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Abstract

Tensor decomposition is a long standing data mining technique with numerous applications
in different fields. It has been used in image processing, signal processing, computer
vision, social network analysis and many more. It’s a useful tool for understanding high
dimensional data, like classic matrix factorization (e.g. SVD) for two dimensional data.
This work focuses on the decomposition of 3-way Boolean tensors, and explores new
algorithms based on the Walk’n’Merge algorithm by Miettinen and Erdős.

The main focus is on the by the original paper introduced FiberGraph, which is a data
structure of the fibre structure of a tensor. The original Paper explored the FiberGraph
using random walks. In this work, it is explored using several different clustering,
walking and partitioning strategies. These were evaluated on a new implementation
Walk’n’Merge++ in C++, in contrast to the original Walk’n’Merge, which was
implemented in Python. Finally, I propose the Split’n’Expand algorithm, which
is a highly parallelizable algorithm, based on a divide and conquer strategy on the
FiberGraph.
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Chapter 1

Introduction

1.1 Motivation

Tensor decomposition is a long standing data mining technique with numerous applications
in different fields. As matrix factorization (e.g. SVD) is for two dimensional data, it’s
a useful tool for understanding high dimensional data. It has been used in image
processing, signal processing, computer vision, social network analysis and many more
[KB09]. In general, it is useful for all kinds of data, that can be interpreted as a ternary
(or higher dimensional) relation. For a programmer, the best way to understand a
m1 -by-m2 -by- . . . -by-mn tensor, is as a n-dimensional array with dimension sizes of m1

to mn. For the mathematician its an element of Rm1×m2×···×mn with mi ∈ N for all i.

Tensor decomposition as a concept was first introduced in 1927 by Hitchcock [Hit27],
but was rediscovered on several later occasions, e.g. by Carroll et al. in 1970 [CC70].
While there exist many different variants (e.g. Tucker, CP), the most fundamental
decomposition is the tensor rank decomposition (or CPD). For a n1 -by-n2 -by- . . . -by-nk
tensor X , the CPD is defined as:

X =
r∑
i=1

~a1,i�~a2,i� . . .�~ak,i

Where ~aj,i ∈ Rni and � is the outer product. Finding such a decomposition is a NP-hard
problem [HL13].

Boolean tensors are a tensors subset of tensors where the entries are Boolean values.
An example for a Boolean tensor can be seen in semantic knowledge bases like Yago
([SKW07]). These can be directly transformed into equivalent Boolean tensors. Typically,
the entries of a knowledge base B are tuples (o, p, s) of subject s ∈ S,predicate p ∈ P

1



2 Chapter 1 Introduction

and object o ∈ O. A Boolean |S| -by- |P | -by- |O| tensor X representing the data can be
extracted by bijectively mapping the different subject, predicate and objects to natural
numbers (fs : S → N, fp : P → N and fo : O → N). An entry (i, j, k) of X would be 1,
when the database contains the entry of the coordinates mapped to its original domain.

(X )i,j,k =

1 there exist (s, p, o) ∈ B s.t. fs(s) = i, fp(p) = ij and fo(o) = k

0 otherwise

For a data miner Boolean data can often be easier to interpret, depending on the data.
Common techniques to analyse such data are for example association rules. Boolean tensor
decomposition gives the data miner yet another tool. How we can extract information
using boolean tensor decomposition has been explored by other works [EM13a].

Tensor decomposition is a hard problem, in the sense that most subproblems are NP-hard
[HL13]. This naturally requires approximative algorithms. Combine this with the fact
that common datasets increase in size in later years. Therefore, the algorithms also
need to be highly scalable. By concentrating only on Boolean tensors, we can construct
algorithms that outperform generalized tensor decomposition algorithms. Boolean tensor
decomposition is still a small field, so there aren’t many different dedicated algorithms
yet, one is the Walk’n’Merge algorithm on which this work builds on and another one
is the SaBoTeur algorithm [MM15].

The Walk’n’Merge algorithm for boolean tensor decomposition introduced in [EM13b]
was implemented in Python. One of the goals of this work was to provide an implemen-
tation of Walk’n’Merge in a more low level programming language compared to the
original. Therefore, the current implementation is in C++. Furthermore, improvements
to the algorithm were developed and analysed. These where primarily evaluated in terms
of runtime improvements, but also in terms of qualitative improvements when considering
the reconstruction error.

One of the most important aspects of the Walk’n’Merge algorithm is the FiberGraph,
which allows to find dense structures in a sparse tensor. Most of this work is dedicated
to improve how the FiberGraph is analysed by using graph theoretical approaches, e.g.
graph clustering. All of these exploration strategies together form the Walk’n’Merge
++ program, which in essence is a new implementation of Walk’n’Merge in C++ with
a lot of new options. While it is not optimized for any single strategy it still allows
comparing the different strategies.

Finally, I introduce the Split’n’Expand algorithm, based on the results of Walk’n’Merge
++. It uses a divide and conquer strategy to recursively reduce the size of the input
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tensor into smaller subtensors, that can be handled independently. This leads to a highly
scalable algorithm.
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1.2 Terminology, Notations and Definitions

1.2.1 Tensors, Matrices and Vectors

The terminology and notation are based on the one used in [EM13b] by Miettinen and
Erdős, which introduced the Walk’n’Merge algorithm, and the one used by Kolda and
Bader in [KB09]

A N-way tensor in context of this work is a simple N -dimensional data object, in a more
general sense it is a N -dimensional array or matrix. Since this work mainly deals with 3
dimensional tensors, 3-way tensors are simply referred to as tensor. A Boolean tensor is
naturally a tensor filled with the Boolean values, one and zero. Motivated by the idea,
that the tensors this work deals with are sparse, I also refer to the ones as (non-zero)
entries, while zeros are considered to be empty entries.
Vectors (or 1-way tensors) are denoted by lowercase, italic letters with the typical
vector arrow (e.g. ~a,~b,~c, . . . ). Matrices (or 2-way tensors) are denoted by uppercase,
bold letters (e.g. A,B,C, . . . ). Tensors (3-way or higher dimensional) are denoted by
boldcase, euler letters (e.g. A,B,C, . . . ). Sets of elements are denoted by uppercase
letters (e.g. A,B,C, . . . ). The number of elements in a set X is denoted by |X|. When
addressing a element from any of these structures, this is denoted by round brackets
to not confuse them with indexed sets (e.g. (the i-th element of ~a is given by (~a)i)).
When referring to tuples of sets (e.g. blocks) (X1, X2, ..., Xn), I refer to the size of it as
|X1| × |X2| × · · · × |X3|

Given a (3-way) tensor X with dimensions n -by-m -by- l the element at position (i, j, k)
with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , l} can be addressed as (X )ijk. When
using : as an index, we refer to all possible values of the respective index. What are
the rows and columns in a classical matrix are the fibers in a tensor. More concretely,
(X ):jk is the (j, k) mode-1 (column) fiber, (X )i:k the (i, k) mode-2 (row) fiber, and
(X )ij: the (i,j) mode-3 (tube) fiber. Since the fibers are essentially vectors, they are often
denoted as such in other literature ((X ):jk = (~x):jk). While fibers are 1 dimensional
substructures, slices are two dimensional substructures. For a 3-way tensor we have the
(X )i:: horizontal slices, the (X ):j: lateral slices, and the (X )::l frontal slices. They are
often denoted as matrices with (X )i:: = (X)i::. A better visualization is available in
figure 1.1 a 10 -by- 10 -by- 1 tensor is depicted in figure 1.2, which will serve as a example
for the rest of this work.



Chapter 1 Introduction 5

Figure 1.1: Illustration of fibers and slices from [KB09]

For boolean 3-way n -by-m -by- l tensors X we define entries(X ) as the set of all non-zero
entries (entries(X ) = {(i, j, k) ∈ ({1, . . . , n} × {1, . . . ,m} × {1, . . . , l})|(X )ijk 6= 0})

|X | denotes the number of non-zero elements in the tensor X and ‖X‖ the Frobenius-
norm (∑ijk((X )ijk)2) 1

2 .

Definition 1.1. Tensor Operations: For two same dimensional n -by-m -by- l tensors
X and Y , the tensor sum X + Y is defined as the element-wise sum:

(X + Y)ijk = (X )ijk + (Y)ijk

Analogue we have for Boolean tensors the Boolean tensor sum defined as:

(X ∨Y)ijk = (X )ijk ∨ (Y)ijk

Whereby ∨ is the standard logical or. The same goes for the exclusive or (⊕):

(X ⊕Y)ijk = (X )ijk⊕(Y)ijk = (X )ijk + (Y)ijk mod 2
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x y
10 4
2 6
4 9
10 10
4 3
2 4
10 6
3 6
9 10
9 3
10 1
3 1
10 3
2 1
9 9
3 4
10 9

(a) Tabular
representa-
tion



0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1
1 0 1 1 0 1 0 0 1 1


(b) Matrix representation

Figure 1.2: Two different Representation of a small 2-way tensor, that is used throughout
this work to illustrate the definitions.

Definition 1.2. Outer Product: The outer product (�) is a mathematical operation
between vectors. For two Boolean vectors ~a and ~b with dimensions 1 -by-n and 1 -by-m,
the outer product is given by the n -by-m matrix A with:

(A)ij = (~a�~b)ij = (~a)i(~b)j = (~a)i ∧ (~b)j

Furthermore, the outer product between three vectors results in a tensor. Given three
Boolean vectors ~a,~b and ~c, with dimensions 1 -by-n, 1 -by-m and 1 -by- l, the outer
product is given by the n -by-m -by- l tensor X with:

(X )ijk = (~a�~b�~c)ijk = (~a)i(~b)j(~c)k = (~a)i ∧ (~b)j ∧ (~c)k

Definition 1.3. Rank 1 Tensor: For vectors ~a,~b and ~c of length n,m and l the outer
product ~a�~b�~c yields a n -by-m -by- l rank 1 tensor X .

~a�~b�~c = X

Definition 1.4. Boolean Tensor Rank: For a Boolean 3-way tensor X the Boolean
rank (rankB(X )) is given by the smallest integer r such that a decomposition into r
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rank 1 tensors is possible:

X =
r∨
i=1

~ai�~bi�~ci
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1.2.2 Blocks

Definition 1.5. Blocks: Let X be a n -by-m -by- l Boolean tensor. A block is a tuple
(X,Y, Z) of index sets, whereby X ⊂ [n], Y ⊂ [m] and Z ⊂ [l] ([i] := 1, ..., i).

B is a n -by-m -by- l tensor defined by (X,Y, Z), whereby:

(B)ijk =

1 i ∈ X ∧ j ∈ Y ∧ k ∈ Z ∧ (X )ijk = 1

0 otherwise

We denote this by B := ten((X,Y, Z))

Definition 1.6. Monochromatic Blocks: A block (X,Y, Z) of Boolean tensor X is
monochromatic, when all its entries defined by the tuple (X,Y, Z) are 1 (i.e. (X )ijk = 1
for all i ∈ X, j ∈ Y , and k ∈ Z).

Definition 1.7. Dense Blocks: The density of a block (X,Y, Z) of Boolean tensor X
with B = ten((X,Y, Z)) is defined by the relative number of ones:

density((X,Y, Z)) = |B|
|X||Y ||Z|

A block is dense, when the density is larger than a given threshold d ∈ [0, 1].

Definition 1.8. Convex Hull: Let X be a n ×m × l Boolean tensor and I, J and K
be the sets of non-empty slices. That means for all i ∈ I exist j ∈ [m] ∧ k ∈ [l] with
(X )ijk = 1. The convex Hull of X is given by the tensor Y with (Y)ijk = 1 for all
i ∈ I, j ∈ J and l ∈ L.

We denote this by Y = convexHull(X ).

Definition 1.9. Operations on Blocks For blocks classical set operations are defined in
a element wise manner. Given two blocks (X1, Y1, Z1) and (X2, Y2, Z2), we define:

(X1, Y1, Z1)∪(X2, Y2, Z2) = (X1 ∪X2, Y1 ∪Y2, Z1 ∪Z2)

(X1, Y1, Z1)∩(X2, Y2, Z2) = (X1 ∩X2, Y1 ∩Y2, Z1 ∩Z2)

Definition 1.10. Two blocks (X1, Y1, Z1) and (X2, Y2, Z2) are connected if they overlap
in two components, e.g. X1 ∩X2 6= ∅ and Y1 ∩Y2 6= ∅. This means, that they are
connected in the later defined FiberGraph. Two blocks overlap, if the components
overlap in all three components. This means, that they actually share coordinates.

The sample tensor from figure 1.2 can be completely described using two blocks as show
in figure 1.3. One block is represented by the red numbers and the other by blue ones.
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 1


(= ten(({9, 10, 4}{9, 10, 3}{1})))

⊕



0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0


(= ten(({10, 3, 2}{1, 4, 6}{1})))

=



0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1
1 0 1 1 0 1 0 0 1 1



Figure 1.3: A decomposition of the demo tensor from figure 1.2 into two tensors defined
by the two blocks ({9, 10, 4}{9, 10, 3}{1}) and ({10, 3, 2}{1, 4, 6}{1})

Theorem 1.11. A block (X,Y, Z) of Boolean tensor X corresponds to a rank 1 subtensor
B := convexHull(ten((X,Y, Z)))

Proof. Given a block (X,Y, Z) of n -by-m -by- l Boolean tensor X . We construct the
vectors ~a (1 -by-n),~b (1 -by-m) and ~c (1 -by- l) that make up the subtensor as follows:

X ′ = {i ∈ X|∃j ∈ Y ∧ k ∈ Zs.t.(X )ijk 6= 0}
Y ′ = {j ∈ Y |∃i ∈ X ∧ k ∈ Zs.t.(X )ijk 6= 0}
Z ′ = {k ∈ Z|∃j ∈ Y ∧ i ∈ Xs.t.(X )ijk 6= 0}
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This is needed to remove the empty slices.

(~a)i =

1 i ∈ X ′

0 otherwise
for all 1 ≤ i ≤ n

(~b)i =

1 i ∈ Y ′

0 otherwise
for all 1 ≤ i ≤ m

(~c)i =

1 i ∈ Z ′

0 otherwise
for all 1 ≤ i ≤ l

Let B′ = ~a�~b�~c. It remains to show that B′ = B. I will show that (B′)ijk = 1 ⇐⇒
(B)ijk = 1.

(B′)ijk = 1

⇐⇒ (~a�~b�~c)ijk = 1 definition of B′

⇐⇒ (~a)i = 1 ∧ (~b)j = 1 ∧ (~c)k = 1 definition of �

⇐⇒ i ∈ X ′ ∧ j ∈ Y ′ ∧ k ∈ Z ′ definition of ~a,~b,~c

⇐⇒ convexHull(ten((X,Y, Z)))ijk = 1 definition of convex hull

⇐⇒ (B)ijk = 1 definition of B
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Theorem 1.12. Given a block (X,Y, Z) of Boolean 3-way tensor X with X = X ′ ∪{x′},
X \X ′ = {x′},|X| ≥ 2, |Y | ≥ 1 and |Z| ≥ 1 (Meaning X and X ′ are disjoint). Then
holds:

density(X,Y, Z)
(
1 +

(
1

|X|−1

))
≥ density(X ′, Y, Z)

Proof.

density((X,Y, Z)) =

∑
i∈X,j∈Y,z∈Z

(X )ijk

|X||Y ||Z|

⇐⇒ density((X,Y, Z)) =

∑
i∈X′ ∪{x},j∈Y,z∈Z

(X )ijk

|X ′ ∪{x}||Y ||Z|

⇐⇒ density((X,Y, Z)) =

∑
i∈X′,j∈Y,z∈Z

(X )ijk + ∑
j∈Y,z∈Z

(X )x′jk

|X ′||Y ||Z|+ |Y ||Z|
⇐⇒ density((X,Y, Z))(|X ′||Y ||Z|+ |Y ||Z|) =

∑
i∈X′,j∈Y,z∈Z

(X )ijk +
∑

j∈Y,z∈Z
(X )x′jk

⇐⇒ density((X,Y, Z))(|X ′||Y ||Z|) + density((X,Y, Z))(|Y ||Z|)

=
∑

i∈X′,j∈Y,z∈Z
(X )ijk +

∑
j∈Y,z∈Z

(X )x′jk

⇐⇒ density((X,Y, Z))(|X ′||Y ||Z|) + density((X,Y, Z))(|Y ||Z|)−
∑

j∈Y,z∈Z
(X )x′jk

=
∑

i∈X′,j∈Y,z∈Z
(X )ijk

⇐⇒ density((X,Y, Z))(|X ′||Y ||Z|)
|X ′||Y ||Z|

+ density((X,Y, Z))(|Y ||Z|)
|X ′||Y ||Z|

−

∑
j∈Y,z∈Z

(X )x′jk

|X ′||Y ||Z|

=

∑
i∈X′,j∈Y,z∈Z

(X )ijk

|X ′||Y ||Z|

⇐⇒ density((X,Y, Z)) + density((X,Y, Z))
( |Y ||Z|
|X ′||Y ||Z|

)
−

∑
j∈Y,z∈Z

(X )x′jk

|X ′||Y ||Z|

= density(X ′, Y, Z)

⇐⇒ density((X,Y, Z))
(

1 +
( |Y ||Z|
|X ′||Y ||Z|

))
−

∑
j∈Y,z∈Z

(X )x′jk

|X ′||Y ||Z|
= density(X ′, Y, Z)

=⇒ density((X,Y, Z))
(

1 +
( |Y ||Z|
|X ′||Y ||Z|

))
≥ density(X ′, Y, Z)

⇐⇒ density((X,Y, Z))
(

1 +
( 1
|X ′|

))
≥ density(X ′, Y, Z)

⇐⇒ density((X,Y, Z))
(

1 +
( 1
|X| − 1

))
≥ density(X ′, Y, Z)
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1.2.3 Decompositions

Among the several available decompositions, two are relevant for this work.

• CP-Decomposition: Given a n -by-m -by- l (Boolean) tensor X and an integer
r, we search for a n -by- r matrix A, a m -by- r matrix B and a l -by- r matrix C,
we optimize:

min(|X ⊕
r∨
i=1

(A):i�(B):i�(C):i|) (1.1)

• Boolean Tucker Decomposition: [Tuc6c] Given a Boolean n -by-m -by- l tensor
X and an integers p, q, r the minimum-error (p, q, r) Boolean Tucker decomposition
of X is a tuple (G,A,B,C), whereby G is a p -by- q -by- r Boolean tensor, A is
a n -by- p Boolean (factor) matrix, B a m -by- q one and C a l -by- r one. These
minimize ∑

ijk

((X )ijk⊕
p∨

α=1

p∨
β=1

p∨
γ=1

(G)αβγ(A)iα�(B)jβ �(C)kγ) (1.2)

Each of these decompositions of a tensor X contain a implicit reconstruction X ′ (e.g.
r∨
i=1

(A):i�(B):i�(C):i for the CP-decomposition). The exclusive or of the two (X ⊕X ′)

has entries of one, where they differ and consequently the size (|X ⊕X ′|) of it is the
number of errors, which is what both decompositions aim to minimize. This is the so
called reproduction error, in other fields its equivalent to the accuracy measure.

The CP-decomposition aims to decompose the tensor X into r rank 1 tensors, whereby
the different tensors are made up by the outer products of the columns of the matrices
A,B and C. This is equivalent to selecting r blocks from X , per theorem 1.11. The
Tucker decomposition extends this with the core tensor, this allows to select which rows
of the matrices are used together.

The Walk’n’Merge algorithm aims to find a CP-decomposition with the slight dif-
ference, that the algorithm doesn’t aim to find a fixed sized decomposition. A CP-
decomposition for a fixed rank can be found by selecting a subsets of the blocks provided
by Walk’n’Merge. This is a NP-hard problem and the original paper proposed a greedy
approach for this. This approach is shortly described in algorithm 1. The interesting
part of this is the choice of the score function. The original paper optimized the encoding
length in a MDL inspired approach.

The Tucker decomposition can be constructed in a similar manner. We start with a
CP-Decomposition of rank s, with s larger than the parameters p, q, r of the Tucker
Decomposition. This leads to the initial Tucker Decomposition with a trivial s -by- s -by- s
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Input: tensor X , blocks ((X1, Y1, Z1), (X2, Y2, Z2),. . . ,(Xs, Ys, Zs)), integer r ≤ s
Output: blocks ((X1, Y1, Z1), (X2, Y2, Z2),. . . , (Xr, Yr, Zr))

1 selectedBlocks = empty set of blocks;
2 forall the r iterations do
3 minScore = ∞;
4 minBlock = empty Block ;
5 forall the newBlock ∈ blocks ÷ selectedBlocks do
6 if score({newBlock}∪selectedBlocks) < minScore then
7 minScore = score({newBlock}∪selectedBlocks);
8 minBlock = newBlock

9 selectedBlocks = selectedBlocks ∪{minBlock}
10 return selectedBlocks;

Algorithm 1: Pseudo code for the basic CP selection algorithm

core tensor, that has 1 on its diagonal and 0 otherwise. Then we combine rows of the
components matrices in a greedy manner, till we reach the desired dimension.
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1.2.4 FiberGraph

Definition 1.13. FiberGraph For a given Boolean 3-way tensor X the FiberGraph
FG(V,E) with set of vertices V and edge relation E ∈ V × V is defined by:

• Nodes(V): for every entry with (X )ijk = 1 there is a node (vijk).

• Edges(E): Two nodes (vijk, vpqr) are connected, when their coordinates differ in
exactly one position (e.g. i = p, j = q and k 6= r).

The FiberGraph has a vertex (or node) for every non-zero entry of the tensor. This is
a one-to-one relation, that motivates the following notations. The vertex v corresponds
to the non-zero entry at coordinate (v.x, v.y, v.z) and coordinate (i, j, k) corresponds to
vertex vijk. The connections in the graph correspond to non-zero entries, that lie on the
same fiber (the row and column equivalents for tensors).

Given a node v of a FiberGraph FG(V,E), we define the set of neighbours of the
neighbours of v as n(v) = v′ ∈ V |(v, v′) ∈ E. This is the set of all Nodes that share a
fiber with v.

The FiberGraph is the most important component of the Walk’n’Merge algorithm,
because it has some useful properties, that help to find blocks in a tensor. Theorem 1.14,
shows that a monochromatic block is represented by a subgraph of at most diameter 3.
Intuitively, the denser a block is (the more he resembles a monochromatic block), the
smaller is the diameter of the corresponding subgraph. Additionally, the denser a block
is, the more paths exist between its entries.

One should keep in mind, that the relation between tensor and FiberGraph isn’t a
one-to-one relation. A tensor has exactly one FiberGraph (modulo bijection), but for a
FiberGraph there are multiple pssoible tensors.

Theorem 1.14. Block Connectivity Given a Boolean 3-way tensor X and its Fiber-
Graph FG(V,E), all entries of a monochomatic block (X,Y, Z) are connected by paths
of length 3.

Proof. Let v1 and v2 be entries of the block (X,Y, Z). This means the block contains
at least {v1.x}∪{v2.x} ⊂ X, {v1.y}∪{v2.y} ⊂ Y and {v1.z}∪{v2.z} ⊂ Z. Then the
following path exists:

(v1.x, v1.y, v1.z)→ (v1.x, v1.y, v2.z)→ (v1.x, v2.y, v2.z)→ (v2.x, v2.y, v2.z)



Chapter 1 Introduction 15

Figure 1.4: The FiberGraph for the sample tensor from figure 1.2

the different nodes, have to be part of the blocks, because of the definition of monochro-
matic blocks. They are connected in the FiberGraph, because the coordinates differ by
exactly one coordinate. However, some of the steps may be none-steps, because some
coordinates could be the same.

The FiberGraph is not a perfect tool. One weakness it, that connected components
need not to necessarily correspond to the same block. The most likely biggest challenge
of Walk’n’Merge is differentiate between different blocks.

An Example FiberGraph is depicted in figure 1.4. We can see, how the two blocks
marked by the blue and red circles are heavily interconnected, but also the green subgraph
with clique, that corresponds to a single very dense fiber, where the two blocks share a
coordinate.
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Walk’n’Merge

The Walk’n’Merge algorithm consists of 2 phases, which are also the foundation of
Walk’n’Merge++. In an abstract way they can be described as follows:

• The first phase tries to find blocks or rank 1 tensors within the original tensor. In the
original implementation this is the RandomWalk algorithm of Walk’n’Merge.

• The second phase uses the results of the first phase to construct larger blocks by
combining smaller ones. This is the BlockMerge algorithm of Walk’n’Merge.

2.1 RandomWalk

The most fundamental structure for the walk part is the FiberGraph from section 1.2.4,
which has a node for every non-zero entry of the tensor and an edge between two nodes,
when these share a column, row or tube fiber. Formally, this works as follows:

The basic idea is that a dense structure within the FiberGraph should correspond to
a dense structure in the tensor. One reason for this is that a monochromatic block is
represented by a subgraph with diameter of at most 3 as per theorem 1.14, because
there is a path of length 3 between every two nodes along the columns, rows and tubes.
Dense blocks are expected to have on average similar small diameters. More importantly
one can show, that a neighbouring node of a node in the FiberGraph is with high
probability also part of this block [EM13b]. At least, as long as the tensor is relatively
sparse, it is rather unlikely to have a neighbours that was not generated by the same
block.

The walk algorithm described by algorithm 2 tries to find these by randomly sampling the
graph. Starting from a random node a certain number of random walks are started and

17
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Input: tensor X ,density d,walk_length,walk_num,freq
Output: blocks (X1, Y1, Z1), (X2, Y2, Z2),. . .

1 create FiberGraph FG(V,E) from X ;
2 while V is not empty do
3 v = random node from V ;
4 visitedNodes.insert(v, countv = 1);
5 for walk_num iterations do
6 v′ = random node from visitedNodes ;
7 for walk_len iterations do
8 v′ = random neighbour of v′;
9 visitedNodes.insert(v′, countv′ + +)

10 empty block (X,Y, Z) for v ∈ visitedNodes do
11 if countv > freq then
12 (X,Y, Z).add((v.x, v.y, v.z));

13 V.remove(convexHull(ten(X,Y, Z)));
14 if density of ten(X,Y, Z)) in X > d then
15 blocks.add((X,Y, Z));
16 return blocks;

Algorithm 2: Pseudo code for the basic RandomWalk algorithm

whenever a node is encountered a counter is increased. Note, that it is important, that
the start node (line 6) isn’t chosen uniformly at random from visitedNodes, but chosen
weighted by the frequency of the node. This means that nodes that where encountered
more often have a higher probability to be selected again. When a node is part of a
block, it will naturally be encountered more often as the subgraph with the node has a
small diameter and so the probability of restarting the walk within increases and the
frequency of nodes in the block increases.

The FiberGraph for the sample tensor is depicted in figure 1.4 and a version with
sample frequencies can be seen in figure 3.1. We have seen before that the tensor is made
up by two blocks, these are marked by the blue and red circles. The dense cluster marked
by the green circle are the entries from the last row. This picture illustrates very well the
good and bad properties of the FiberGraph. On one hand the entries corresponding to
the corresponding to the blocks are densely clustered. However, the green cluster is even
denser and although is corresponds to a monochromatic block removing this nodes, will
make us unable to find the original two blocks with RandomWalk. The best we can
than hope for is to find a decomposition into 3 blocks.

The runtime of this algorithm is mostly depended on how fast the graph is shrinking. The
worst case (in terms of runtime) is, that no node has any neighbours. Then the runtime
is bound by O(|V | ∗ walk_len ∗ walk_num). The original implementation parallelizes
this process by doing multiple walks at once with synchronization steps after a fixed
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number iterations. This results in a not completely semantic identical algorithm, but the
differences are negligible.

2.2 BlockMerge

The BlockMerge is important for those decompositions, that rely on a small number
of influential (i.e. dense) blocks, because it tries to combine the smaller blocks into larger
(i.e. more influential) ones. The ultimate goal is to have dense blocks that are as large
as possible. A bit of a challenge is that larger blocks tend to have more false positives.
Therefore, decompositions of larger blocks tend to have a worse reconstruction error.
A optimal error, can be achieved by having each non zero entry of the tensor as its
own block. The BlockMerge algorithm is separated into the MonoMerge and the
SubsequentMerge algorithms.

The theoretical worst case runtime bound from the original paper is given by O(|X|(b2 +
D3)). Whereby D is the original number of blocks and b is the theoretical number of
ones in the densest fiber.

Two blocks (X,Y, Z) and (X ′, Y ′, Z ′) are merged, by computing their elementwise unions,
meaning:

merge((X,Y, Z), (X ′, Y ′, Z ′)) = (X ∪X ′, Y ∪Y ′, Z ∪Z ′)

This corresponds to computing the convex Hull of these two blocks.

2.2.1 MonoMerge

The first step is to find the smaller monochromatic blocks that where not found by the
RandomWalk algorithm. This is realized by a index structure and is referred to as the
MonoMerge algorithm. The index structure maps x coordinates of non-zero entries to
possible y-coordinates and these (x, y)-coordinates again to sets of z coordinates. The
algorithm than goes through all possible pairs of x coordinates (x1, x2), checks whether
they have at least two possible y coordinates in common (y1, y2) and lastly checks for
all combinations of (x1, x2) and (y1, y2) pairs, if the set of common z coordinates has at
least size 2. This results in monochromatic blocks of size 2× 2× n with n ≥ 2. Possibly,
this can lead to a very large amount of blocks, which later significantly impacts the
performance of SubsequentMerge.
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2.2.2 SubsequentMerge

The original implementation parallelizes SubsequentMerge by dealing with multiple
blocks at once in line 3 of the algorithm again with synchronization steps after a fixed
amount of iterations.

The second step actually starts merging the blocks. This is the SubsequentMerge
algorithm and described by algorithm 3.

Input: tensor X , density d, blocks ((X1, Y1, Z1), (X2, Y2, Z2),. . . )
Output: blocks ((X1, Y1, Z1), (X2, Y2, Z2),. . . )

1 find monochromatic blocks of fixed size and add them to blocks;
2 Q = Queue containing all blocks from blocks;
3 while V is not empty do
4 (X1, Y1, Z1) = Q.pop();
5 forall the blocks (X2, Y2, Z2) that share coordinates with (X1, Y1, Z1) do
6 D = merge((X1, Y1, Z1), (X2, Y2, Z2));
7 if density(D) > d then
8 Q.push(D);
9 replace B and C in blocks with D;

10 break;

11 return blocks;
Algorithm 3: Pseudo code for the basic BlockMerge algorithm
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Walk’n’Merge++

This parts focuses on the new C++ implementation of the Walk’n’Merge algorithm,
which mainly means adding several new features to the base algorithm. Section 3.1 shows
where the existing algorithm was modified not on a implementation level, but on a logical
level. Section 3.1.4 gives some additional technical details of the new implementation.
The sections afterwards discusses the different modifications.

3.1 Base Algorithm

3.1.1 RandomWalk Changes

At its core the algorithm stayed the same, with some further options that are discussed in
later topics. The merge part on an abstract level stayed the same as the parallel python
version. The algorithm is however kept more general, to swap components out. For the
RandomWalk algorithm the notable changes are the following:

• at line 4: The parallelization is realized by using an openMP directive. This is
a for-loop that schedules the different iterations in parallel. First a number of
possible startNodes are selected at random from the nodes in the graph. The walks
are then executed in parallel. The blocks construction as well as the node deletion
are first done locally and then synchronized over all threads every few steps to keep
the internal consistency, because you don’t want to delete a node that is currently
visited by another thread during the walk.

• at line 12: The selectCandidates functions generalizes the way that the candidates
for the block are generated from the list of visited Nodes and their frequencies. The
original algorithm used a fixed threshold and selected all nodes with a frequency

21
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higher than it. The threshold was set to average node frequency of the run. This is
still the default behaviour of the implementation. Section 3.2 deals with different
selection Functions.

• at line 14: The deleteNodes function generalizes the way nodes are deleted. In
the original version the convex hull of the visited Nodes is deleted. This topic is
dealt with more thoroughly in later sections.

• at line 17: The convergence was a necessary innovation, because some combi-
nations of candidate selection functions and node deletions functions, mean that
not all nodes want be deleted, so that the algorithm won’t terminate. The chosen
criteria is, that the number of removed nodes is less or equal to the number of walk
iterations during a parallel section which means, that each walk removed only one
node ore less.

• at line 1 There are different versions of the FiberGraph discussed in this work,
although they didn’t prove to be good changes.

Input: tensor X,density d,walk_length,walk_num, function selectCandidate(), function
deleteNodes()

Output: blocks {(X1, Y1, Z1), (X2, Y2, Z2),. . . }
1 create FiberGraph G(V,E) from X;
2 while V is not empty do
3 startNodes = random nodes from V ;
4 for (in parallel) node v in startNodes do
5 for walk_num iterations do
6 visitedNodes.insert(v, countv = 1);
7 v′ = random node from visitedNodes;
8 for walk_len iterations do
9 v′ = random neighbour of v′;

10 visitedNodes.insert(v′, countv′ + +);

11 empty block (X,Y, Z);
12 candidates = selectCandidates(visitedNodes);
13 (X,Y, Z).add(candidates);
14 deleteNodes(X, visitedNodes);
15 if density((X,Y, Z)) > d then
16 blocks.add((X,Y, Z));

17 if walk converges then
18 break;

19 return blocks;
Algorithm 4: Pseudo code for the new implementation of the walk phase

Some of the sections deal with algorithms, that can be used instead of the RandomWalk,
most notably are the different clustering algorithm.
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3.1.2 BlockMerge Changes

The merge part is a more difficult challenge, because it’s one of the major bottlenecks of
the whole algorithm. The MonoMerge algorithm tends to find many small blocks, and
combining them into larger blocks takes a long time, because many combinations have
to be checked.

On a abstract level BlockMerge works the same, but the whole process is parallelized
more. In the original implementation the MonoMerge algorithm isn’t parallelized.
This was changed in Walk’n’Merge++, by having different threads for the candidate
pairs of x-coordinates (x1, x2), while scanning for possible y and z coordinates.

The SubsequentMerge algorithm is parallelized like in the original version, where one
thread gets on block and compares it with all other candidate blocks.

Walk’n’Merge++ implements some techniques to reduce the amount of computations
by reducing the the number of considered block merges. These techniques are discussed
in Section 3.5.
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3.1.3 Preprocessing

The tensor files use a common representation of (sparse Boolean) tensors with some
modifications. The first lines contain some meta information, the number of non-zero
entries and the size of the tensor. Simply, to save some time not recomputing these ever
again and to improve the memory allocation. The entries are represented in a linewise
fashion, by the x, y and z coordinates within the tensor. In the first line stand the
dimensions of the tensors (i.e. the maximal x,y and z coordinates) and in the second
line is the number of entries. The entries are assumed to be unique, although this is not
explicitly checked and the algorithm work fine even with non unique entries. Only the
results could be a bit strange.

Depending on the chosen processing method, we have several preprocessing steps (For
example the construction of the FiberGraph, constructing the index structure for
MonoMerge, etc.). These don’t influence each other and are therefore paralellized in
Walk’n’Merge++.

3.1.4 Technical Details

The program was implemented in C++ using the C + +11 standard. The code was
compiled using the 4.8 gnu c-compiler [SD09] with the -O3 -march=native optimization
flags. The -O3 flag enables most debugging options of gcc and the -march=native flag
makes the comipler compile only for the target hardware. Different parts of the algorithm
needed external libraries.

• OpemMP: ((Open Multi-Processing) )[DM98] OpenMp is a API for parallel code
in C, Fortran and C + +, supporting many different operating systems. It stand
out because of its ease of use, through adding only a few keywords (compiler
directives) to the code. For example, it allows to simply paralellize a for-loop by
only adding the keyword #pragma omp parallel for.

• Armadillo: [San10] Armadillo is a C++ library that provides access to a large
number of linear algebra operations (Also for sparse matrices) through the use
of several external libraries. Among them are the well known BLAS library (the
OpenBLAS implementation) [BLA02], LAPACK [ABD+90] and SUPERLU [Li05].

• Gurobi: [GO15] Gurobi is a efficient mathematical Problem solver tool with
support for c++.

• MCL: (Markov Chain Clustering) MCL is a program for clustering graphs, that is
more thoroughly explained in the clustering Section 3.3.
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Walk’n’Merge++ has a lot of options, that share code, e.g. there is only on imple-
mentation of the FiberGraph. The reason for this is, that it was not in the scope of the
work to optimize every different option. Therefore, Walk’n’Merge++ should be seen
as a tool to compare different approaches and not a stand alone decomposition tool. A
tool that has better optimized performance is discussed in Chapter 5.
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3.1.5 Parameters

One of the main problems of the Walk’n’Merge++ program is, that it depends on a
lot of parameters and that these parameters have significant impact on the performance
of the algorithm. Especially, the experimental evaluation gets difficult, because the time
needed to evaluate all combinations increases exponential, with the number of parameters.
Therefore we need default parameters that have reasonable good performance for most
inputs. This section introduces the most important parameters and motivates their
default values.

The default parameters result in a behaviour very similar to the original Walk’n’Merge.
All the variants discussed in this sections are not default settings. The default settings
are documented in Appendix A.

Walk Parameters

More interesting are the parameters concerning the length of the walk, walk_len and
walk_num. Overall does the algorithm visit walk_len times walk_num nodes and
the smaller walk_len is, the more often will the walk be restarted. Some experiments
that discuss which parameters to take are described in Section 4.3. There are some
parameters, that control the amount of parallelization. These are job_factor and
thread_num. These can again be tricky to choose, because a high job_factor means,
that more work is done without synchronizing, which could lead to more overlapping
blocks and redundant computations.

Block Parameters

The size of blocks is influenced by three parameters. The important is the block density
(block_min_density), that lies in [0, 1]. Technically, a value of 0.1 would be a valid
parameter, but it would be hard to extract information from such a loose decomposition.
The algorithm in general assume, that dense means a value of 0.8 or larger and the
algorithm are optimized accordingly. Furthermore, there are the block_min_size and
the block_min_vol parameters, that limit the minimal size of blocks in different ways.
Blocks (X,Y, Z) found by Walk’n’Merge++ need to fulfil:

|X| > block_min_size

|Y | > block_min_size

|Z| > block_min_size
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|XC ||YC ||ZC | > block_min_vol

These parameters helps by reducing the number of non-influential blocks in the result.
Looking separately at size and volume, helps with irregular shaped blocks, e.g. some of
the real world data sets don’t contain dense 2× 2× 2 blocks, but long 1× 1× n blocks.
In that case you would use a small size, but a large volume to remove trivial blocks,
while still getting a usable result.
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Figure 3.1: The FiberGraph for the sample tensor from figure 1.2 with frequencies
from a walk with walk_length 10 and walk_num 1000, which are the standard parameters

3.2 Variant: Selection Mode

The selection comes into play, when we have the frequencies of the walk and need to
select the candidates for creating a block with high enough density. The challenges
hereby are to not select too many nodes (e.g. by selecting all visited nodes), because
this would reduce the overall density of the block, not to select too few, as we want the
blocks be as large as possible, and not to have the runtime of the selection method be
too bad, because we have to execute it for every walk once. In some sense this problem
is rather similar to the original problem of finding blocks in the tensors, only that we
now need to find only one block and have the frequencies to help our selection.
The selection process has the following constraints:

• The selection happens rather frequently (ones per walk iteration), so the runtime
shouldn’t be too high. Most of the proposed methods have linear runtime (or at
least linear logarithmic one).
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• It should be dynamic in the sense that it shouldn’t rely on a fixed threshold.
Selecting candidates when their frequency is over a fixed threshold doesn’t include
the size of blocks. When exploring a small block the frequencies are far higher than
visiting a large block.

Formally we have a tensor X with FiberGraph FG(V,E) and a frequency function
(freq : V → R≥0), where the frequency is the number of times it was visited during
RANDOMWALK. The selection function is a function select : V ×R≥0 → V ×R≥0 whose
input is a set of n candidates C from V ×R≥0 with C = {(v1, f1), (v2, f2), . . . , (vn, fn)|vi ∈
V andfi = freq(vi)∀1 ≤ i ≤ n} from which it selects a set S of m ≤ n candidates.
By FC = {fi|(vi, fi) ∈ C} we denote the set off a frequencies in C and by VC =
{vi|(vi, fi) ∈ C} the set of all vertices. They are assumed to have the same order as the
elements of C.

3.2.1 Selecting by Average

selectAvg(C) = {(v, f) ∈ C|f ≥ mean(FC)}

This is the method of the original implementation. It selects all nodes that where
more often visited than the average. Formally, the set S of selected entries is made
up by S = {(v, f) ∈ C|f ≥ mean(FC)}, whereby mean(FC) is the arithmetic mean
(mean(X) = 1

|X|
∑
x∈X

x). It can clearly be computed in linear time and it is dynamic in

the sense that it adapts to the size of set, but it has other problems. Assume, that all
candidates form one block together, so all elements should be selected by the selection
function, the frequencies however won’t all be the same, so roughly (since its not the
median and the frequencies are not uniformly distributed) half of the elements are
discarded.

3.2.2 Selecting by 2Dimk-Means

select2Dimk−Means(C) = {(v, f) ∈ C|f ≥ t}

With

t := arg min
f ′∈FC

(errlower(FC , f ′) + errupper(FC , f ′))

and
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errlower(FC , f ′) = ∑
{f ′′∈(FC)|f ′′<f ′}

|f ′′ −mean({f ′′ ∈ (FC)|f ′′ < f ′})|2

errupper(FC , f ′) = ∑
{f ′′∈(FC)|f ′′≥f ′}

|f ′′ −mean({f ′′ ∈ (FC)|f ′′ ≥ f ′})|2

This selection functions tries to optimally divide the set into 2 partitions by searching
for the threshold t that minimizes the mean squared error of the elements in the two
partitions (errlower + errupper). Which essentially is the classic k-Means problem on a 1
dimensional data set, with k = 2.
The naive approach to this would have a runtime of O(n2). But in case of one dimensional
k-Means the algorithms proposed in [? ] can solve the problem in O(kn2) using dynamic
programming. However, the ideas from this paper can be used to create a O(n log(n))
algorithm for this special case.
First the data in C is sorted in O(n log(n)). The task changes to finding an index
1 ≤ i ≤ n to split the dataset at. There are n− 1 possible splits and we first compute
the two means of all possible splits {f ′′ ∈ FC |f ′′ ≥ (FC)i} and {f ′′ ∈ FC |f ′′ < (FC)i}.
This can be done in linear time using the recursive formula:

µi = fi + (1− i)µi−1
i

(3.1)

Whereby µi is short for the mean of he first i elements. The formula follows directly
from the definition of the mean. In the same fashion we can compute mean squared error
ηi for the first i elements in linear time.

ηi = ηi−1 + i− 1
i

(fi − µi−1)2 (3.2)

Then we have to simply select the split with the smallest summed error (see 5 for pseudo
code).

Input: C = {(v1, f1), (v2, f2), . . . , (vn, fn)}
Output: S = {(v′1, f ′1), (v′2, f ′2), . . . , (v′m, f ′m)}

1 Sort C in non decreasing order;
2 Compute the means Ci<t = {(vi, fi) ∈ C|i < t} of all thresholds t using (3.1);
3 Compute the means Ci≥t = {(vi, fi) ∈ C|i ≥ t} of all thresholds t using (3.1) and
reversed C;

4 Compute the mean squared error Ci<t of all thresholds t using (3.2);
5 Compute the mean squared error Ci≥t of all thresholds t using (3.2) and reversed C;
6 return Ci≥t for the t that minimizes the summed mean square error;

Algorithm 5: computation of select2Dimk−Means(C)

3.2.3 Selecting by Graph Neighbourhood

selectgnn(C) = {(v, f) ∈ C||n(v)∩VC | ≥ t}



Chapter 3 Walk’n’Merge++ 31

Initially, the goal was to include an outlier detection algorithm, that works on the graph,
but most of the studied algorithms where not applicable on this case or where far too
complex for these scenarios. The chosen solution is a relative lightweight algorithm, that
considers how many edges connect a node to the subgraph defined by VC . When the
edge count is less than a threshold t it is disregarded. The threshold t is set to the
block_minsize parameter of the algorithm.

Additionally, a method using a top down approach was explored. Instead of disregarding
nodes with few nodes it would select k nodes that have many connections first. The
process is rarely successful, when selecting on its own, so it wasn’t explored on a stand
alone basis.

One speciality of this selection methods is that it does not use the frequency, which on
hand may look like wasted effort, because we disregard known information, on the other
hand does it mean that we can use the function with candidate sets, that come without
these informations, for example the partitions (section 3.4) or the clusters (section 3.3).

The intersection operation used by these selection functions, is implemented in such a
way that it runs in linear time, by the compiler. This is possible by using sorted lists as
representation for sets. Overall this results in a runtime of O(n2)

3.2.4 Selecting by Composition

Given a set of selection functions F = {select1, select2, . . . }.

selectcomp(C) = { S| select ∈ F : select(C) = S}

One of the big advantages of all these selection functions is, that they are fast. Therefore
we don’t have to limit ourself by using only one and can simply use all of them. The
composition algorithm works by computing all candidate sets S1, S2, . . .using all the
introduced selection functions and adds as blocks all those, that form sufficiently large
blocks. The advantage of this method is, that the different selection algorithms are good
for detecting different kinds of blocks. The graph neighbourhood based selection works
good on candidate

Another approach would be to apply selection functions one after another (i.e. S =
select1(select2(. . . selectk(C)))). This is possible, because input data and output data
have the same structure. However, this wasn’t explored further, because the number of
combinations are too large, to explore it in a satisfying manner, given the time constraints
of this work. It could still be considered for future work.
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3.3 Variant: Clustering

There are two reasons, why clustering was considered during this work. At first, it was
considered for partitioning the data, to reduce the overall runtime, since some of the
algorithm used have polynomial runtime, but after the initial experiments didn’t yield
good partitions, this direction wasn’t pursued further (see section 3.4). Secondly, it was
considered as an alternative to the walk part of the algorithm, because in a abstract way
the RANDOMWALK algorithm is nothing, but a partition algorithm.

A clustering algorithms gets a data set as input and its task is to find sets of similar
data, whereby the first challenge is to define what similar data means. A geometric
interpretation of the a tensor as 3D-object (i.e. non-zero entries are points in a coordinate
system) doesn’t help in finding blocks, because geometrically close entries, don’t have
to be part of the same block. As before, our tool to define which nodes are close is the
FiberGraph. Graph Clustering is a well researched field and there is a wide variety of
possible solutions. In this work we first explored several of the more common clustering
algorithms based on k-Means and Spectral Clustering with different Similarity Measures.
These didn’t produce workable solutions and are only reported for completeness sake.
The MCL algorithm was much more successful and in its functionality it is very similar
to the walk algorithm.

3.3.1 k-Means based Clustering

Now that we have the FiberGraph FG(V,E) we have to define our similarity measure.
From the FiberGraph we get the adjacency matrix A.

(A)ij =

1 (vi, vj) ∈ E

0 otherwise

In this section we explore, how common clustering algorithms perform when clustering
based on A.

The k-Means algorithm is one of the oldest and most well known clustering algorithms
[Mac67]. The implementation used in this work was based on Lloyd’s algorithm [Llo82],
which would have been replaced by newer, improved variants, if the initial experiments
had been more promising. In essence Lloyd’s algorithm works by first assigning each
data entry to a random cluster and computing the cluster means. Then iteratively it
would reassign all data points to the clusters with the nearest centroid and recompute
the centroid afterwards, till the algorithm converges.
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The first challenge hereby is to select an appropriate similarity function. One way to
define the similarity between two nodes is to take the euclidean distance of the associated
rows in A, but since we have binary data there are a lot of possible similarity measures
(e.g. the Jaccard similarity or, pearson correlation, cosine similarity,... [Fin05]). It would
also be possible to use the length of the shortest path in the graph as similarity measure
based on the all-pairs, shortest path problem [Sei95]. However, when using alternative
similarity measure, the computation of the centroids may become significantly more
complex ([Lei06]). In the future, it could be explored how clustering performs using
these different measure, as using the euclidian distance might have been the main flaw
during this part of the work.

Beyond the default k-Means algorithm, this work also explored the use of the k-Means++
algorithm [AV07] and the spectral clustering algorithm. More concretely the fast spectral
clustering algorithm [YHJ09], which essentially clusters k-Means centroids.

All these approaches had in common, that they weren’t able to able to detect dense blocks
within the original tensor data. And for partitioning they produced very unbalanced
partitions, where one partition contained most of the entries. As the k-Means (which
is the basic of all the explored clustering algorithms) algorithm needs a parameter k
that determines the number of clusters, there where two kinds of experiments. The first
kind was to set k to the rank of the data, which is approximately known for synthetic
data (modulo some added noise). The other kind was to set k to a very high value. The
results, were so bad, that there isn’t really a point to reporting detailed results, as blocks
where only rarely found, since the clusters where either too small or not dense enough.
As noted before, the approaches discussed here are flawed, but they weren’t improved
upon, because for both problems there where better alternatives. For clustering this is
the MCL algorithm.

3.3.2 Clustering by MCL

The MCL algorithm is a graph clustering algorithm, that works surprisingly similar to
the RANDOMWALK algorithm [VD00]. It stands for Markov Cluster Algorithm and is
based on the graph flow problem. The official documentation describes the algorithm as
seen in Figre 3.2.

The basic idea is the same as with walk algorithm: clusters are subgraphs with many
edges between the members and random walks starting within a cluster only seldom
leave the cluster. Therefore, the algorithm simulates random walks in the graph based
on Markov chains. The matrix M is stochastic Matrix.
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Figure 3.2: The pseudo code of MCL as depicted in the official documentation

Definition 3.1. Stochastic Matrix A n -by-m matrix M is a column stochastic matrix,
iff:

• (M)ij ∈ [0, 1] for all i ∈ [n] and j ∈ [m]

• ∑(M)ij = 1 for all columns k ∈ [m]

In short, these matrices can be used to describe a Markov chain, which is a sequence
of state changes, where each state only depends on its predecessor. A random walk in
a graph G(V,E) can be described by such. The position of the walker is a probability
distribution over V , because since the walk is random he can be potentially be at multiple
vertices vi. For a graph with n vertices, this can be represented as a normalized (i.e.
length 1) vector ~s. We can derive a stochastic matrix M from G(V,E), that describes
with what probability a random walk would go from vi to neighbour vj , when the
direction is decided uniformly at random, given the adjacency matrix A of G(V,E)

(M)ij =


1

|(A):j | (vi, vj) ∈ E

0 otherwise

This is clearly a stochastic Matrix given the definition 3.1. The step from one state ~(s)i
to another state ~si+1 can be described by the matrix multiplication ~siM . More extensive
foundation can be found in section 3.7.

The algorithm uses two operations on the stochastic Matrix M describing the graph:

• Expansion: Corresponds to squaring the matrix M2
1 = M1 ∗M1, with normal-

ization to ensure M2
1 is a stochastic matrix. If (M)i,j represents the probability

of going from vj to vi during a random walk, (M2
1 )ij represents to probability of

going from vj to vi over another vertex and the more expansions one adds, the
longer are the potential paths. Therefore the name expansions. To not have all
probabilities get too small disappear, as the walk gets longer the Inflation phase is
important.
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• Inflation The main purpose of the inflation phase is to increase the probability
of a random walk staying within a cluster. This happens through the following
operation, given a parameter r > 1:

Inflation((M)ij , r) = ((M)ij)2∑
i′∈[n]

((M)i′j)2

This two operations are applied to the matrix M , till they no longer change the matrix.
This type of convergence is a common property of Markov chains given certain criteria
[MN88]. When it converges vertices in clusters have higher values, than others that are
not. These clusters can then be extracted from M . For more thorough explanations, see
[VD00].
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3.4 Variant: Partitioning

One observation of the Walk’n’Merge algorithm is, that most parts scale non linear
in terms of runtime with the size of input tensor (mostly the merge part). This leads
to a strategy, that reduce the size of the input, to reduce the overall runtime, because
a linear decrease in the size of the input leads to a polynomial decrease in the overall
runtime (In theory at least).

One way to do this is by preprocessing, the data as described in section 3.1.3. In this step
we can eliminate some nodes, that are no possible candidates for blocks. For example
because they don’t have any neighbours in the FiberGraph. Another strategy is to
partition the data into independent segments, whose blocks at best don’t overlap, so that
the Walk’n’Merge algorithm can run independently on them. This allows for some
trivial parallelization of the whole process and since all the segments are significantly
smaller (when using good partitioning) this can reduce the overall runtime (A consequence
of the binomial formula).

The initial experiments relied on classical clustering algorithms. These ended in general
with bad results, mostly because the partitions ended up being heavily imbalanced. This
line of thought was discontinued, because a better way was found. One can observe, that
most dense blocks have to come from the same connected subgraph of the FiberGraph.

Intuitively, this can be understood as follows. Assume, you have a tensor X with a
FiberGraph FG(V,E) that has two unconnected subgraphs FG(V1, E1) with n vertices
and FG(V2, E2) with m vertices. That means, there exists edges E (v, v′) ∈ E such that
v ∈ V1 and v ∈ V2 or the other way around. Therefore, there is no vertex in V1 that
is connected by a common fiber with a vertic in V2. That again means, that we can
rearrange the tensor into a block format, such that entries represented by vertices in V1

are in one corner and the ones presented by V2 in the other (see 3.3). Now, whenever
you have a block from one sub tensor and add a non-zero entry from another tensor, you
add a lot of zero entries. In the sketch these are from the red marked entries.

I use a breadth-first-search algorithm to find the connected components ([Ski08]). See
algorithm 6 for a pseudo code version. Essentially take a random node from V and add
its neighbours and its neighbour’s neighbours and so forth to the partition, till we no
longer encounter any new nodes. A important aspect is line 14, where we decide, whether
we actually add the node set as partition or not. This allows us to use some pruning
techniques to remove partitions that cannot contain blocks before wasting computational
resources on them. More on that in the next section.
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Figure 3.3: A sketch illustrating the density loss, when merging blocks of different
partitions using a 2 dimensional tensor as example

Input: tensor X
Output: partitions {P1, P2,. . . }

1 create FiberGraph FG(V,E) from X ;
2 partitions = an empty set;
3 while V is not empty do
4 startNode = random node from (V );
5 remove startNode from V ;
6 closedNodes = new Set();
7 openNodes = new Set (unique elements) with startNode;
8 for node v in openNodes do
9 insert v into closedNodes;

10 for neighbours vn of v do
11 if vn not in closedNodes then
12 insert vn into openNodes;

13 remove closedNodes from V ;
14 if closedNodes is a Block candidate then
15 Insert closedNodes into partitions;

16 return partitions;
Algorithm 6: Pseudo code for the partitioning algorithm

3.4.1 Pruning

There are three constraints, that blocks found by Walk’n’Merge have to fulfill, based on
the input parameters. For a Block B = (X,Y, Z) of tensor X these are: block_min_size,
block_min_vol and block_min_density. (see Section 3.1.5)

The parameters block_min_size and block_min_vol allow one to control the shape of
blocks. With low min size and high volume, the found blocks will be most likely quite
lengthy, while for higher min size the volume plays nearly no role. The density has the
property, that it allows the user to control the false positive rate of the resulting blocks,
since very dense blocks when used for reconstructing the tensor add nearly no new ones
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to the reconstructed tensor. This comes with the disadvantage, that (large) high density
blocks are harder to find, since they are rare in a typical tensor.

The partition algorithm uses a number of pruning criteria. We are given a set of candidate
nodes C = v1, v2, . . . , vw. BC = (XC , YC , ZC) is the block defined by C, with

XC = ⋃
v∈C v.x

YC = ⋃
v∈C v.y

ZC = ⋃
v∈C v.z

• Size criteria

|XC | > block_min_size and |YC | > block_min_size and
|ZC | > block_min_size

If the overarching Block isn’t large enough there won’t exist subsets X ′C ⊂ XC ,
Y ′C ⊂ YC and Z ′C ⊂ ZC with C ′ ⊂ C, such that (X ′C , Y ′C , Z ′C) is a dense block.

• Volume criteria

|XC ||YC ||ZC | > block_min_vol

the argumentation is the same as for the size criteria. It should be noted, that a
block_min_vol value of less than (block_min_size)3, makes no sense, as it would
be already covered by the size criteria.

• Block density criteria

maxDensity((XC , YC , ZC)) < block_min_density

We can bound the max density of a minimal sized sub-block of a given block using
the theorem 1.12 and a recursive calculation. The bound is rather benign, as it goes
by the implicit assumption, that removed entries contain nearly no non-zero entries.
This could possibly be further improved. As it is, it removes mostly extremely
sparse blocks.

Later, in Chapter 5, I will discuss some techniques to further split partitions without
breaking apart important structures (too often).
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3.5 Variant: Hash Merge

Considering also the huge divergence in terms of runtime between BlockMerge and
RandomWalk the focus of this whole work was more on the walk part, because if
you could make the walk good enough, that you no longer require the merge part the
algorithm would be significantly faster.

Still the merge part is useful, as it is mainly responsible for the good reconstruction
errors of the Walk’n’Merge algorithm. Problematic is however, that the blocks found
by MonoMerge are all rather small (2× 2×n) and the SubsequentMerge is actually
only rarely able to merge blocks. This leads to many small blocks in the result. This
means, that the from Walk’n’Merge resulting decomposition has a very high rank,
which reduced its overall usefulness.

For the SubsequentMerge we only want to consider blocks, that are similar in some
sense, because you want to reduce the amount of possible block pairs as much as possible.
Already the original Walk’n’Merge considered only blocks, that share coordinates.
Furthermore, I examined the use of Local Sensitive Hashing (LHS) [RU11]. Common
(cartographic) hashing schemes try to avoid collisions, while LHS schemes are designed in
a way, that similar elements are hashed to the same bucket. What I use is the min-wise
independent permutations locality sensitive hashing scheme, short MinHash [Bro97].
Given two sets A and B and a MinHash function hmin, the following holds:

P (hmin(A) = hmin(B)) = J(A,B)

Whereby P is simply the probability, and J is the Jaccard similarity, which is a common
similarity function for sets, defined by:

J(A,B) = |A∩B|
|A∪B|

Given a hash function h, that maps elements of the sets to integers, the corresponding
hmin is defined as the element which minimizes h.

hmin(A) = arg min
a∈A

h(a)

There exist Variants using multiple hash functions, I however used a variant with just
one. Using multiple hash functions could be considered for future works, as it helps
approximating the Jaccard similarity better. The SubsequentMerge was adapted,
by only considering elements for merges, that where mapped to the same value by the
MinHash. The resulting algorithm is called HashMerge.
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Figure 3.4: The squares mark different blocks in a 2-way tensor, which we would like
to merge. Ideally, you would merge yellow with blue and green with pink, but in this
case we merged yellow and red first and no further merges are possible (If you want
monochromatic blocks). Instead of the optimal 2 blocks you remain with 4 blocks

3.6 Variant: All Merge

One aspect of SubsequentMerge is, that the algorithm does not really consider
all possible merges. Potentially, this leads to suboptimal blocks as seen in figure 3.4.
The problem is, that considering all possible merges increases the runtime significantly.
Nonetheless, I experimented with this idea a bit to see by how much.

The allSubMerge algorithm changes the subsequent merge algorithm by not remov-
ing blocks, that where merged or where no merge candidate was found. I call the
BlockMerge variant with allSubMerge, simply AllMerge.



Chapter 3 Walk’n’Merge++ 41

3.7 Variant: Simultaneous Walk

In this section I discuss a replacement for the random walk phase of the algorithm
that gets very similar results without actually walking. The process is inspired by the
PageRank algorithm [PBMW99] [SG12] and also similar the MCL algorithm from Section
3.3.

The original RandomWalk produced a list of frequencies, that indicated how often
a node was visited. In SimWalk these are replaced by a probability distribution that
indicates, with what probability the walker is at a certain node. For a tensor X with
FiberGraph FG(V,E) we denote this by a vector ~s of length |V |. Initially, a start node
is selected like in the RandomWalk algorithm. The probability that the walker at the
start node is 1, all other probabilities are 0. Given the nodes V = {v1, v2, . . . , vn} and
start node vstart it the start sate is defined by:

(~sstart)i =

1 vi = vstart

0 otherwise

RandomWalk jumps back to an already explored state when the walk has reached a
length defined by the wal_len parameter. Similarly, the page rank gives the random
walker the ability to jump to a random node in the graph with a probability ε. I use this
mechanic to model the backtracking of the original RandomWalk.

The (simplyfied) power method of the PageRank [ANTT02] works as follows. Given a
Graph G(V,E), intial state ~sstart and jump probability ε, we first compute the transition
matrix T .

(T )ij =


1

L(vj) (vi, vj) ∈ E

0 otherwise

where L(vj) is the number of edges outgoing from vj (| n(vj)|). This matrix contains the
probability that a walker goes from neighboring node vi to vj at position T )ij , when the
walker decides uniformly at random. Finally, we compute till convergence:

~si+1 = (1− ε)~siT + ε

N
1N

where N is the number of nodes, ~s0 = ~sstart and 1N is the vector of ones with length N.
This last part simulates the probability, that we jump to a random node, by adding 1−ε

N

to all states. This is the part we can manipulate to simulate RandomWalk partially.
The more often a node was visited during the walk, the higher is the probability of
RandomWalk to jump back to it. For SimWalk these probabilities are explicitly
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computed as the states of the algorithm. This leads to the setp formula:

~si+1 = (1− ε)~siT + ε~si (3.3)

The main difference between SimWalk and RandomWalk is, that SimWalk can jump
back at any step and RandomWalk only at certain steps. A short pseudo code version
of SimWalk in presented as Algorithm 7.

Input: tensor X ,density d,minimum frequency p
Output: blocks (X1, Y1, Z1), (X2, Y2, Z2),. . .

1 create FiberGraph FG(V,E) from X ;
2 (T ) = Transition Matrix of FG;
3 while V is not empty do
4 v = random node from V ;
5 Compute probability distribution ~s using the power method with equation 3.3;
6 empty block (X,Y, Z) for vi ∈ V do
7 if (~s)i > p then
8 (X,Y, Z).add((vi.x, vi.y, vi.z));

9 V.remove(convexHull(ten(X,Y, Z)));
10 if density of ten(X,Y, Z)) in X > d then
11 blocks.add((X,Y, Z));
12 return blocks;

Algorithm 7: Pseudo code for the basic SimWalk algorithm

Not listed in the short explanation are potential normalization steps. As well as pruning
steps, where states with very small values are set to 0, because they are mostly irrelevant
for the computation. Also the selection function in line 7 can be replaced by the ones
discussed in Section 3.2
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3.8 Variant: Solving the quasi Clique Problem using LP

Another problem in computer science, that show parallels to the problem of selecting
subraghs of a FiberGraph as block candidates, is the quasi clique problem. A clique C of
an undirected graph (e.g. FiberGraph) G(V,E) is a set of nodes, where all nodes are
connected by edges C = {c|c ∈ V and for all c′ ∈ C with c 6= c′ exists (c, c′) ∈ E} (in an
undirected graph (c, c′) ∈ E =⇒ (c′, c) ∈ E) The clique problem is finding the largest
clique of a graph.

The quasi clique problem is similar, just that it allows for some edges to be missing. A
full clique of n nodes has

(n
2
)
nodes. A γ-quasi clique C has at least γ edges of a full

clique. meaning:
|{e|(c, c′) ∈ E and c ∈ C and c′ ∈ C}|(|C|

2
) ≥ γ

Note, that finding a maximal γ-quasi clique is a NP-hard problem. Finding the largest
γ-quasi clique has been studied in the path and [PVBB13] suggests a mixed integer
program (MIP) for solving it.

Let G(V,E) be a graph and A its adjacency matrix. Then a MIP for finding the largest
γ-quasi clique is given by:

maximize
n∑
i=1

xi

subject to
n∑
i=1

n∑
j=i+1

(γ − (A)ij)wij ≤ 0, i = 1, ..., n

wij ≤ xi, wij ≤ xj , wij ≥ xi + xj − 1 j > i = 1, ..., n
wij ≥ 0, xj ∈ {0, 1}, j = 1, ..., n

Which has n
(n−1) variables and 3

2n(n− 1) + 1 constraints. There do exist different MIPs
in the paper, but I won’t present these here. Please, refer to the original paper for more
details.

3.8.1 Extended Graph

One has to keep in mind, that subgraphs representing blocks are not cliques or even
quasi cliques with large γ values in the FiberGraph, because an entry of the block is
just connected with entries with which it shares fibers. In a n×m× l monochromatic
block (X,Y, Z) those are n+m+ l entries (disregarding the fact that there are no self
loops). resulting in an edge density of n+m+l

nml . The extended graph was designed to give
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blocks a higher edge density. Thereby I differentiate between two kinds of extended
FiberGraph.

The first Variant FG2(V,E) could be referred to as the SliceGraph and given a
FiberGraph FG(V,E) is defined as follows:

Definition 3.2. SliceGraph The first extension of a FiberGraph FG(V,E), the
SliceGraph FG2(V,E2) has additional edges defined by

E2 = E ∪{(v1, v2)| the exists v′ ∈ V s.t. (v1, v
′) ∈ E and (v′, v2) ∈ E with v1 6= v2}

In short, it connects nodes, that share a slice and have a common neighbour within
the slice. The edge density of monochromatic within the SliceGraph is therefore
approximately nm+ml+nl

nml with some duplicates. You can go also one step further and
connect all edges, that are reachable in the 3 steps in the FiberGraph. I call this the
TensorGraph, although the name can be a bit misleading.

3.8.2 Quasi Clique based Block Detection Algorithm

The MIP can be solved using of the shelve solver and in this case I use gurobi. An
algorithm, that computes a CP-decomposition of fixed rank r can simply compute the
largest quasi clique of the graph and remove it r times.

Input: tensor X ,density d,minimum density γ, rank r
Output: blocks (X1, Y1, Z1), (X2, Y2, Z2),. . .

1 create FiberGraph FG(V,E) from X // or an extended variant
2 blocks = empty list;
3 forall the i ≤ r do
4 C = largest γ-quasi clique in FG(V,E);
5 removed nodes in C from FG(V,E);
6 Add block defined by the convex hull of C to blocks;
7 return blocks;
Algorithm 8: Pseudo code for the qc_cpDecomp algorithm computing a CP-
decomposition based on the quasi clique problem



Chapter 4

Evaluation

In this section I evaluate the different method introduced in chapter 3. First I will
describe my experimental framework in section 4.1. After that follow the individual
evaluations. I don’t report all results exhaustively and concentrate on the interesting
ones, e.g. when an experiment only marginally deviates from the baseline, I will say as
such and not report the same graph again.

4.1 Experimental Methodology

Most of the strategies were evaluated on synthetic data, because getting large amounts
of real world data to get statistical relevant results is very hard. An overview on the
tensor generation is in section 4.1.1. Another overview over the different datasets is in
section 4.1.2.

For the evaluation I primarily used the data_scale_size and data_scale_rank datasets,
that contain 50 tensors each from 10 different kinds of tensors. To factor in the randomness
of the algorithms each experiment was repeated 5 times, so that each graph that is
presented in this work is the result of 250 runs, with 25 runs per different kind of tensor.
I also report the 99% confidence intervals for each experiment.

The runtime is the most important metric for these experiments, but the reconstruction
error is also important. Given a tensor tenX and a reconstructed tensor Y, we have

Table 4.1: Error Matrix
XXXXXXXXXXXpredicted

actual 1 0

1 true positive (tp) false negative (fn)
0 false positive (fp) true negative (tn)

45
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several classical error metrics from machine learning and data mining (see table 4.1).
The Accuracy or reconstruction error (= tp+tn

tp+tn+fp+fn) alone is for the human observer a
difficult metric to understand, because the zero entries far outweigh the positive ones. In
fact most accuracy measures reach values of 0.9999 or better, even when comparing to a
trivial tensor without any non zero entries. The number of true negatives is typically
very high and the number of false positives relatively low, because all the algorithms
discussed wouldn’t add a non-dense tensor and in most cases the density d is kept high
(> 0.8) and for the result roughly holds fp < (1 − d)tp. In the end, I choose the true
positive rate(tpr = tp

tp+fn) also known as Sensitivity as a quality metric, as it measures
the critical aspects best.

Another aspect, that I would like to measure is the ability of the results to be used for
a CP-decomposition of fixed rank. The best way to do this is to actually construct a
CP-decomposition. Since, this is actually a non trivial problem I defined for my cases an
algorithm to construct a canonical CP-decomposition from a set of blocks.

Input: in_blocks {(X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xm, Ym, Zm)}, rank r
Output: out_blocks {(X1, Y1, Z1), (X2, Y2, Z2), . . . , (Xr, Yr, Zr)}

1 if m > r then
2 return in_blocks // No selection needed

3 out_blocks = new collections;
4 forall the r iterations do
5 Add to out_blocks the block with the highest amount of new entries;
6 return out_blocks
Algorithm 9: Pseudo code for constructing the canonical CP-decomposition from a set
of blocks

A bit complicated is just to calculate this highest amount of new entries. One block
(X,Y, Z) alone has |X||Y ||Z| new entries. A block that overlaps with an existing block
(X ′, Y ′, Z ′) has (X,Y, Z) − | overlap((X,Y, Z), (X ′, Y ′, Z ′)|) new entries, whereby the
overlap of the two blocks can be calculated by (X ∩X ′, Y ∩Y ′, Z ∩Z ′). Calculating the
number of new entries gets increasingly complicated, when the number of overlapping
blocks increases further, as one has to keep care to only remove entries once from the
calculation.

With this I define the top-k true positive rate (tprk) as the true positive rate of the rank
k canonical CP-decomposition.

All experiments were executed with a relative harsh timeout of 30 minutes, experiments
taking longer are interrupted, since the goal of this work is to find fast algorithms and the
30 minutes indicate, that the algorithm won’t scale good enough for the given datasets.
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4.1.1 Tensor Generation

The tensor generation is very similar to the approach of the original Walk’n’Merge
paper. It is based on the hypothesis, that tensors are spanned by a set of core blocks,
with some noise. The pseudo code is provided by algorithm 10.

Input: size_x,size_y,size_z,rank,destr_noise ∈ [0, 1], constr_noise ∈ [0, 1]
Output: tensor X

1 d′ = subdensity(d);
2 generate Boolean size_x -by- rank matrix A with density d′;
3 generate Boolean size_y -by- rank matrix B with density d′;
4 generate Boolean size_z -by- rank matrix C with density d′;

5 X =
rank∨
i=1

(A):i�(B):i�(C):i;

6 apply constructive Noise to X ;
7 apply destructive Noise to X ;
8 return X ;

Algorithm 10: Pseudo code for the rank based tensor generation

The input arguments are the 3 sizes, the Boolean rank r and the density of the tensor,
as well as the constructive and the destructive noise parameters. The algorithm starts
by generating an ideal tensor by first generating the 3 factor matrices with density d′

(from equation 8), that define X . In a sense, this is a inverse CP-decomposition. The
result is a tensor, that has a perfect decomposition into r rank-1 subtensors. Since,
perfect tensors with low rank will be very rare in natural data, I try to emulate real
world data, by applying some noise. The two kinds of noise are the destructive noise and
the constructive noise. The destructive noise sets a percentage of non-zero entries to
zero, while the constructive noise sets zero entries to one.

The density d′ of the three matrices A,B and C is estimated by

d′ = (1− (1− d)
1
r )

1
3 (4.1)

Assume the three matrices have a density of d′. That means, that the probability that a
entry is 1 is also d′. An entry (i, j, k) of the tensor is one, when there exists a column c,
such that (A)i,c = 1, (B)j,c = 1 and (C)k,c = 1. The probability that this is the case for a
given c is d′3, assuming those events are independent. Consequently the probability, that
this is not the case is (1− d′3). The probability, that atleast one such c for given i, j, k
exists is easiest calculated using the probability of the complementary event, resulting in:

d = 1− ((1− d′3)r)

which yields the equation 8, when solving the equation for d′.
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Table 4.2: Table detailing the tensors used for the synthetic dataset data_scale_size

name size_x size_y size_z density constr. noise destr. noise rank
gen1 1000 1000 1000 0.000001 0.0000001 0.1 25
gen2 1330 1330 1330 0.000001 0.0000001 0.1 25
gen3 1660 1660 1660 0.000001 0.0000001 0.1 25
gen4 2000 2000 2000 0.000001 0.0000001 0.1 25
gen5 2660 2660 2660 0.000001 0.0000001 0.1 25
gen6 3330 3330 3330 0.000001 0.0000001 0.1 25
gen7 4000 4000 4000 0.000001 0.0000001 0.1 25
gen8 5330 5330 5330 0.000001 0.0000001 0.1 25
gen9 6660 6660 6660 0.000001 0.0000001 0.1 25
gen10 8000 8000 8000 0.000001 0.0000001 0.1 25

4.1.2 Datasets

Synthetic Data

There are two datasets generated for the evaluation. Each of these sets contains 10 kinds
of tensors, with 5 versions of each. They are designed in such a way, as to explore how
the algorithm scales with increased tensor size and increased tensor rank. The datasets,
are kept quite sparse, because most real world data is sparse. Compared to some of the
sparser real world datasets, they are still quite dense.

data_scale_size
The generation parameters for the tensors data_scale_size are shown in table 4.2. the
tensors in this set are of different size, whereby gen1 tensors are the smallest with roughly
1000 entries and gen10 tensors the largest with half a million entries. The size increases
is cubic. The noise values are kept relatively low, destructive noise is at 10 percent and
the constructive noise is chosen so that about 10% of extra ones appear. The rank is
fixed at 25, which is rather large for the smaller tensors (blocks a rarely larger than
2× 2× 2), but quite small for the larger ones (on average the blocks for gen10 have a
size of 70× 70× 70).

data_scale_size
The main difference, to the data_scale_size dataset is, that the rank is scaled (linearly)
up, such that gen10 has 10 times he rank of gen1, while the size stays the same. In
terms of size, they have about as many entries as the gen8 tensors from the earlier set.

Realworld Data

I had several different real world datasets available and of those I choose a small selection
in hope that they best model applications of boolean tensor decomposition in praxis.
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Table 4.3: Table detailing the tensors used for the synthetic dataset data_scale_rank

name size_x size_y size_z density constr. noise destr. noise rank
gen11 3000 3000 3000 0.00001 0.0000001 0.1 20
gen12 3000 3000 3000 0.00001 0.0000001 0.1 40
gen13 3000 3000 3000 0.00001 0.0000001 0.1 60
gen14 3000 3000 3000 0.00001 0.0000001 0.1 80
gen15 3000 3000 3000 0.00001 0.0000001 0.1 100
gen16 3000 3000 3000 0.00001 0.0000001 0.1 120
gen17 3000 3000 3000 0.00001 0.0000001 0.1 140
gen18 3000 3000 3000 0.00001 0.0000001 0.1 160
gen19 3000 3000 3000 0.00001 0.0000001 0.1 180
gen20 3000 3000 3000 0.00001 0.0000001 0.1 200

The main factor being that they where the largest of the analysed datasets.

• TracePort: anonymized passive traffic traces with fibers: source IP, destination
IP, port number

• Facebook: who posted on whose wall with fibers: poster, wall owner, week

These sets are best characterized, by having a very high rank with rather small dense
blocks, which makes them stand apart from the artificial generated datasets.

Hardware

The experiments where run on 64bit linux server, with 16 cores (32 with hyper threading)
and Intel(R) Xeon(R) CPU E5530 @ 2.40GHz processors with roughly 50 Gb main
memory.
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(a) Runtime of Walk’n’Merge in relation to the
size of the tensor

(b) Tpr of Walk’n’Merge in relation to the size of
the tensor

(c) top 20 tpr of Walk’n’Merge in relation to the
size of the tensor

Figure 4.1: The performance of Walk’n’Merge

4.2 Baseline Experiments

First I will give an overview on the performance of Walk’n’Merge as emulated by
Walk’n’Merge++. The algorithm was run using default parameters on the two
synthetic datasets from the previous section. The primary results can be seen in figure
4.1. With the timeout of 30minutes a lot of runs where actually terminated early and
aren’t depicted in the graphs. But for those, that are depicted the most notable thing is
true positive rate of nearly 90%, which is about the best one could expect considering,
that the tensors contain 10% constructive noise (relative to the number of entries). The
top20 tpr is still rather good with slight decline with increasing size of the tensor and of
course with increase of the tensor rank.
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(a) Runtime of RandomWalk in relation to the size
of the tensor

(b) Runtime of RandomWalk in relation to the
rank of the tensor

(c) Tpr of RandomWalk in relation to the size of
the tensor

(d) Tpr of RandomWalk in relation to the rank of
the tensor

(e) top20-tpr of RandomWalk in relation to the size
of the tensor

(f) top20-Tpr of RandomWalk in relation to the
rank of the tensor

Figure 4.2: The performance of RandomWalk as stand alone
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(a) runtime for rank scaling

(b) Runtime for size scaling

Figure 4.3: The runtime of RandomWalk for different walk_len parameters

4.3 Experiments on the Walk Length

When choosing the Parameters of the walk (see algorithm 9) the walk_len and walk_num
parameters have the biggest impact. The original paper had some rough runtime es-
timations for the RandomWalk algorithm, where the runtime was depending on the
product of the two. A high walk_num results in higher sampling rate and possibly
better approximation of the frequencies. The walk_len controls how often the walk is
restarted, that means for lower values the probability, that the walk reaches far is lower.
Another influence is, that shorter walks may lead to less vertices being removed, which
results in more iteration and could lead to a higher runtime. At this point it’s hard to
say what is preferable from a theoretical standpoint, because it is not only quite complex,
but also depends on the actual implementation.

I did experiments with different walk_len parameters to get an idea on what is happening.
These parameters where 2,3,10 and 20. 2 is the lowest possible value, 3 is a quite natural
value, because all entries in a (monochomatic) block can be reached in 3 steps. I will
only report the results for the extreme values of 2 and 20. The other parameters where
kept at the default values.
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(a) tpr for rank scaling

(b) tpr for size scaling

Figure 4.4: The true positive rate of RandomWalk for different walk_len parameters

Figure 4.3 shows the impact on the runtime. The distribution of the runtime values stays
the same, while the runtime for small walk_len values increases. The increase is linear
in comparison to the rank of the tensor, but seems to increase more, when the tensors
grow larger. In terms of tpr, we can see that it heavily depends on the size of the tensors,
but not in a linear fashion. Consider the graphs for size scaling dataset. For a value of 2,
we can see that the tpr function first decreases, till it reaches and then it increases. The
same observation can be made for higher values, just that the local minimum is later.
Still, in most cases a smaller walk_len value outperforms the larger ones.
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4.4 Evaluation of Selection Algorithms

All these methods have a inherit weakness in common. Assuming there is more than 1
block within the visited nodes (as seen in figure 3.1), none would be able to differentiate
them, as both would have high frequencies in their respective nodes (If they where
encountered roughly at the same time). The result is, that the blocks won’t be added as
the density of the merged block is most likely too small and both blocks won’t be able to
be found by the algorithm.

Working around this shouldn’t happen within the selection phase, but in the upper level
walk procedure. This can be partially controlled by selecting appropriate parameters
for the algorithm. For example, the overlaps are commonly relatively small so removing
those could be arranged, by selecting the block_min_size parameter appropriate. More
importantly, in terms of algorithm design (and implementation) it is important to have
a clear structure in the algorithm, to keep the implementation maintainable and the
algorithm understandable. Should there be multiple blocks within the initial candidate
set, this will be viewed as a failing of the higher level algorithms (often it is simply
unavoidable). Note, that although selectcomp(C) produces multiple blocks they are
commonly parts of the same block.

The different selection algorithms were evaluated on the synthetic datasets scale_size and
scale_rank using the RandomWalk of Walk’n’Merge++ with default parameters
as specified in section 4.1. Depicted (Figure 4.5 and 4.6) are the results of using different
selection functions. For the composite selection function denoted by all I used just
about any selection function I could come up with in addition to those mentioned before.
The result is, that the runtime explodes. While computing the candidates is not very
expensive by design, testing the density of so many blocks actually gets expensive. In
terms of runtime selectavg and select2Dimk−Means are very similar. In terms of true
positive rate select2Dimk−Means actually outperforms selectavg a bit. The composition of
all selection functions is better than the individual selection functions in nearly all cases,
which makes sense, since the blocks found by the individual functions are all part of the
composite solution. It shows maybe not the best true positive rate we could possibly
reach with selection functions, but gives a good idea of the potential of them. In that
sense, the results of the two individual selection functions are rather close. In terms
of top20-tpr (not depicted), there are no significant differences. One problem with the
composite function, that is not shown in the graphs is the fact, that the number of false
positives noticeable increases, although all blocks have a density of 0.9. Reason for this,
that all the overlapping blocks produce new false positives, but no new true positives.
The more overlapping blocks you have the higher is the chance for new false positives,
while the number of true positives stays the same. This speaks against the intuition to
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(a) Rank Scaling (b) Size Scaling

Figure 4.5: The runtime of the RandomWalk algorithm of Walk’n’Merge++ on
the scale_rank and the scale_size datasets with a block density of 0.9 using selectavg,

select2Dimk−Means and selectcomp (called all)

(a) Rank Scaling (b) Size Scaling

Figure 4.6: The true positive rate of the RandomWalk algorithm of
Walk’n’Merge++ on the scale_rank and the scale_size datasets with a block

density of 0.9 using selectavg, select2Dimk−Means and selectcomp (called all)

use the true positive measure as sole performance measure. It motivates the composite
approach, that only selects the largest block. As a measure of what is the best possible
it is still somewhat usable.

4.5 Evaluation of Cluster Algorithms

The k-Means, k-Means++, spectral and fast spectral algorithm where all tried with
different parameters, but none could show satisfying performance. The reasons for that
were already mentioned in Section 3.3.

The MCL algorithm was evaluated in the two synthetic, standard test sets scale_rank and
scale_size and default parameters. The block_min_size parameter was varied, to check,
whether it only finds the one dimensional clusters (a weakness of many FiberGraph
based methods), or if it also finds larger dimensional blocks. For the Selection function
the composition function was used.
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In terms of runtime it is worse, than the RandomWalk algorithm (without Merge
part). It is however, better than the standard Walk’n’Merge procedure, since the
BlockMerge algorithm, takes a huge runtime toll. However, since it also only rarely
found dense blocks regardless of choice of parameters (besides lowering the block_density),
the results weren’t very satisfying. All in all, I found this result quite surprising, because
MCL works on the same general ideas as RandomWalk.
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(a) Rank Scaling (b) Size Scaling

Figure 4.7: The runtime of the RandomWalk algorithm of Walk’n’Merge++ with
partitioning on the scale_rank and the scale_size datasets using default parameters

4.6 Evaluation of Partitioning

I experimented on both Walk’n’Merge and RandomWalk with partitioning. The
experiment setup was to once ran them with partitioning and once without, while
keeping all other parameters the same (the default values). In terms of true positive
rate and top20-tpr, the results were almost identically, which is not suprising, because
with a block_density of 0.9 it is highly unlikely, that a dense block spans more than
one connected component. In terms of runtime the partitioning did actually perform
worse, than the none partitioned variant. For RandomWalk this makes absolutely
sense, because walk does not perform different, since non-connected components could
never be reached to begin with. What remains is a overhead from the partitioning and
maybe from the thread scheduling.

A bit depressing are the results for the Walk’n’Merge experiments (Figure 4.8), because
they show worse performance when using partitions. Partially, this could be because
of implementation problem, e.g. when scheduling the threads. The MonoMerge isn’t
affected by that much by the partitioning, because the candidate pairs won’t be split.
The subsequent merge isn’t actually that much of a performance leak. Nonetheless, the
partitioning is useful, as we see later with Split’n’Expand.
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(a) Rank Scaling

Figure 4.8: The runtime of the Walk’n’Merge algorithm of Walk’n’Merge++ with
partitioning on the scale_rank and the scale_size datasets using default parameters
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4.7 Evaluation of Simultaneous Walk

The SimWalk was on the same datasets as the RandomWalk with default parameters,
without using BlockMerge or a variant. The restart probability of SimWalk was
chosen so that the expected walk length was equal to the walk_len parameter of
RandomWalk. When the algorithm runs through the resulting true positive rates are
very similar, however in terms of runtime the SimWalk is significantly worse. Originally,
I had hope, that the sparse matrix multiplication provided by Armadillo is optimized
enough that, when most entries are zero, its runtime is acceptable. But the experiments
show that, when the size of the input tensors gets too large, the runtime is no longer
comparable to RandomWalk. Therefore, I did not see a reason to develop this direction
further. Of course, an implementation more focused on the SimWalk may have better
results.
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4.8 Evaluation of Hash Merge

As the HashMerge is an alternative to the BlockMerge algorithm, I simply ran
the Walk’n’Merge algorithm and replaced the BlockMerge phase with the new
HashMerge. The parameters where kept at their default values and the timeout at 30
minutes. The algorithm didn’t have a large impact on the runtime, but it is possible,
that it could be more noticeable for those result, where my Experiments timed out. The
main reason for this is, that MonoMerge alone has a very significant runtime, such
that the subsequent merge is hardly noticeable. The true positive rate was (nearly) not
changed and neither was the top-k tpr. The number of actually done merges was smaller,
but the number was very small in the original version to begin with.
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4.9 Evaluation of All Merge

As the AllMerge is an alternative to the BlockMerge algorithm, I simply ran
the Walk’n’Merge algorithm and replaced the BlockMerge phase with the new
AllMerge. The parameters where kept at their default values and the timeout at 30
minutes. For those tensors, where the algorithm ran through it had very good results in
terms of true positive rate and also top-k true positive rate. Which is not surprising, as
its essentially a brute force method for enumerating all possible blocks and this is exactly
the problem with this approach. Here is a small though experiment, to give an idea of
how many blocks we are talking about.

Assume you have a monochromatic block with d monochromatic subblock, that where
found by MonoMerge. First we can merge all those d blocks and have

(d
2
)
new blocks.

those we can merge again with each other and the old d blocks resulting in
(d+(d

2)
2
)
merges.

This you can continue for quite a time. Of course, this is extremely simplified, but it
illustrates well the exploding runtime.
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4.10 Evaluation of the Quasi-Clique approach

The paper that proposed the original MIP already stated, that it only really works for
small graphs. My experimentation agrees with that. Nonetheless, there where some runs
of MIP that I could do with my computational resources. These seem indicate, that the
quasi-clique detection on the FiberGraph does not find good block candidates, even when
varying the γ parameter. While using it on the extended Graphs let to some encouraging
results, where actual dense blocks where found. However, these experiments where too
small to be really meaningful and the overall runtime didn’t make further examination
in this direction feasible without fundamentally changing the detection algorithm.
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Split’n’Expand

5.1 The Algorithm

Based on my results I propose the Split’n’Expand algorithm for boolean tensor decom-
position. As the name may suggest, the algorithm is based on (recursively) partitioning
the tensor. We have seen, that partitioning can be used to reduce the problem size
into several smaller parts, at relative cheap cost and that it allows to apply pruning
to reduce the problem size further. The partition procedure discussed in this section
reduces the size of the tensor even further, than the one discussed earlier in Section 3.4.
The Split’n’Expand algorithm (algorithm 11) relies on partitioning and splitting to
recursively reduce the tensor size, till it either finds trivial blocks, because the whole
partition is essentially a dense block, the partition gets pruned away, because it’s too
small or sparse, or the tensor gets too small to be sensible split. Once this happens, it
starts searching for blocks by expanding dense subblocks (line 14).

5.1.1 Partitioning Phase

Using algorithm 6 from Walk’n’Merge++, partitioning the graph into connected
components is possible in linear time. It can additionally be parallelized, as shown in
algorithm 12. The algorithm simply tries to compute the partitions in parallel. Sometimes
it will create the same partition twice during the same parallel section, when the start
nodes are from the same connected component. This is bound to happen not too often,
because the entries will be removed after one iteration, so that future iterations won’t
chose the same component. The probability that the same component is chosen can
be estimated by min

(
1, tc

)
(t = number of threads, c = number of components), which

of course assumes, that the size of the components is uniform. Typically, c is larger

63
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Input: tensor X , min_block_size, min_block_vol, min_diameter
Output: blocks ({(X1, Y1, Z1), (X2, Y2, Z2), ...})

1 create FiberGraph FG(V,E) from X ;
2 partitions = empty queue;
/* The partitioning procedure used in Walk’n’Merge++ */

3 forall the connected components C ⊂ V do
4 if C is a Block candidate then
5 partitions.add(C);

/* paralellized, since the partitions are independent of each other */
6 while in parallel: partitions is not empty do
7 Candidate C = partitions.pop();

/* pruning step */
8 if C is not a block candidate then
9 continue ; // get next candidate

/* density check */
10 if C represents a block in X then
11 blocks.add(toBlock(C))
12 else

/* reduce to smaller sub problem */
13 if diameter of FiberGraph FG(C,EC) < min_diameter then
14 Try finding blocks in FG(V,E) by expanding nodes in C;
15 else
16 (C1,C2) = split of C;
17 partitions.add(C1);
18 partitions.add(C2);

19 return blocks;
Algorithm 11: Pseudo code for the Split’n’Expand algorithm

than t, which further reduces the chance of coalitions. But still, the worst case runtime
remains at O(n) and in later phases, when the number of components grows smaller,
more collisions happen.

Input: tensor X
Output: partitions ({P1, P2,. . . })

1 create FiberGraph FG(V,E) from X ;
2 partitions = an empty set;
3 while in parallel: V is not empty do
4 start node v = randomNode(V );
5 partition P = ConnecteComponents(v);
6 if P /∈partitions then
7 partitions.add(P);
8 V = V \ P ;

9 return partitions;
Algorithm 12: Pseudo code for the parallelized partitioning algorithm
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5.1.2 Splitting Phase

Input: partition C, FiberGraph FG(C, EC), minimal diameter dm
Output: partitions ({C1, C2})

1 dm = pseudoDiameter(FG(C, EC));
2 select two nodes s, t from V with shortest path distance dm from each other;
3 dists = shortest path distances from s computed using Dijkstra;
4 distt = shortest path distances from t computed using Dijkstra;
5 C1 = partitions with s;
6 C2 = partitions with t;
7 forall the v ∈ V do

/* add to c̈losestp̈artition */
8 if dists(v) <= distt(v) then
9 add v to C1 ;

10 if dists(v) > distt(v) then
11 add v to C2 ;

12 return ({C1, C2});
Algorithm 13: Pseudo code for the graph splitting algorithm

Originally, the idea was to use MinCut, based on Karger’s algorithm [KS96], but it
quickly became obvious, that MinCut is quite a bad splitting procedure for Partitioning
FiberGraphs, because they tend to serve small outliers or single nodes from within a
block. One has to keep in mind, that the overlapping section of different blocks can
actually be quite dense, when considering the edge density. In the end I developed the
algorithm displayed in 13.

I start by estimating the diameter of the graph. To do this exactly, you could solve
the APSP (All path shortest path) problem, which can be solved in O(|V |3) using
Floyd’s algorithm [Flo62] or O|V |(|V ||E| log(|V |)) using multiple iterations of Dijkstra’s
algorithm [MF10]. I use an approximation called the pseudo diameter shown in algorithm
14. It tries to find the longest shortest path of a graph by repeatedly choosing a longest
shortest path as calculated by Dijkstra and restarting from one of its endpoints as
potential start point for a new longest shortest path [GRD+10].

Having the (pseudo) diameter of the graph, I select two nodes (v and u) with maximal
shortest path distance and run Dijkstra’s algorithm (worst case performance O(|E| +
|V |log(|V |))) from both of them to compute the shortest path distance from all nodes
to these two respectively. An important invariant is, that the graphs of the different
partitions are connected or else there could be infinite distances. Finally, the graph is
divided into two partitions. They are initially made up by the two pivot nodes v and
u and all other nodes are assigned to whatever partitions pivot node is nearer. The
procedure is motivated by the following idea: When two nodes have a sufficient long
shortest path distance we can make some assumptions over the distance to other nodes.
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Input: graph G(V,E)
Output: pseudo diameter dm)

1 s = random node from V ;
2 dold = 0;
3 dnew = 0;
4 do
5 compute shortest path distances from v using dijkstra’s algorithm for all v′ ∈ V ;
6 dnew = max shortest path distance from dijkstra’s;
7 v = random node of V with distance dnew from the old v;
8 while dold < dnew;
9 return dnew;

Algorithm 14: Pseudo code for the calculation of the pseudo diameter

Let d be the shortest path distance between v and u, let t be another in the graph with
distance du to u with du ≤ d, then we know that the distance dv to v is less or equal
d− du or else the would be a shorter path than measured by the shortest path distance,
which is a contradiction. In other words, when the diameter is sufficiently large a node
that is close to u is very unlikely to form a dense block together with a node close to v,
because the path in the FiberGraph is long.

One always risks splitting important structures in the FiberGraph with the splitting
procedure. I did therefore experiment with a few different splitting procedures and
among them were some where the partitions actually could overlap (e.g. when all nodes
with distance of 3 from the pivot are also added). This is also the reason, why I don’t
call this process partitioning, because commonly only disjoint sets are referred to as
partitions. One problem with having any kind of overlap is, that the rate with which the
graph shrinks is reduced, which for all tested variants significantly increased the runtime.
In the end, I used the expansion procedure in hope of restoring split structures.

5.1.3 Expansion

The idea of the expansion is to expand a block (X,Y, Z), by adding new entries to
the three index sets. The search is guided by the FiberGraph and works in a greedy
manner. The pseudo code for this BlockExp algorithm is displayed in Algorithm 15.
The algorithm is like the partition procedure motivated by the idea, that not connected
components in the FiberGraph are not candidates for dense blocks, so components
of dense blocks are connected by edges. The algorithm simply tries to expand with all
connected nodes in the order they where encountered. Its not an optimal algorithm,
because this would require some backtracking, since the order of nodes tried changes the
form of the resulting block.
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Input: dense Block B = (X,Y, Z), FiberGraph FG(V,E), Tensor X
Output: dense Block B′ = (X ′, Y ′, Z ′) with X ⊂ X ′,Y ⊂ Y ′ and Z ⊂ Z ′

1 Queue openNodes = FG neighbours of non-zero entries of X in B not in B itself;
2 Set closedNodes = all non-zero entries of X in B;
3 while openNodes is not empty do
4 node v = openNodes.pop();
5 if v /∈ closedNodes then
6 if (X ∪ v.x, Y ∪ v.y, Z ∪ v.z) is a dense Block then
7 B = (X ∪ v.x, Y ∪ v.y, Z ∪ v.z);
8 Add FG neighbours of v to openNodes if they are not in closedNodes;
9 add v to closedNodes;

10 return (B);
Algorithm 15: Block expansion algorithm BlockExp

The smallest dense block is the blocks that contains only one element. Therefore, when
Split’n’Expand starts expanding in a partition it simply selects some nodes called seeds
uniformly at random from the partition and expands them in the original graph using
BlockExp (not the graph only containing the partition).
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(a) Runtime for the scale_rank dataset (b) Runtime for the scale_size dataset

(c) True positive rate for the scale_rank dataset (d) True positive for the scale_size dataset

Figure 5.1: Standalone performance of the expansion procedure when used on 100
randomly sample blocks

5.2 Evaluation

5.2.1 Evaluation of BlockExp

The expansion algorithm BlockExp is actually potentially useful for any algorithm
that finds dense blocks like the Walk’n’Merge algorithm, but it wasn’t evaluated in
that context, because of time constraints. One could also use the expansion procedure as
replacement for the RandomWalk. An experiment that tried this is depicted in Figure
5.1, where I simply sampled 100 non-zero entries from the test tensors and expanded
them. Even as a stand alone it doesn’t perform half bad. It does not reach the level of
RandomWalk or Walk’n’Merge, but for a unguided random sampling algorithm it
gets relatively good tpr results. As expected the tpr decreases with increase of the tensor
rank, because the number of sampled blocks stays the same, but also with the size of
tensor. The later could be an inherit weakness of the greedy approach, that occurs in
larger blocks.
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(a) Rank Scaling (b) Size Scaling

Figure 5.2: The true positive rate of Split’n’Expand on the scale_rank and the
scale_size datasets

5.2.2 Evaluation of Split’n’Expand

Split’n’Expand was evaluated on the two synthetic data and compared to Walk’n’Merge
and RandomWalk, both with default parameters. As discussed before, some parameters
can be optimized to increase the performance, but this gives only slight improvements,
so we can still compare to the default version and get a good impression of its relative
performance. The min_diameter was set to 5, because this is a good estimation for the
diameter of a somewhat sparse block.

The runtime of Split’n’Expand is significantly better than the one of Walk’n’Merge,
but slightly slower than the one of the RandomWalk (Figure 5.4). More importantly,
it scales well with increased rank and size. In terms of true positive rate the results of
Split’n’Expand are quite convincing. For true positive rate alone it reaches the best
possible value of about 0.9 (The remaining 0.1 are lost because of the constructive noise).
Additionally, the results of the top 20 true positive rate experiments are good. They are
better than the sole RandomWalk, and for those runs where Walk’n’Merge didn’t
timeout, they also show better performance.

These good results also extend to the real-world datasets, but not with the default
parameters. It turns out, that there are actually only few very large, dense blocks in the
real-world data. By either changing the minimal block density or the minimal size of the
blocks, one gets results, that are comparable to the ones from the synthetic data.
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(a) Rank Scaling (b) Size Scaling

Figure 5.3: The top 20 true positive rate of Split’n’Expand on the scale_rank and
the scale_size datasets

(a) Rank Scaling (b) Size Scaling

Figure 5.4: The Runtime of Split’n’Expand on the scale_rank and the scale_size
datasets
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Conclusion

6.1 Future Work

This work only has the scope of a master thesis, therefore its scope is limited and many
questions remain open. I will use this section to list some of the ideas, that I would have
liked to explore further.

6.1.1 mode FiberGraph

The clustering approaches could have been explored further. For example by considering
the similarity on a fiber level first. Meaning, one could reduce the FiberGraph to only
include x-fibers, y-fibers or z-fibers

Definition 6.1. x-mode FiberGraph For a given boolean 3-way tensor X the x-mode
FiberGraph FG(V,E) with set of vertices V and edge relation E ∈ V × V is defined
by:

• Nodes(V): for every entry with (X )ijk = 1 there is a node (vijk).

• Edges(E): Two nodes (vijk, vpqr) are connected, when their coordinates differ only
in their x position (i.e. j = q, k = r and i 6= p).

y-mode FiberGraph and z-mode FiberGraph are defined analogue. A block (X,Y, Z)
consists of elements, that are similar in the x-mode FiberGraph in X, similar in the
y-mode FiberGraph in Y and similar in the z-mode FiberGraph in Z. Potentially,
this could be used to better differentiate overlapping blocks, in hope, that they don’t
overlap all dimension the same.
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6.1.2 Distance Estimation

Given the FiberGraph, we know that vertices of the same block are connected by a
path of length 3. That means, that means we should consider subsets Block as candidates
for dense Blocks, when they have a diameter of 3. Overall, I think that many approaches
discussed in this work could be improved by using a distance matrix as base ,e.g. the
clustering approaches.

Of course, the distance matrix is computational expansive (O(|V |2|E| log(|V |)) or O(|V |3))
so you would most likely end up using approximative measures.

6.1.3 Improved Splitting

The splitting procedure of Split’n’Expand is still its weakest part and is should be
adapted, that its less likely to split connected blocks.

6.1.4 Expansion

The expansion procedure, introduced with Split’n’Expand, could be used to a larger
extend, for example, by applying it to all blocks found by the MonoMerge algorithm.
Beyond that, the expansion algorithm could be further improved, since its current greedy
form is not guaranteed to find good results.

6.1.5 Larger MonoMerge blocks

As of now, MonoMerge is used to find blocks of size 2. You could try to find
monochromatic blocks of different size and use them to construct new blocks.

Additionally, you could limit these blocks to size 2 × 2 × 2, and not to those of size
2×2×n for n ≥ 2, because the current format limits the ability of blocks to be connected
along, the x and y dimensions, e.g. a block of dimensions 20 × 2 × 2 is less likely to
be found by subsequent merge as of now, when the are some blocks sharing x and y

coordinates. Every block can be approximated by a union of size 2 blocks, so just about
every block (not considering the effect of RandomWalk) could be approximated by a
sequence of merges.

One could completely skip the RandomWalk and similar procedures and directly start
with the MonoMerge and build blocks in a bottom up principle. Of course, this requires
a significantly improved merge procedure.
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6.1.6 Quasi-Clique approach

The quasi-cliques were only explored in form of a MIP. You could try different other
algorithmic approaches and use properties of quasi-cliques, like the quasi-inheritance
mentioned in [PVBB13].

6.1.7 Further Develop Split’n’Expand

One could potentially replace the expansion procedure with other functions, e.q. the
RandomWalk starting from a node in the partition, because in some sense are the
BlockExp and RandomWalk algorithms very similar. The main advantage of the
BlockExp algorithm being, that it is guaranteed to find a dense block. The main
function of the splitting procedure could then be seen as finding good starting points for
the walk.
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6.2 Conclusion

This work discussed a range of different modifications for the Walk’n’Merge algorithm
and gave some further insights into its performance. The focus of this work was to
improve the runtime of the algorithm and thereby it concentrated more on improving the
fast RandomWalk, than the significantly slower BlockMerge. Small modifications to
the RandomWalk like the new selection functions provided a small performance boost.
The modifications aiming at improving the BlockMerge did not provide significant
improvements of any kind. The alternative approaches of finding blocks with help of the
FiberGraph through clustering or the quasi-clique MIP either didn’t have good enough
runtime or failed at identifying blocks. Of course, one could still look further into these
methods, as their scope definitely wasn’t fully exhausted.

The proposed Split’n’Expand algorithm shows very good performance results and
makes excellent use of the FiberGraph to explore the tensor. although there are still
some aspects, that could be fine tuned further, some of those potential modifications,
where discussed in the last section.

All in all, I think that the goal of the work, to improve upon the Walk’n’Merge
algorithm was achieved. Although there are still many open questions remaining.
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Appendix A

Default Parameter of
Walk’n’Merge++

A.1 Default Parameters

This is a list of the parameters used by Walk’n’Merge++. For most of the experiments
the settings where kept at their default value.

• The mode of the program: possible values are: WALK, CLUSTER, CLUS-
TER_N_MERGE, LP (default: WALK_N_MERGE)

• block_min_density: The Minimum density of blocks to be generated (default:
0.9)

• block_min_size: The Minimum size (in all directions) of blocks to be generated
(2)

• block_min_vol: The Minimum volume of blocks to be generated (8)

• Extended Graph is not used

• Simultaneous Walk is not used

• HashMerge is not used

• Partitioning is not used

• cluster_mode:Cluster mode is either KMEANS, SPECTRAL, FAST_SPECTRAL
(KMEANS), EXTERN. EXTERN is used with MCL clustering or other ex-
tern clustering programs. Graphs can be exported in (abc)-format using -mode
PRINT_GRAPH. It reads the clusters from clusters file. Yes, its a ugly hack.
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• cluster_rank:The approximate Tensor Rank of the data. Cluster algorithms try
to find as many blocks. (default: 50)

• fs_num_cluster:The number of k-Means Cluster used for the fast Spectral
Analysis (default: 25)

• delete_mode:Delete_mode is either NO_DELETE, VISITED, CANDIDATES
(default: VISITED)

• walk_num:The number of walks in the Walk phase of the algorithm. (default:
1000)

• walk_len:The length of walks in the Walk phase of the algorithm. (default: 10)

• walk_min_freq: The frequency Threshold for node in the Walk phase of the
algorithm. (default: 0), used by fixed threshold based selection.

• graph_reb_freq:The frequency with which the graph is rebuilt. (default: 4)

• walk_max_iter:The Maximum number of Walk Iterations for the NO_DELETE
or CANDIDATE delete mode (multiple walks per iteration based on job factor
and thread number), later replaced by convergence criteria, but still available as
artefact. (default: 10)

• bloom_cap:The Capacity of the BLOOM filter (default: 1.000.000)

• bloom_err:The Error Rate of the BLOOM filter (default: 0.01)

• thread_num:The number of used in the parallel parts (default: 8)

• job_factor: Scales the amount of work done in parallel at once (default: 4)



Bibliography

[ABD+90] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,
S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen. Lapack: A portable
linear algebra library for high-performance computers. In Proceedings of
the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing ’90,
pages 2–11, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[ANTT02] Arvind Arasu, Jasmine Novak, John Tomlin, and John Tomlin. Pagerank
computation and the structure of the web: Experiments and algorithms,
2002.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 1027–1035. Society for Industrial and Applied
Mathematics, 2007.

[BLA02] An updated set of basic linear algebra subprograms (blas). ACM Trans.
Math. Softw., 28(2):135–151, June 2002.

[Bro97] A. Broder. On the resemblance and containment of documents. In Proceedings
of the Compression and Complexity of Sequences 1997, SEQUENCES ’97,
pages 21–, Washington, DC, USA, 1997. IEEE Computer Society.

[CC70] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of âĂĲeckart-youngâĂİ
decomposition. Psychometrika, 35(3):283–319, 1970.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api
for shared-memory programming. Computational Science & Engineering,
IEEE, 5(1):46–55, 1998.

[EM13a] Dora Erdos and Pauli Miettinen. Discovering facts with boolean tensor tucker
decomposition. In Proceedings of the 22Nd ACM International Conference
on Information & Knowledge Management, CIKM ’13, pages 1569–1572,
New York, NY, USA, 2013. ACM.

81



82 Bibliography

[EM13b] Dóra Erdös and Pauli Miettinen. Walk ’n’ merge: A scalable algorithm for
boolean tensor factorization. In 2013 IEEE 13th International Conference
on Data Mining, Dallas, TX, USA, December 7-10, 2013, pages 1037–1042,
2013.

[Fin05] Holmes Finch. Comparison of distance measures in cluster analysis with
dichotomous data. Journal of Data Science, 3(1):85–100, 2005.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–,
June 1962.

[GO15] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

[GRD+10] Bidyut Gupta, Shahram Rahimi, Narayan C. Debnath, Divya Sree Videm,
and Krishnaraj Ethirajan. Pseudo diameter-based pruning - a qos based
broadcasting for wide area networks. In Thomas Philips, editor, CATA,
pages 138–141. ISCA, 2010.

[Hit27] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of
products. J. Math. Phys, 6(1):164–189, 1927.

[HL13] Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are np-hard.
J. ACM, 60(6):45:1–45:39, November 2013.

[KB09] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applica-
tions. SIAM Rev., 51(3):455–500, August 2009.

[KS96] David R. Karger and Clifford Stein. A new approach to the minimum cut
problem. J. ACM, 43(4):601–640, July 1996.

[Lei06] Friedrich Leisch. A toolbox for k-centroids cluster analysis. Comput. Stat.
Data Anal., 51(2):526–544, November 2006.

[Li05] Xiaoye S. Li. An overview of superlu: Algorithms, implementation, and user
interface. ACM Trans. Math. Softw., 31(3):302–325, September 2005.

[Llo82] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28:129–137, 1982.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. University of California Press, 1967.

[MF10] Thomas J. Misa and Philip L. Frana. An interview with edsger w. dijkstra.
Commun. ACM, 53(8):41–47, August 2010.



Bibliography 83

[MM15] Saskia Metzler and Pauli Miettinen. Clustering boolean tensors. Data Mining
and Knowledge Discovery, 29(5):1343–1373, 2015.

[MN88] A.A. Markov and N.M. Nagorny. The Theory of Algorithms. Mathematics
and its Applications. Springer Netherlands, 1988.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-
1999-0120.

[PVBB13] Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski.
On the maximum quasi-clique problem. Discrete Applied Mathematics,
161(1):244–257, 2013.

[RU11] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets.
Cambridge University Press, New York, NY, USA, 2011.

[San10] Conrad Sanderson. Armadillo: an open source C++ linear algebra library
for fast prototyping and computationally intensive experiments. Technical
report, NICTA, September 2010.

[SD09] Richard M. Stallman and GCC DeveloperCommunity. Using The Gnu
Compiler Collection: A Gnu Manual For Gcc Version 4.3.3. CreateSpace,
Paramount, CA, 2009.

[Sei95] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of computer and system sciences, 51(3):400–403,
1995.

[SG12] Dafna Shahaf and Carlos Guestrin. Connecting two (or less) dots: Discovering
structure in news articles. ACM Trans. Knowl. Discov. Data, 5(4):24:1–24:31,
February 2012.

[Ski08] Steven S. Skiena. The Algorithm Design Manual. Springer Publishing
Company, Incorporated, 2nd edition, 2008.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core
of semantic knowledge. In Proceedings of the 16th International Conference
on World Wide Web, WWW ’07, pages 697–706, New York, NY, USA, 2007.
ACM.

[Tuc6c] L. R. Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31:279–311, 1966c.



84 Bibliography

[VD00] Stijn Van Dongen. A cluster algorithm for graphs. Report-Information
systems, (10):1–40, 2000.

[WS11] Haizhou Wang and Mingzhou Song. Ckmeans.1d.dp: Optimal k-means
clustering in one dimension by dynamic programming. The R Journal,
3(2):29–33, 2011.

[YHJ09] Donghui Yan, Ling Huang, and Michael I Jordan. Fast approximate spectral
clustering. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 907–916. ACM, 2009.


	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Terminology, Notations and Definitions
	1.2.1 Tensors, Matrices and Vectors
	1.2.2 Blocks
	1.2.3 Decompositions
	1.2.4 FiberGraph


	2 Walk'n'Merge
	2.1 RandomWalk
	2.2 BlockMerge
	2.2.1 MonoMerge
	2.2.2 SubsequentMerge


	3 Walk'n'Merge++
	3.1 Base Algorithm
	3.1.1 RandomWalk Changes
	3.1.2 BlockMerge Changes
	3.1.3 Preprocessing
	3.1.4 Technical Details
	3.1.5 Parameters

	3.2 Variant: Selection Mode
	3.2.1 Selecting by Average
	3.2.2 Selecting by 2Dimk-Means
	3.2.3 Selecting by Graph Neighbourhood
	3.2.4 Selecting by Composition

	3.3 Variant: Clustering
	3.3.1 k-Means based Clustering
	3.3.2 Clustering by MCL

	3.4 Variant: Partitioning
	3.4.1 Pruning

	3.5 Variant: Hash Merge
	3.6 Variant: All Merge
	3.7 Variant: Simultaneous Walk
	3.8 Variant: Solving the quasi Clique Problem using LP
	3.8.1 Extended Graph
	3.8.2 Quasi Clique based Block Detection Algorithm


	4 Evaluation
	4.1 Experimental Methodology
	4.1.1 Tensor Generation
	4.1.2 Datasets

	4.2 Baseline Experiments
	4.3 Experiments on the Walk Length
	4.4 Evaluation of Selection Algorithms
	4.5 Evaluation of Cluster Algorithms
	4.6 Evaluation of Partitioning
	4.7 Evaluation of Simultaneous Walk
	4.8 Evaluation of Hash Merge
	4.9 Evaluation of All Merge
	4.10 Evaluation of the Quasi-Clique approach

	5 Split'n'Expand
	5.1 The Algorithm
	5.1.1 Partitioning Phase
	5.1.2 Splitting Phase
	5.1.3 Expansion

	5.2 Evaluation
	5.2.1 Evaluation of BlockExp
	5.2.2 Evaluation of Split'n'Expand


	6 Conclusion
	6.1 Future Work
	6.1.1 mode FiberGraph
	6.1.2 Distance Estimation
	6.1.3 Improved Splitting
	6.1.4 Expansion
	6.1.5 Larger MonoMerge blocks
	6.1.6 Quasi-Clique approach
	6.1.7 Further Develop Split'n'Expand

	6.2 Conclusion

	List of Figures
	List of Tables
	A Default Parameter of Walk'n'Merge++
	A.1 Default Parameters

	Bibliography

