# BOOLEAN TENSOR FACTORIZATIONS

Pauli Miettinen 14 December 2011



# BACKGROUND: TENSORS AND TENSOR FACTORIZATIONS





# BACKGROUND: TENSORS AND TENSOR FACTORIZATIONS





# BACKGROUND: BOOLEAN MATRIX FACTORIZATIONS

- Given a binary matrix X and a positive integer R, find two binary matrices A and B such that A has R columns and B has R rows and X ≈ A o B.
  - A o B is the Boolean matrix product of A and B,

$$(\mathbf{A} \circ \mathbf{B})_{ij} = \bigvee_{r=1}^{\mathsf{R}} b_{il} c_{lj}$$



# BOOLEAN TENSOR FACTORIZATIONS: THE IDEA

- I. Take existing (normal) tensor factorization
- 2. Make everything binary and define summation as I + I = I
- 3. Try to understand what you just did.

**Research problem.** What can we say about Boolean tensor factorizations and how do they relate to normal tensor factorizations and Boolean matrix factorizations?



#### RANK-I (BOOLEAN) TENSORS



 $\mathbf{X} = \mathbf{a} \times \mathbf{b}$ 



#### RANK-I (BOOLEAN) TENSORS



 $\mathbf{X} = \mathbf{a} \times_1 \mathbf{b} \times_2 \mathbf{c}$ 



# THE CPTENSOR DECOMPOSITION



 $x_{ijk} \approx \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$ 



# THE CPTENSOR DECOMPOSITION





# THE BOOLEAN CPTENSOR DECOMPOSITION





 $x_{ijk} \approx \bigvee_{r=1}^{R} a_{ir} b_{jr} c_{kr}$ 

# THE BOOLEAN CPTENSOR DECOMPOSITION





# DIGRESSION: FREQUENT TRI-ITEMSET MINING

- Rank-I N-way binary tensors define an N-way itemset
  - Particularly, rank-I binary matrices define an itemset
  - In itemset mining the induced sub-tensor must be full of Is
  - Here, the items can have holes
- Boolean CP decomposition = lossy N-way tiling



#### TENSOR RANK

The **rank** of a tensor is the minimum number of rank-I tensors needed to represent the tensor exactly.





### BOOLEAN TENSOR RANK

The **Boolean rank** of a binary tensor is the minimum number of binary rank-I tensors needed to represent the tensor exactly using Boolean arithmetic.





- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by-k tensor can be more than min{n, m, k}
  - But no more than min{nm, nk, mk}



- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by-k tensor can be more than min{n, m, k}
  - But no more than min{nm, nk, mk}





- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by-k tensor can be more than min{n, m, k}
  - But no more than min{nm, nk, mk}

- Boolean tensor rank is NP-hard to compute
- Boolean tensor rank of n-by-m-by-k tensor can be more than min{n, m, k}

- Normal tensor rank is NPhard to compute
- Normal tensor rank of n-by-m-by-k tensor can be more than min{n, m, k}
  - But no more than min{nm, nk, mk}

- Boolean tensor rank is NP-hard to compute
- Boolean tensor rank of n-by-m-by-k tensor can be more than min{n, m, k}
  - But no more than min{nm, nk, mk}

#### SPARSITY

- Binary matrix X of Boolean rank R and |X| Is has Boolean rank-R decomposition A o B such that |A| + |B| ≤ 2|X|
  [M., ICDM '10]
- Binary N-way tensor 𝔅 of Boolean tensor rank R has Boolean rank-R CP-decomposition with factor matrices 𝗛<sub>1</sub>, 𝗛<sub>2</sub>, ..., 𝗛<sub>N</sub> such that ∑<sub>i</sub> |𝗛<sub>i</sub>| ≤ N|𝔅|
  - Both results are existential only and extend to approximate decompositions



# THE TUCKER TENSOR DECOMPOSITION



**TTTTT TTTT max** planck institut

# THE BOOLEAN TUCKER TENSOR DECOMPOSITION



max planck institut informatik

### THE ALGORITHMS

- The normal CP-decomposition can be solved using matricization and ALS
  - O is the Khatri-Rao matrix product
  - $(\mathbf{C} \odot \mathbf{B})^{\mathsf{T}}$  is R-by-mk
- For normal matrices, we can use standard leastsquares projections
  - One projection per mode

max planck institut informatik

Similar algorithms for the Tucker decomposition

 $X_{(1)} = A(C \odot B)^{\mathsf{T}}$  $X_{(2)} = B(C \odot A)^{\mathsf{T}}$  $X_{(3)} = C(B \odot A)^{\mathsf{T}}$ 

#### THE ALGORITHMS

- For Boolean case, matrix product must be changed
  - Khatri–Rao stays as it
  - Finding the optimal projection is NP-hard even to approximate
- Good initial values are needed due to multiple local minima
  - Obtained using Boolean matrix factorization to matricizations

 $X_{(1)} = \mathbf{A} \circ (\mathbf{C} \odot \mathbf{B})^{\mathsf{T}}$  $X_{(2)} = \mathbf{B} \circ (\mathbf{C} \odot \mathbf{A})^{\mathsf{T}}$  $X_{(3)} = \mathbf{C} \circ (\mathbf{B} \odot \mathbf{A})^{\mathsf{T}}$ 

### THE TUCKER CASE

- The core tensor has global effects
  - Updates are hard

max planck institut informatik

- Core tensor is usually small
  - We can afford more time per element
  - In Boolean case many changes make no difference



$$x_{ijk} \approx \bigvee_{p=1}^{P} \bigvee_{q=1}^{Q} \bigvee_{r=1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr}$$

#### SYNTHETIC EXPERIMENTS



#### SYNTHETIC EXPERIMENTS



#### SYNTHETIC EXPERIMENTS



#### REAL-WORLD EXPERIMENTS



#### REAL-WORLD EXPERIMENTS



**TTTT TTT max** planck institut informatik

#### REAL-WORLD EXPERIMENTS



### CONCLUSIONS

- Boolean tensor decompositions are a bit like normal tensor decompositions
  - And a bit like Boolean matrix factorizations
- They generalize other data mining techniques in many ways
- The playing field between Boolean and normal tensor factorizations is more level



### CONCLUSIONS

- Boolean tensor decompositions are a bit like normal tensor decompositions
  - And a bit like Boolean matrix factorizations
- They generalize other data mining techniques in many ways
- The playing field between Boolean and normal tensor factorizations is more level

Thank You!

