SPARSE BOOLEAN MATRIX FACTORIZATIONS

Pauli Miettinen 15.12.2010

BOOLEAN FACTORIZATIONS

- Input: a 0/1 (i.e. Boolean) n-by-m matrix \mathbf{A} and integer k (i.e. the rank)
- Output: 0/1 n-by-k matrix B and 0/1 k-by-m matrix C
- Goal: minimize $\sum_{i,j} |\mathbf{A}_{ij} (\mathbf{B} \circ \mathbf{C})_{ij}|$
 - Boolean matrix multiplication: $(\mathbf{B} \circ \mathbf{C})_{ij} = \nabla_p \mathbf{B}_{ip} \mathbf{C}_{pj}$
 - Like normal, but addition defined as I+I=I

SOME EXITING PROPERTIES

- Easy to interpret
- Generalizes many data mining techniques
- · Boolean rank can be exponentially smaller than normal rank
 - Boolean factorizations can have less error than SVD
- Computations become combinatorial

SOME BAD NEWS

- Computations become combinatorial
- Finding optimal Boolean factorizations is computationally hard
- Hard inapproximability results for:
 - best Boolean rank-k factorization of a given matrix
 - · Boolean rank of a given matrix
 - · As hard as finding graph's minimum chromatic number

GOOD NEWS

Sparsity helps!

SPARSE FACTORIZATIONS

- · Ideally, sparse matrices have sparse factors
 - Not true with many factorization methods
- Sparse Boolean matrices have sparse decompositions

SPARSE FACTORIZATIONS

- Ideally, sparse matrices have sparse factors
 - Not true with many factorization methods
- Sparse Boolean matrices have sparse decompositions
- **Theorem 1.** For any n-by-m 0/1 matrix \mathbf{A} of Boolean rank k, there exist n-by-k and k-by-m 0/1 matrices \mathbf{B} and \mathbf{C} such that $\mathbf{A} = \mathbf{B} \circ \mathbf{C}$ and $|\mathbf{B}| + |\mathbf{C}| \leq 2|\mathbf{A}|$.

APPROXIMATING THE BOOLEAN RANK

- · Sparsity is not enough; we need some structure in it
- An n-by-m 0/1 matrix \mathbf{A} is f(n)-uniformly sparse, if all of its columns have at most f(n) 1s

Theorem 2. The Boolean rank of $\log(n)$ -uniformly sparse matrix can be approximated to within $O(\log(m))$ in time $\tilde{O}(m^2n)$.

NON-UNIFORMLY SPARSE MATRICES

- · Uniform sparsity is very restricted; what can we do
 - Trade non-uniformity with approximation accuracy

NON-UNIFORMLY SPARSE MATRICES

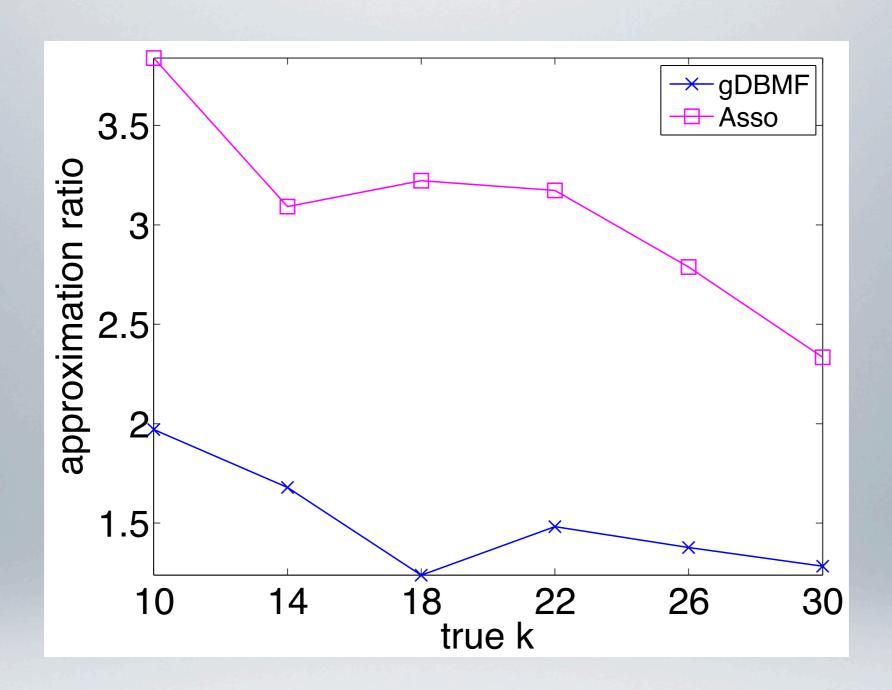
- · Uniform sparsity is very restricted; what can we do
 - Trade non-uniformity with approximation accuracy

Theorem 3. If there are at most log(m) columns with more than log(n) 1s, then we can approximate the Boolean rank in polynomial time to within $O(log^2(m))$.

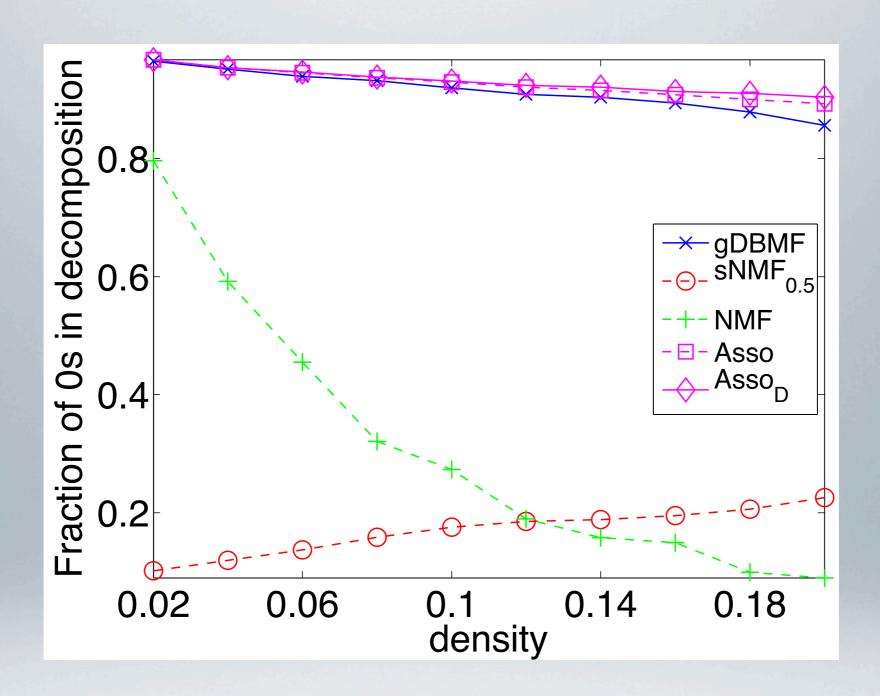
APPROXIMATING DOMINATED COVERS

Theorem 4. If n-by-m 0/1 matrix A is O(log n)-uniformly sparse, we can approximate the best dominated k-cover of A by e/(e-1) in polynomial time.

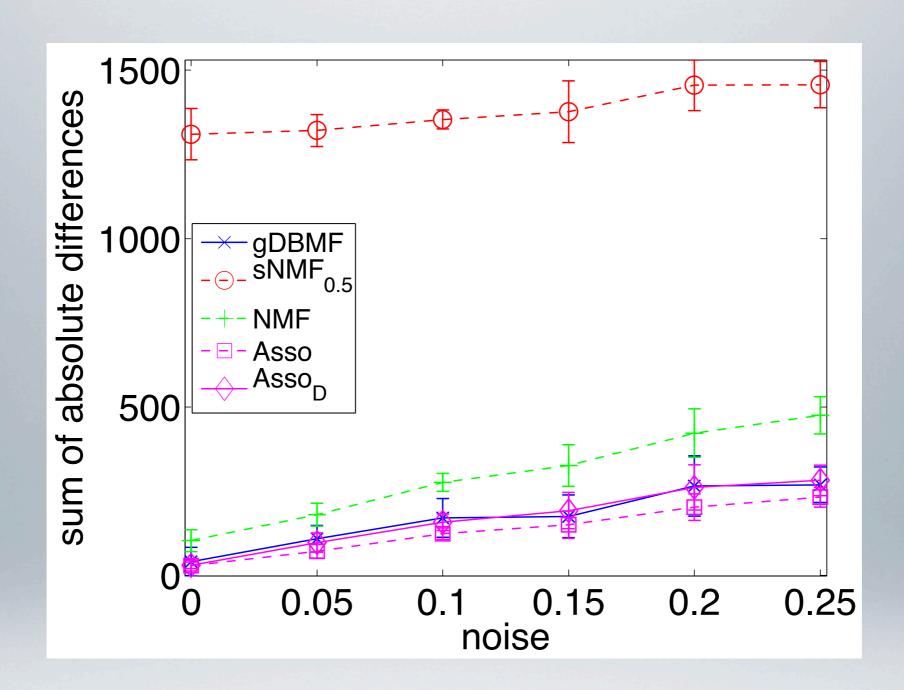
- Dominated k-cover: The rank is k and if $(\mathbf{B} \circ \mathbf{C})_{ij} = 1$, then $\mathbf{A}_{ij} = 1$
 - · Has applications e.g. in role mining



APPROXIMATING THE RANK



SPARSITY



APPROXIMATION ERROR

CONCLUSIONS

- Sparse Boolean matrices have sparse decompositions
 - · Not true with "normal" decompositions
- Sparsity helps with computational complexity
 - Requires some regularity in sparsity
- Initial work; better results to be expected.

CONCLUSIONS

- Sparse Boolean matrices have sparse decompositions
 - Not true with "normal" decompositions
- Sparsity helps with computational complexity
 - · Requires some regularity in sparsity
- Initial work; better results to be expected.

