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Abstract. Subtropical algebra is a semi-ring over the nonnegative real
numbers with standard multiplication and the addition defined as the
maximum operator. Factorizing a matrix over the subtropical algebra gives
us a representation of the original matrix with element-wise maximum
over a collection of nonnegative rank-1 matrices. Such structure can be
compared to the well-known Nonnegative Matrix Factorization (NMF)
that gives an element-wise sum over a collection of nonnegative rank-1
matrices. Using the maximum instead of sum changes the ‘parts-of-
whole’ interpretation of NMF to ‘winner-takes-it-all’ interpretation. We
recently introduced an algorithm for subtropical matrix factorization,
called Capricorn, that was designed to work on discrete-valued data with
discrete noise [Karaev & Miettinen, SDM ’16]. In this paper we present
another algorithm, called Cancer, that is designed to work over continuous-
valued data with continuous noise – arguably, the more common case.
We show that Cancer is capable of finding sparse factors with excellent
reconstruction error, being better than either Capricorn, NMF, or SVD
in continuous subtropical data. We also show that the winner-takes-it-all
interpretation is usable in many real-world scenarios and lets us find
structure that is different, and often easier to interpret, than what is
found by NMF.

1 Introduction

Matrix factorizations such as Singular Value Decomposition (SVD) or Nonnegative
Matrix Factorization (NMF) are among the most-used methods in data analysis.
One way to interpret the factorization is the so-called ‘components view’ that
considers the factorization as a sum of rank-1 matrices. The rank-1 matrices can
be considered as patterns found from the data, and different constraints on the
factorizations yield different types of patterns. The non-negativity constraint in
NMF, for example, yields patterns that are ‘parts-of-whole’.

Instead of – or in addition to – constraining the rank-1 matrices, we can
also change how we aggregate them. For factorizations made under the standard
algebra, the aggregation is always the standard sum, but if we change the algebra,
we can have different kinds of aggregations. One possible algebra is the so-called
subtropical algebra: a semi-ring over the non-negative real numbers with the



standard multiplication but with the addition defined as the maximum operation.
A subtropical factorization gives us non-negative rank-1 matrices, just as NMF,
but unlike NMF’s parts-of-whole interpretation, the subtropical factors are best
interpreted using the ‘winner-takes-it-all’ interpretation: for each element of the
matrix, only the largest value in any of the rank-1 components matter.

The winner-takes-it-all interpretation means that each rank-1 component tries
to present a dominant pattern: the elements should be as close to the original
matrix’s elements as possible (but without being much larger) to have any effect
to the final outcome of the factorization. Consequently, the values of a component
that do not contribute to the final result (i.e. are not the largest ones) can be
made as small as possible without any adverse effects; often, many of them can
simply be set to 0.

Recently, we introduced an algorithm for subtropical matrix factorization
called Capricorn [9]. Capricorn aims at finding subtropical factorizations from
discrete-valued (e.g. integer) data and consequently, it also assumes a discrete
noise model where only some of the entries are perturbed. We also empirically
validated that Capricorn is capable of finding the exact subtropical decomposition
if it exists. Many real-world data, however, are better modelled using Gaussian
noise, where every element is slightly perturbed, but Capricorn often fails finding
good factorizations from such data sets. In this paper we present Cancer, another
algorithm for subtropical factorizations. Cancer is complementary to Capricorn

as it is designed to work well on data perturbed with Gaussian noise; conversely,
Cancer does not do well if the noise follows the model Capricorn was designed
for. One could say that if Capricorn is the south, Cancer is the north.

2 Related Work

Our recent work on the Capricorn algorithm [9] is, to the best of our knowledge,
the only existing work using tropical or subtropical algebra in data analysis. It
also provides a number of theoretical results regarding the subtropical algebra
and its close cousin, the tropical algebra (see below). Another application of
subtropical algebra is [12], where it is used as a part of a recommender system.

In general, though, matrix factorization methods are ubiquitous in data
analysis. A popular example is the nonnegative matrix factorization (NMF) (see,
e.g. [5]), where the factorization is restricted to the semi-ring of the nonnegative
real numbers. Another example of a matrix factorization over a non-standard
algebra is the Boolean matrix factorization (see [11]), where the factorization
is restricted to binary matrices and the algebra is the Boolean one (i.e. the
summation is defined as 1 + 1 = 1).

The tropical, or max-plus, algebra [1] is another semi-ring over the extended
set of reals R ∪ {−∞} with addition defined as the maximum operator and the
multiplication defined as the standard plus operator. Tropical and subtropical
algebras are isomorphic (take the logarithm of the latter to obtain the former),
and as such, many results obtained for max-plus automatically hold for max-times,
although this is not directly true in the case of approximate matrix factorizations



(see [9]). Despite the theory of max-plus algebra being relatively young, it has
been thoroughly studied in recent years. The reason for this is an explosion of
interest in so called discrete event systems (DES) [4], where max-plus algebra
has become ubiquitously used for modeling (see e.g. [2] and [6]).

Yet another approach of computing the matrix factorization over non-standard
algebras involves using the  Lukasiewicz algebra. They have been recently applied
to decompose matrices with grade values [3].

3 Notation and Definitions

Throughout this paper, we will denote a matrix by upper-case boldface letters
(A), and vectors by lower-case boldface letters (a). The ith row of matrix A is
denoted by Ai and the jth column by Aj . The matrix A with the ith column
removed is denoted by A−i, and A−i is the respective notation for A with
a removed row. Most matrices and vectors in this paper are restricted to the
nonnegative real numbers R+.

In this paper we consider matrix factorization over so called max-times algebra.
It differs from the standard algebra of real numbers in that addition is replaced
with the operation of taking the maximum. Also the domain is restricted to the
set of nonnegative real numbers.

Definition 1. The max-times (or subtropical) algebra is a set R+ of nonnegative
real numbers together with operations a� b = max{a, b} (addition) and a� b = ab
(multiplication) defined for any a, b ∈ R+. The identity element for addition is 0
and for multiplication it is 1.

In the future we will use the notation a� b and max{a, b} and the names max-
times and subtropical interchangeably. It is straightforward to see that the max-
times algebra is a dioid, that is, a semiring with idempotent addition (a� a = a).
It is important to note that subtropical algebra is anti-negative, that is, there is
no subtraction operation.

The subtropical matrix algebra follows naturally:

Definition 2. The max-times matrix product of two matrices B ∈ Rn×k
+ and

C ∈ Rk×m
+ is defined as

(B�C)ij =
k

max
s=1

BisCsj . (1)

The definition of a rank-1 matrix over the max-times algebra is the same
as over the standard algebra, i.e. a matrix that can be expressed as an outer
product of two vectors. We will use the term block to mean a rank-1 matrix. The
general rank of a matrix over the max-times algebra is defined analogously to
the standard Schein rank:

Definition 3. The max-times rank of a matrix A ∈ Rn×m
+ is the least in-

teger k such that A can be expressed as a max of k rank-1 matrices, A =
F 1 �F 2 � · · ·�F k, where all F i are rank-1.



Now that we have sufficient notation, we can formally introduce the main
problem considered in the paper.

Problem 1. Given a matrix A ∈ Rn×m
+ and an integer k > 0, find factor matrices

B ∈ Rn×k
+ and C ∈ Rk×m

+ minimizing

E(A,B,C) = ‖A−B�C‖2F =
∑
i,j

(Aij − (B�C)ij)
2 . (2)

4 Algorithm

As we work over the max-times algebra, the common approaches for finding
matrix factorizations under normal algebra do not work as such. The main
problem is the non-linear behavior of the maximum function, and our algorithm
tries to alleviate the problems caused by it. The two main ideas we employ are
updating the rank-1 factors one-by-one in an iterative fashion, and approximating
the max-times reconstruction error with a low-degree polynomial. The first idea
is similar to what we used in [9], except that here we only update parts of the
rank-1 factors. The motivation behind this is to avoid building few factors that
try to explain the whole data (badly), but instead build many factors that explain
small parts of the data well.

4.1 The main algorithm

Our proposed algorithm, Cancer, is outlined in Algorithm 1. It accepts as input
the data to be decomposed A, the required rank k, and three additional scalar
parameters M , t, and f . Integer M is the number of cycles that the algorithm
will make, that is each one of k blocks will be visited M times. A reasonable
value for M would be 15 since further rounds provide only marginal improvement,
although to make sure that the algorithm has converged, a value as high as
40 might be required. The next parameter, t ∈ N, represents the maximum
allowed degree of polynomials: after each cycle the degree of polynomials used for
approximation is incremented, but when it reaches t, it is reset to the value of 2.
Typically, we can set t = 16. Finally, f ∈ (0, 1) controls how much of each block
(rank-1 matrix) is revealed on each iteration. Namely, each block bc ∈ Rn×m

+

consists a total of n + m variables, and the maximum number of variables we
can change when a block is visited is bf(n+m)/2c. The algorithm outputs two
factor matrices B ∈ Rn×k

+ and C ∈ Rk×m
+ whose product is a rank-k max-times

approximation of A.
Cancer starts with empty blocks (line 2) and updates them iteratively (lines 6–

14) using the UpdateBlock routine (line 9). UpdateBlock updates one block while
keeping all others fixed. We then compare the current decomposition to the best
one seen so far, and if it provides an improvement, then the best solution
is replaced with the current one (lines 10–12). The final step of the loop is
to increment the degree of polynomials used for approximation (lines 13–14).
Intuitively, lower degrees polynomials give more latitude for varying the variables,



Algorithm 1 Cancer

Input: A ∈ Rn×m
+ , k > 0, M > 0, t > 2, 0 < f < 1

Output: B∗ ∈ Rn×k
+ , C∗ ∈ Rk×m

+

1: function Cancer(A, k,M, t, f)
2: B ← 0n×k, C ← 0k×m

3: B∗ ← B,C∗ ← C
4: bestError ← E(A,B,C)
5: deg ← 2
6: for count ← 0 to k ×M − 1 do
7: i← count (mod k) + 1 . Index of the current block.
8: N ← B−i �C−i . Reconstructed matrix without the i-th block.
9: [Bi,Ci]← UpdateBlock(A,N ,Bi,Ci, deg, f)

10: if E(A,B,C) < bestError then
11: B∗ ← B,C∗ ← C
12: bestError ← E(A,B,C)

13: if count > k and count (mod k) = 0 then
14:

deg ←

{
deg + 1 if deg < t

2 otherwise

15: return B∗, C∗

whereas polynomials of higher degrees are better suited for finalizing results since
they provide better approximations. This is similar to an execution of a simulated
annealing algorithm, where high temperatures are used to make big steps and get
out of local minima, and lower temperatures are better suited for converging to
a particular minimum. In our case low degrees correspond to high temperatures
and vice versa.

Most of the time the reconstruction error decreases gradually with increased
iterations of Cancer. There are however rare cases where it would remain almost
constant for some time or even increase slightly, and then start dropping again.
For this reason the algorithm is run until all cycles are complete and is not
stopped using any sort of convergence criteria.

4.2 Updating a block

The UpdateBlock procedure (Algorithm 2) performs the work of updating a
single block bc ∈ Rn×m

+ on one iteration of Cancer. It takes a block bc, where

b ∈ Rn×1
+ and c ∈ R1×m

+ , and performs alternating updates of b and c one
element at a time using the AdjustOneElement function. That function is called
bf(n+m)/2c times to update only a part of the block, as explained above.

The AdjustOneElement function (Algorithm 3) updates a single entry in
either a column vector b or a row vector c. Let us consider the case when b is
fixed and c varies. In order to decide which element of c to change, we need to
compare the best changes to all m entries and then choose the one that yields
the most improvement to the objective. A single element cl only has an effect on



Algorithm 2 UpdateBlock

Input: A ∈ Rn×m
+ , N ∈ Rn×m

+ , b ∈ Rn×1
+ , c ∈ R1×m

+ , deg ≥ 2, 0 < f < 1
Output: b ∈ Rn×1

+ , c ∈ R1×m
+

1: function UpdateBlock(A,N , b, c, deg, f)
2: niters ← bf(n + m)/2c
3: for count ← 1 to niters do
4: c = AdjustOneElement(A,N , b, c, deg)
5: b = AdjustOneElement(AT ,NT , cT , bT , deg)T

6: return b, c

Algorithm 3 AdjustOneElement

Input: A ∈ Rn×m
+ , N ∈ Rn×m

+ , b ∈ Rn×1
+ , c ∈ R1×m

+ , deg ≥ 2
Output: c ∈ R1×m

+

1: function AdjustOneElement(A,N , b, c, deg)
2: for j ← 1 to m do
3: baseError ←

∑n
i=1 (Aij −max{N ij , bicj})2

4: [err,xi]← PolyMin(Aj ,N j , b, deg)
5: ui ← baseError − err

6: i← the index i of largest value of u
7: ci ← xi

8: return c

the error along the column l. Assume that we are currently updating block with
index q and let N denote the reconstruction matrix without this block, that is
N = B−q �C−q. Minimizing E(A,B,C) with respect to cl is then equivalent
to minimizing

γ(Al,N l, b, cl) =

n∑
i=1

(Ail −max{N il, bicl})2 . (3)

Instead of minimizing (3) directly, we use polynomial approximation in the
PolyMin routine (line 4). The routine returns the (approximate) error err and
the value x achieving that. Since we are only interested in the improvement of the
objective achieved by updating a single entry of c, we compute the improvement
of the objective after the change (line 5). After trying every column of c, we
update only the column that yield the largest improvement.

4.3 The PolyMin procedure

The function γ that we need to minimize in order to find the best change to
the vector c in AdjustOneElement is hard to work with directly since it is not
convex, and also not smooth because of the presence of the maximum operator.
To alleviate this, we approximate the error function γ with a polynomial g of
degree deg. Notice that when updating cl, other variables of γ are fixed and we
only need to consider function γ′(x) = γ(Al,N l, b, x). To build g we sample



deg + 1 points from (0, 1) and fit g to the values of γ′ at these points. We then
find the x ∈ R+ that minimizes g(x) and return g(x) (the approximate error)
and x (the optimal value).

4.4 Computational complexity

We will express the complexity of the algorithm asymptotically in terms of the
dimensions of the input data n and m and the rank k of the factorization. Most
of the work in Cancer is performed in the UpdateBlock routine, which is called
Mk times. UpdateBlock is in turn just a loop that calls AdjustOneElement

bf(n+m)c times. In AdjustOneElement the contributors to the complexity are
computing the base error (line 3) and a call to PolyMin (line 4). Both of them
are performed n or m times depending on whether we supplied the column vector
b or the row vector c to AdjustOneElement. Finding the base error takes time
O(m) for b and O(n) for c. The complexity of PolyMin boils down to that of
evaluating the max-times objective at deg + 1 points and then minimizing a
degree deg polynomial. Hence, PolyMin runs in time O(m) or O(n) depending
on whether we are optimizing b or c, and the complexity of AdjustOneElement
is O(nm). Since the parameters f and M are fixed, this gives the complexity
O
(
(n+m)nm

)
for UpdateBlock and O

(
(n+m)nmk

)
= O(max{n,m}nmk) for

Cancer.

5 Experiments

In this section we evaluate the performance of Cancer against other algorithms
on various synthetic and real-world datasets. The purpose of the synthetic
experiments is to verify that Cancer is capable of finding subtropical structure
from data where we know it is present, and to evaluate its performance under
different data characteristics in a controlled manner. Our tests demonstrate that
Cancer not only provides better approximations than other methods, but also
produces much sparser factors. The main purpose of experiments with real-world
datasets is to see if they possess the max-times structure and whether Cancer is
capable of extracting it.

Setting the parameters for Cancer. For all synthetic experiments we used M = 14,
t = 16, and f = 0.1. For the real world experiments we set t = 16, f = 0.1, and
M = 40 (except for Eigenfaces for which we used M = 50).

5.1 Other methods

We compared Cancer against Capricorn, which is our previous tropical matrix
factorization algorithm designed for discrete data [9],1 SVD, and four different

1 The source code for Cancer and Capricorn and the scripts to repeat the experiments
are available at http://people.mpi-inf.mpg.de/~pmiettin/tropical/.



versions of NMF. The first form of NMF is a sparse NMF algorithm by Hoyer [8],2

which we call SNMF. Hoyer’s algorithm [8] defines the sparsity of a vector x ∈ Rn
+

as

sparsity(x) =

√
n− (

∑
i |xi|) /

√∑
i x

2
i√

n− 1
, (4)

and returns factorization where the sparsity of the factor matrices is user-
controllable. In all of our experiments, we used the sparsity of Cancer’s factors
as the sparsity parameter of SNMF.

The second form of NMF is a standard alternating least squares algorithm
called ALS [5]. The remaining two versions of NMF are essentially the same as
ALS, but they use L1 regularization for increased sparsity [5], that is, they aim
at minimizing

‖A−BC‖F + α ‖B‖1 + β ‖C‖1 .

The first method is called ALSR and uses regularizer coefficient α = β = 1, and the
other, called ALSR 5, has regularizer coefficient α = β = 5. All NMF algorithms
were restarted 10 times, and the best result was selected.

5.2 Synthetic experiments

The general setup of synthetic experiments is as follows. First we create data that
is guaranteed to have the subtropical structure by generating random factors of
some density with nonzero elements drawn from a uniform distribution on the
[0, 1] interval and then multiplying them using the max-times matrix product.
Then we add noise and feed the obtained noisy matrices into algorithms to see
how well they can approximate the original data. We distinguish two types of
noise. One is the normal, or Gaussian, noise with 0 mean, for which we define
the level of noise to be its standard deviation. Since adding this noise to the data
might result in negative entries, we truncate all values in a resulting matrix that
are below zero. We use two noise levels, 0.01 and 0.08, called low and high noise
levels, respectively.

The other type of noise is a discrete (tropical) noise, which is introduced in
the following way. Assume that we are given an input matrix A of size n-by-m.
We first generate an n-by-m noise matrix N with elements drawn from a uniform
distribution on the [0, 1] interval. Given a level of noise l, we then turn b(1−l)nmc
random elements of N to 0, so that its resulting density is l. Finally, the noise is
applied by taking elementwise maximum between the original data and the noise
matrix F = max{A,N}.

All synthetic experiments were performed on 1000-by-800 matrices. In all
tests, except those with varying rank, the true max-times rank of the data was 10.
For all experiments we report errors, which are measured as relative Frobenius
errors between original and reconstructed matrices, that is, E(A,B,C)/ ‖A‖2F .
We also report the sparsity s of factor matrices obtained by algorithms, which is

2 https://github.com/aludnam/MATLAB/tree/master/nmfpack



defined as a fraction of zero elements in the factor matrices,

s(A) = |{(i, j) : Aij = 0}| /(nm) , (5)

for an n-by-m matrix A. The results were averaged over 10 repetitions. The
reconstruction errors are reported in Figure 1 and the sparsities in Figure 2.

Varying Gaussian noise. Here we investigate how the algorithms respond to
different levels of Gaussian noise, which was varied from 0 to 0.14 with increments
of 0.01. A level of noise is a standard deviation of the noise matrix as described
earlier. The factor density was kept at 50%. The results are given on Figure 1(a)
(reconstruction error) and Figure 2(a) (sparsity of factors).

Here, Cancer is generally the best method in reconstruction error, and second
in sparsity only to Capricorn. The sole exception to reconstruction error is the
no-noise case, where Capricorn – as designed – obtains essentially a perfect
decomposition, though its results deteriorate rapidly with increased noise levels.

Varying density. In this experiment we studied what effects the density of factor
matrices used in data generation has on the algorithms’ performance. For this
purpose we varied the density from 10% to 100% with increments of 10% while
keeping the other parameters fixed. There are two versions of this experiment,
one with low noise level of 0.01 (Figures 1(b) and 2(b)), and a more noisy case
at 0.08 (Figures 1(c) and 2(c)).

Cancer provides the least reconstruction error in this experiment, being clearly
the best until the density is 0.7, from which point on it is tied with SVD and
the NMF-based methods (the only exception being the least-dense high-noise
case, where ALSR obtains slightly better reconstruction error). Capricorn is the
worst by a wide margin, but this is not surprising, as the data does not follow its
assumptions. On the other hand, Capricorn does produce generally the sparsest
factorization, but these are of little use given its bad reconstruction error. Cancer
produces the sparsest factors from the remaining methods, except in the first few
cases where ALSR 5 is sparser (and worse in reconstruction error), meaning that
Cancer produces factors that are both the most accurate and very sparse.

Varying rank. The purpose of this test is to study the performance of algorithms
on data of different max-times ranks. We varied the true rank of the data from 2
to 20 with increments of 2. The factor density was fixed at 50% and Gaussian
noise at 0.01. The results are shown on Figure 1(d) (reconstruction error) and
Figure 2(d) (sparsity of factors). The results are similar to the two above ones,
with Cancer returning the most accurate and second-most sparsest factorizations.

Varying tropical noise. In this setup we used the tropical noise instead of the
Gaussian one. The level of noise represents the density of the noise matrix with
which the original data is ‘maxed’. We varied the noise from 0% to 14% with
increments of 1%. There are two forms of this experiment, one with density 50%
(Figure 1(e) shows the reconstruction error and Figure 2(e) shows the sparsity of
factors) and with density 90% (Figures 1(f) and 2(f), respectively).
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Fig. 1. Reconstruction error (Frobenius norm) for synthetic data. The markers are
averages of 10 random matrices and the width of the error bars is twice the standard
deviation.

As Capricorn was designed for tropical noise, unlike Cancer that was designed
for standard ‘white’ noise, it obtains the least reconstruction error of all the
methods (albeit with high deviation when the noise density is higher). Cancer
is generally the second-best method, although with the high-density noise, it is
mostly tied with SVD, ALS and ALSR. In the sparsity of the factors, Cancer and
Capricorn are quite similar, with Capricorn having slightly sparser factors in
the low-density noise case, but Cancer having an edge in the high-density noise
case. In the latter case, ALSR 5 is also comparable on sparsity, but clearly the
worst in reconstruction error.

Discussion. The synthetic experiments verify that Cancer can find the max-times
structure from the data when it is present and potentially perturbed with Gaussian
noise. It also shows strong invariance over the level of noise, rank, or density
of the factors. The experiments also highlight the design differences between
Cancer and Capricorn: the former is superior in Gaussian noise situation, while
the latter excels with tropical noise. If the type of noise cannot be predetermined,
it seems it is best to try both methods.

5.3 Real-world experiments

The main purpose of the real-world experiments is to study to which extend
Cancer can find max-times structure from various real-world data sets. Having
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Fig. 2. Sparsity (fraction of zeroes) of the factor matrices for synthetic data. The
markers are averages of 10 random matrices and the width of the error bars is twice
the standard deviation.

established with the synthetic experiments that Cancer is indeed capable of
finding the structure when it is present (and potentially perturbed with Gaussian
noise), here we look at what kind of results it obtains in the real-world data.

It is probably unrealistic to expect real-world data sets to have ‘pure’ max-
times structure, as in the synthetic experiments. Rather, we expect SVD to be the
best method (in reconstruction error’s sense), and Cancer to obtain reconstruction
error comparable to the NMF-based methods. We will also verify that the results
from the real-world data sets are intuitive.

The datasets. Worldclim was obtained from the global climate data repository.3 It
describes historical climate data across different geographical locations in Europe.
Columns represent minimum, maximum and average temperatures and precipita-
tion, and rows are 50-by-50 kilometer squares of land where measurements were
made. We preprocessed every column of the data by first subtracting its mean,
dividing by the standard deviation, and then subtracting its minimum value, so
that the smallest value becomes 0.

NPAS is a nerdy personality test that uses different attributes to determine
the level of nerdiness of a person.4 It contains answers by 1418 respondents to

3 The raw data is available at http://www.worldclim.org/.
4 Tha dataset can be obtained on the online personality website http://personality-

testing.info/_rawdata/NPAS-data.zip.



Table 1. Real world datasets specs.

Algorithm Rows Columns Density

Worldclim 2575 48 99.9%
NPAS 1418 36 99.6%
Eigenfaces 1024 222 97.0%
4News 400 800 3.5%
HPI 253 177 99.5%

a set of 36 questions that asked them to self assess various statements about
themselves on a scale of 1 to 7. We preprocessed NPAS analogously to Worldclim.

Eigenfaces is a subset of the Extended Yale Face collection of face images [7].
It consists of 32-by-32 images under different lighting conditions. We used a
preprocessed data by Xiaofei He et al.5 We selected a subset of pictures with
lighting from the left and then preprocessed the input matrix by first subtracting
from every column its mean and then dividing it by its standard deviation.

4News is a subset of the 20Newsgroups dataset,6 containing the usage of
800 words over 400 posts for 4 newsgroups.7 Before running the algorithms we
represented the dataset as a TF-IDF matrix, and then scaled it by dividing each
entry by the greatest entry in the matrix.

HPI is a land registry house price index.8 Rows represent months, columns are
locations, and entries are residential property price indices. We preprocessed the
data by first dividing each column by its standard deviation and then subtracting
its minimum, so that each column has minimum 0.

The basic properties of these data sets are listed in Table 1.

Reconstruction error, sparsity, and convergence. Table 2 provides the relative
Frobenius reconstruction errors for the real-world data sets. We omitted ALSR 5
from these experiments due to its bad performance with the synthetic data. SVD
is, as expected, consistently the best method. Somewhat surprisingly, Hoyer’s
SNMF is usually the second-best method, even though in the synthetic experiments
it usually was the second-worst of the NMF-based methods. Cancer is usually the
third-best method (with the exception of 4News and NPAS), and often very close
to SNMF in reconstruction error. Overall, it seems Cancer is capable of finding
max-times structure that is comparable to what NMF-based methods provide.
Consequently, we can study the max-times structure found by Cancer, knowing
that it is (relatively) accurate.

The sparsity of the factors for real-world data is presented in Table 3, except
for SVD. Here, Cancer often returns the second-sparsest factors (being second only
to Capricorn), but with 4News and HPI, ALSR obtains sparser decompositions.

5 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
6 http://qwone.com/~jason/20Newsgroups/
7 The authors are grateful to Ata Kabán for pre-processing the data, see [10].
8 Available at https://data.gov.uk/dataset/land-registry-house-price-index-

background-tables/



Table 2. Reconstruction error for various real-world datasets.

Worldclim NPAS Eigenfaces 4News HPI

k = 10 10 40 20 15

Cancer 0.071 0.240 0.204 0.556 0.027
Capricorn 0.392 0.395 0.972 0.987 0.217
SNMF 0.046 0.225 0.178 0.546 0.023
ALS 0.087 0.227 0.313 0.538 0.074
ALSR 0.122 0.226 0.294 1.000 0.045
SVD 0.025 0.209 0.140 0.533 0.015

Table 3. Factor sparsity for various real-world datasets.

Worldclim NPAS Eigenfaces 4News HPI

k = 10 10 40 20 15

Cancer 0.645 0.528 0.571 0.812 0.422
Capricorn 0.795 0.733 0.949 0.991 0.685
SNMF 0.383 0.330 0.403 0.499 0.226
ALS 0.226 0.120 0.434 0.513 0.331
ALSR 0.275 0.117 0.480 1.000 0.729

We also studied the convergence behavior of our algorithm using some of
the real-world data sets. The results can be seen in Figure 3, where we plot the
relative error with respect to the iterations over the main for-loop in Cancer. As
we can see, in both cases Cancer has obtained a good reconstruction error already
after few full cycles, with the remaining runs only providing minor improvements.
We can deduce that Cancer reaches quickly an acceptable solution.

Interpretability of the results. The crux of using max-times factorizations instead
of standard (nonnegative) ones is that the factors (are supposed to) exhibit
the ‘winner-takes-it-all’ structure instead of the ‘parts-of-whole’ structure. To
demonstrate this, we plotted the left factor matrices for the Eigenfaces data
for Cancer and ALS in Figure 4. At first, it might look like ALS provides more
interpretable results, as most factors are easily identifiable as faces. This, however,
is not very interesting result: we already knew that the data has faces, and many
factors in the ALS’s result are simply some kind of ‘prototypical’ faces. The results
of Cancer are harder to identify on the first sight. Upon closer inspection, though,
one can see that they identify areas that are lighter in the different images, that
is, have higher grayscale values. These factors tell us the variances in the lightning
in the different photos, and can reveal information we did not know a priori.
Further, as seen in Table 2, Cancer obtains better reconstruction error than ALS

with this data, confirming that these factors are indeed useful to recreate the
data.
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Fig. 3. Convergence rate of Cancer for two real-world datasets. Each iteration is a
single run of UpdateBlock, that is if a factorization has rank k, then one full cycle
would correspond to k iterations.

(a) Cancer

(b) ALS

Fig. 4. Cancer finds the dominant patterns from the Eigenfaces data. Pictured are the
left factor matrices for the Eigenfaces data.



Table 4. Top three attributes for the first two factors of NPAS.

Factor 1 Factor 2

I am more comfortable with my hobbies I have played a lot of video games
than I am with other people

I gravitate towards introspection I collect books
I sometimes prefer fictional people to real ones I care about super heroes
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Fig. 5. Cancer can find interpretable factors from the Worldclim data. Shown are the
values for three columns in the left-hand factor matrix B on a map. Red is zero.

In Figure 5, we show some factors from Cancer when applied to the Worldclim
data. These factors clearly identify different bioclimatic areas from Europe: In
Figure 5(a) we can identify the mountainous areas in Europe, including the Alps,
the Pyrenees, the Scandes, and Scottish Highlands. In Figure 5(b) we can identify
the mediterranean coastal regions, while in Figure 5(c) we see the temperate
climate zone in blue, with the green color extending to the boreal zone. In all
pictures, red corresponds to (near) zero values. As we can see, Cancer identifies
these areas crisply, making it easy for the analyst to know which areas to look at.

In order to interpret NPAS we first observe that each column represents a
single personality attribute. Denote by A the obtained approximation of the
original matrix. For each rank-1 factor X and each column Ai we define the
score σ(i) as the number of elements in Ai that are determined by X. By sorting
attributes in descending order of σ(i) we obtain relative rankings of the attributes
for a given factor. The results are shown in Table 4. The first factor clearly shows
introvert tendencies, while the second one can be summarized as having interests
in fiction and games.

6 Conclusions

Using max-times algebra instead of the standard (nonnegative) algebra, we can
find factors that adhere to the ‘winner-takes-it-all’ interpretation instead of the
‘parts-of-whole’ interpretation of NMF. The winner-takes-it-all factors give us the
most dominant features, building a sharper contrast between what is and is not
important for that factor, making the factors potentially easier to interpret. As



we saw in our experimental evaluation, the factors are also sparse, emphasizing
the winner-takes-it-all interpretation.

Finding a good max-times factorization, unfortunately, seems harder than
– or at least as hard as – finding a good nonnegative factorization. Our earlier
algorithm, Capricorn, was designed to work with discrete-valued data and what
we call ‘tropical’ noise; in this paper we presented Cancer that is designed to
work with Gaussian noise and matrices with continuous values. It seems that
this latter case is more applicable to real-world data, as witnessed by Cancer’s
good results with real-world data.

There are still questions that need to be addressed by future research. Could
these two approaches be merged? That is, is it possible to design an algorithm
that works well for both tropical and Gaussian noise? Can one achieve provable
approximation ratios for max-times factorizations? In addition to data analysis,
can max-times factorizations be used in other data mining and machine learning
tasks (e.g. to do matrix completion or latent topic models)? We hope our initial
work in this paper (and its predecessor [9]) helps to increase data mining and
machine learning community’s interest to max-times algebras so that the above
question could be answered.
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