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BOOLEAN FACTORIZATIONS

• Input: a 0/1 (i.e. Boolean) n-by-m matrix A and integer k (i.e. 
the rank)

•Output: 0/1 n-by-k matrix B and 0/1 k-by-m matrix C

• Goal: minimize ∑i,j|Aij – (B○C)ij|

• Boolean matrix multiplication: (B○C)ij = ⋁pBipCpj

• Like normal, but addition defined as 1+1=1



SOME EXITING PROPERTIES

• Easy to interpret

• Generalizes many data mining techniques

• Boolean rank can be exponentially smaller than normal rank

• Boolean factorizations can have less error than SVD

• Computations become combinatorial



SOME BAD NEWS

• Computations become combinatorial

• Finding optimal Boolean factorizations is computationally hard

• Hard inapproximability results for :

• best Boolean rank-k factorization of a given matrix

• Boolean rank of a given matrix

• As hard as finding graph’s minimum chromatic number



GOOD NEWS

• Sparsity helps!



SPARSE FACTORIZATIONS

• Ideally, sparse matrices have sparse factors

•Not true with many factorization methods

• Sparse Boolean matrices have sparse decompositions



SPARSE FACTORIZATIONS

Theorem 1. For any n-by-m 0/1 matrix A of Boolean rank 
k, there exist n-by-k and k-by-m 0/1 matrices B and C such 

that A=B○C and
|B|+|C|≤2|A|.

• Ideally, sparse matrices have sparse factors

•Not true with many factorization methods

• Sparse Boolean matrices have sparse decompositions



APPROXIMATING THE 
BOOLEAN RANK

• Sparsity is not enough; we need some structure in it

• An n-by-m 0/1 matrix A is f(n)-uniformly sparse, if all of its 
columns have at most f(n) 1s

Theorem 2. The Boolean rank of log(n)-uniformly sparse 
matrix can be approximated to within O(log(m)) in time 

Õ(m2n).



NON-UNIFORMLY SPARSE 
MATRICES

• Uniform sparsity is very restricted; what can we do

• Trade non-uniformity with approximation accuracy



NON-UNIFORMLY SPARSE 
MATRICES

• Uniform sparsity is very restricted; what can we do

• Trade non-uniformity with approximation accuracy

Theorem 3. If there are at most log(m) columns with 
more than log(n) 1s, then we can approximate the Boolean 

rank in polynomial time to within O(log2(m)).



APPROXIMATING 
DOMINATED COVERS

Theorem 4. If n-by-m 0/1 matrix A is O(log n)-uniformly 
sparse, we can approximate the best dominated k-cover of A 

by e/(e-1) in polynomial time.

•Dominated k-cover: The rank is k and if (B○C)ij = 1, 
then Aij = 1
•Has applications e.g. in role mining
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SPARSITY
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CONCLUSIONS

• Sparse Boolean matrices have sparse decompositions

•Not true with “normal” decompositions

• Sparsity helps with computational complexity

• Requires some regularity in sparsity

• Initial work; better results to be expected.
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Thank You!


