} b_{i l} c_{l j}
$$

BOOLEANTENSOR FACTORIZATIONS:THE IDEA

I. Take existing (normal) tensor factorization
2. Make everything binary and define summation as $1+1=1$
3. Try to understand what you just did.

Research problem. What can we say about Boolean tensor factorizations and how do they relate to normal tensor factorizations and Boolean matrix factorizations?

RANK-I (BOOLEAN)TENSORS

RANK-I (BOOLEAN) TENSORS

THE CPTENSOR DECOMPOSITION

$$
x_{i j k} \approx \sum_{r=1}^{R} a_{i r} b_{j r} c_{k r}
$$

$$
\begin{aligned}
& \text { THE CPTENSOR } \\
& \text { DECOMPOSITION }
\end{aligned}
$$

THE BOOLEAN CPTENSOR DECOMPOSITION

$$
x_{i j k} \approx \bigvee_{r=1}^{R} a_{i r} b_{j r} c_{k r}
$$

THE BOOLEAN CPTENSOR DECOMPOSITION

DIGRESSION: FREQUENTTRIITEMSET MINING

- Rank-I N-way binary tensors define an N-way itemset
- Particularly, rank-I binary matrices define an itemset
- In itemset mining the induced sub-tensor must be full of Is
- Here, the items can have holes
- Boolean CP decomposition = lossy N-way tiling

TENSOR RANK

The rank of a tensor is the minimum number of rank- 1 tensors needed to represent the tensor exactly.

BOOLEANTENSOR RANK

The Boolean rank of a binary tensor is the minimum number of binary rank-I tensors needed to represent the tensor exactly using Boolean arithmetic.

IIIUII

SOME RESULTS ON RANKS

- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by- k tensor can be more than $\min \{n, m, k\}$
- But no more than $\min \{n m, n k, m k\}$

SOME RESULTS ON RANKS

- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by-k tensor can be more than $\min \{n, m, k\}$
- But no more than $\min \{n m, n k, m k\}$
- Boolean tensor rank is NP-hard to compute

SOME RESULTS ON RANKS

- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by-k tensor can be more than $\min \{n, m, k\}$
- Boolean tensor rank is NP-hard to compute
- Boolean tensor rank of n-by-m-by-k tensor can be more than $\min \{n, m, k\}$
- But no more than $\min \{n m, n k, m k\}$

sOME RESULTS ON RANKS

- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by-k tensor can be more than $\min \{n, m, k\}$
- But no more than $\min \{n m, n k, m k\}$
- Boolean tensor rank is NP-hard to compute
- Boolean tensor rank of n-by-m-by-k tensor can be more than $\min \{n, m, k\}$
- But no more than $\min \{n m, n k, m k\}$

SPARSITY

- Binary matrix \mathbf{X} of Boolean rank R and $|\mathbf{X}|$ Is has Boolean rank- R decomposition $\mathbf{A} \circ \mathbf{B}$ such that $|\mathbf{A}|+|\mathbf{B}| \leq 2|\mathbf{X}|$ [M., ICDM 'IO]
- Binary N-way tensor \boldsymbol{X} of Boolean tensor rank R has Boolean rank-R CP-decomposition with factor matrices $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{N}$ such that $\sum_{i}\left|\mathbf{A}_{i}\right| \leq N|\mathcal{X}|$
- Both results are existential only and extend to approximate decompositions

THETUCKERTENSOR DECOMPOSITION

$$
x_{i j k} \approx \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{p q r} a_{i p} b_{j q} c_{k r}
$$

THE BOOLEANTUCKER TENSOR DECOMPOSITION

THE ALGORITHMS

- The normal CP-decomposition can be solved using matricization and ALS
- \odot is the Khatri-Rao matrix product
- $(\mathbf{C} \odot \mathbf{B})^{\top}$ is R-by-mk
- For normal matrices, we can use standard leastsquares projections

$$
\begin{aligned}
& \mathbf{X}_{(1)}=\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{\top} \\
& \mathbf{X}_{(2)}=\mathbf{B}(\mathbf{C} \odot \mathbf{A})^{\top} \\
& \mathbf{X}_{(3)}=\mathbf{C}(\mathbf{B} \odot \boldsymbol{A})^{\top}
\end{aligned}
$$

- One projection per mode
- Similar algorithms for the Tucker decomposition

THE ALGORITHMS

- For Boolean case, matrix product must be changed
- Khatri-Rao stays as it
- Finding the optimal projection is NP-hard even to approximate
$\mathbf{X}_{(1)}=\mathbf{A} \circ(\mathbf{C} \odot \mathbf{B})^{\mathrm{T}}$
$\mathbf{X}_{(2)}=\mathbf{B} \circ(\mathbf{C} \odot \boldsymbol{A})^{\mathrm{T}}$
$\mathbf{X}_{(3)}=\mathbf{C} \circ(\mathbf{B} \odot \boldsymbol{A})^{\mathbf{T}}$
- Good initial values are needed due to multiple local minima
- Obtained using Boolean matrix factorization to matricizations

THETUCKER CASE

- The core tensor has global effects
- Updates are hard
- Core tensor is usually small
- We can afford more time per element

$$
x_{i j k} \approx \bigvee_{p=1}^{P} \bigvee_{q=1}^{Q} \bigvee_{r=1}^{R} g_{p q r} a_{i p} b_{j q} c_{k r}
$$

- In Boolean case many changes make no difference

SYNTHETIC EXPERIMENTS

ef

Bтик之

IIIUII mind mind

SYNTHETIC EXPERIMENTS

- 8

Bтик之

SYNTHETIC EXPERIMENTS

- 8

Bтик之

REAL-WORLD EXPERIMENTS

REAL-WORLD EXPERIMENTS

REAL-WORLD EXPERIMENTS

CONCLUSIONS

- Boolean tensor decompositions are a bit like normal tensor decompositions
- And a bit like Boolean matrix factorizations
- They generalize other data mining techniques in many ways
- The playing field between Boolean and normal tensor factorizations is more level

IIIUIIIm

CONCLUSIONS

- Boolean tensor decompositions are a bit like normal tensor decompositions
- And a bit like Boolean matrix factorizations
- They generalize other data mining techniques in many ways
- The playing field between Boolean and normal tensor factorizations is more level

