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Abstract Matrix factorization methods are important tools in data mining and analysis.
They can be used for many tasks, ranging from dimensionality reduction to visualization.
In this paper we concentrate on the use of matrix factorizations for finding patterns from
the data. Rather than using the standard algebra – and the summation of the rank-1
components to build the approximation of the original matrix – we use the subtropical
algebra, which is an algebra over the nonnegative real values with the summation
replaced by the maximum operator. Subtropical matrix factorizations allow “winner-
takes-it-all” interpretations of the rank-1 components, revealing different structure than
the normal (nonnegative) factorizations. We study the complexity and sparsity of the
factorizations, and present a framework for finding low-rank subtropical factorizations.
We present two specific algorithms, called Capricorn and Cancer, that are part of our
framework. They can be used with data that has been corrupted with different types
of noise, and with different error metrics, including the sum-of-absolute differences,
Frobenius norm, and Jensen–Shannon divergence. Our experiments show that the
algorithms perform well on data that has subtropical structure, and that they can find
factorizations that are both sparse and easy to interpret.

Keywords Tropical algebra · Max-times algebra · Matrix factorizations · Data mining

1 Introduction

Finding simple patterns that can be used to describe the data is one of the main
problems in data mining. The data mining literature knows many different techniques
for this general task, but one of the most common pattern finding techniques rarely gets
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classified as such. Matrix factorizations (or decompositions, these two terms are used
interchangeably in this paper) represent the given input matrix A as a product of two
(or more) factor matrices, A ≈ BC. This standard formulation of matrix factorizations
makes their pattern mining nature less obvious, but let us write the matrix product
BC as a sum of rank-1 matrices, BC = F 1 + F 2 + · · ·+ F k, where F i is the outer
product of the ith column of B and the ith row of C. Now it becomes clear that the
rank-1 matrices F i are the “simple patterns”, and the matrix factorization is finding k
such patterns whose sum is a good approximation of the original data matrix.

This so-called “component interpretation” (Skillicorn 2007) is more appealing with
some factorizations than with others. For example, the classical singular value decom-
position (SVD) does not easily admit such an interpretation, as the components are
not easy to interpret without knowing the earlier components. On the other hand,
the motivation for the nonnegative matrix factorization (NMF) often comes from the
component interpretation, as can be seen, for example, in the famous “parts of faces”
figures of Lee and Seung (1999). The “parts-of-whole” interpretation is in the hearth
of NMF: every rank-1 component adds something to the overall decomposition, and
never removes anything. This aids with the interpretation of the components, and is
also often claimed to yield sparse factors, although this latter point is more contentious
(see e.g. Hoyer 2004).

Perhaps the reason why matrix factorization methods are not often considered as
pattern mining methods is that the rank-1 matrices are summed together to build the
full data. Hence, it is rare for any rank-1 component to explain any part of the input
matrix alone. But the use of summation as a way to aggregate the rank-1 components
can be considered to be “merely” a consequence of the fact that we are using the
standard algebra. If we change the algebra – in particular, if we change how we define
the summation – we change the operator used for the aggregation. In this work, we
propose to use the maximum operator to define the summation over the nonnegative
matrices, giving us what is known as the subtropical algebra. As the aggregation of
the rank-1 factors is now the element-wise maximum, we obtain what we call the
“winner-takes-it-all” interpretation: the final value of each element in the approximation
is defined only by the largest value in the corresponding element in the rank-1 matrices.
This can be considered a staple of the subtropical structure – for each element in
the data we can find a single rank-1 pattern, the “winner”, that determines its value
exactly. This is in contrast to the NMF structure, where each pattern would only make
a “contribution” to the final value.

Not only does the subtropical algebra give us the intriguing winner-takes-it-all
interpretation, it also provides guarantees about the sparsity of the factors, as we
will show in Section 3.2. Furthermore, a different algebra means that we are finding
different factorizations compared to NMF (or SVD). The emphasis here is on the word
different : the factorizations can be better or worse in terms of the reconstruction error
but the patterns they find are usually different to those found by NMF. It is also worth
mentioning that the same dataset often has both kinds of structures in it, in which case
subtropical and NMF patterns are complementary to each other, and depending on
an application, one or the other can be more useful. One practical advantage of the
subtropical methods though is that they tend to find more concise representation of
patterns in the data, while NMF often splits them into several smaller components,
making it harder to see the big picture.
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(a) Cancer high pre-
cipitation

(b) Cancer hot sum-
mer days

(c) WNMF high precip-
itation

(d) WNMF summer
daily maximum
temperature

Fig. 1 Example results by Cancer and WNMF on the Worldclim dataset. For each method, two
selected columns from the left-hand factor matrix is shown on a map. The values are normalized
to the unit interval, and darker shades indicate higher values.

500 1000 1500 2000
(a) Average annual precipita-
tion in mm.

8 16 24 32
(b) Average daily maximum
temperature in summer in
degrees Celsius.

Fig. 2 Average climate data to be compared with the factors in Figure 1.

To illustrate this, and in general the kind of structure subtropical matrix factorization
can reveal and how it is different from that of NMF, we show example results on the
European climate data (Figure 1).

The data contains weather records for Europe between 1960 and 1990, and it
was obtained from the global climate data repository.1 The data has 2 575 rows that
correspond to 50-by-50 kilometer squares of land where measurements were made and
48 columns corresponding to observations. More precisely, the first 12 columns represent
the average low temperature for each month, the next 12 columns the average high
temperature, and the next 12 columns the daily mean. The last 12 columns represent
the mean monthly precipitation for each month. We preprocessed every column of
the data by first subtracting its mean, dividing by the standard deviation, and then
subtracting its minimum value, so that the smallest value becomes 0. We compare the
results of our subtropical matrix factorization algorithm, called Cancer, to those of
an NMF algorithm, called WNMF, that obtained the best reconstruction error on this
data (see Table 2 in Section 5). For both methods, we chose two factors: one that best

1The raw data is available at http://www.worldclim.org/, accessed 18 July 2017.

http://www.worldclim.org/
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0.00 0.08 0.16 0.24 0.32
(a) Overcovering when using the
standard algebra.

0.00 0.08 0.16 0.24 0.32
(b) Overcovering when using the
subtropical algebra.

Fig. 3 Comparison of the overcovering when combining the Cancer factors from Figures 1(a)–
(b) using the standard 3(a) and the subtropical 3(b) algebras. All values are divided by the
average value in the original matrix, negative values are ignored. Darker shades indicate higher
values.

identifies the areas of high precipitation and another that reflects summer (i.e. June,
July, and August) daily maximum temperatures. To be able to validate the results of
the algorithms, we also include the average annual precipitation and average summer
maximum temperature in Figures 2(a) and 2(b), respectively.

Both Cancer and WNMF identify the areas of high precipitation and their correspond-
ing left-hand factors are shown in Figures 1(a) and 1(c), respectively. There are, however,
two significant differences between their interpretations. First, Cancer emphasizes the
wettest areas, while WNMF shows a much smoother transition similar to the original data.
The second difference is that, unlike Cancer, WNMF does not identify either the UK or
Norwegian coast as areas of (particularly) high precipitation. A potential explanation
is that there are many overlaps with other factors (see Figure 15(b)), and hence hav-
ing large values in any of them might lead to overcovering the original data. Cancer,
as a subtropical method, does not suffer from this issue, as there the reconstructed
precipitation is entirely based on the factor with the highest values.

In order to make the above argument more concrete, let us see what happens when
we try to combine Cancer’s factors using the standard algebra instead of the subtropical
one. Recall that if A = BC is a rank-k matrix decomposition of A, then we have
(A)ij =

∑k
s=1(F s)ij , where each pattern F s is an outer product of the sth column of

B and the sth row of C. If for some l and t we have (F l)ij + (F t)ij > Aij , then also
(BC)ij > Aij since all values are nonnegative. It is therefore generally undesirable for
any subset of the patterns to overcover values in the original data, as there would be no
way of decreasing these values by adding more patterns. As an example we will combine
the patterns corresponding to Cancer’s factors from Figures 1(a)–(b). To obtain the
actual rank-1 patterns we first need to compute the outer products of these factors with
the corresponding rows of the right-hand side matrix. Now if we denote the obtained
patterns by F 1 and F 2, then the elements of the matrix max{F 1 + F 2 −A, 0} show
by how much the combination of F 1 and F 2 overcovers the original data A. We now
plot the average value of every row of the overcover matrix scaled by the average value
in the original data (Figure 3(a)). Since each row corresponds to a location on the
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map, it shows the average amount by which we would overcover the data, were we
to use the standard algebra for combining the Cancer’s factors. It is evident that this
method produces many values that are too high (mostly around Alps and other high
precipitation areas). On the other hand, when we perform the same procedure using
the subtropical algebra (Figure 3(b)), there is almost no overcovering.

A somewhat similar behaviour is seen with the maximal daily temperatures in sum-
mer. WNMF finds a factor that, with the exception of the Scandinavian peninsula, closely
mimics the original data and maintains a smooth gradient of decreasing temperatures
when moving towards north (Figure 1(d)). In contrast, Cancer identifies the areas where
summer days are hot, while practically disregarding other parts (Figure 1(b)).

It is worth mentioning that, although UK and the coastal regions of Norway are
not prominent in the WNMF’s factor shown above, they actually belong to some of its
other factors (see Figure 15(b)). In other words, the high precipitation pattern is split
into several parts and partially merged with other factors. This is likely a consequence
of the pattern splitting nature of NMF mentioned earlier. On the other hand, using the
subtropical structure, we were able to isolate the high precipitation pattern and present
it in a single factor.

While the above discussion shows that the subtropical model can be a useful
complement to NMF, it is generally difficult to claim that either of them is superior.
For example Cancer generally provided a more concise representation of patterns in
the climate data, outlining its most prominent properties, while WNMF’s strength was
recovering the smooth transition between values.

Contributions and a roadmap. In this paper, we study the use of subtropical decompo-
sitions for data analysis.2 We start by studying the theoretical aspects of the problem
(Section 3), showing that the problem is NP-hard to even approximate, but also that
sparse matrices have sparse dominated subtropical decompositions.

In Section 4, we develop a general framework, called Equator, for finding approxi-
mate, low-rank subtropical decompositions, and we will present two instances of this
framework, tailored towards different types of data and noise, called Capricorn and
Cancer. Capricorn assumes discrete data with noise that randomly flips the value
to a random number, whereas Cancer assumes continuous-valued data with standard
Gaussian noise.

Our experiments (Section 5) show that both Capricorn and Cancer work well on
datasets that have the kind of noise they are designed for, and they outperform SVD
and different NMF methods when data has subtropical structure. On real-world data,
Cancer is usually the better of the two, although in terms of reconstruction error,
neither of the methods can challenge SVD. On the other hand, we show that both
Cancer and Capricorn return interpretable results that show different aspects of the
data compared to factorizations made under the standard algebra.

2 Notation and Basic Definitions

Basic notation. Throughout this paper, we will denote a matrix by upper-case boldface
letters (A), and vectors by lower-case boldface letters (a). The ith row of matrix A is

2This work is a combined and extended version of our preliminary papers that described
these algorithms (Karaev and Miettinen 2016a,b).
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denoted by Ai and the jth column by Aj . The matrix A with the ith column removed
is denoted by A−i, and A−i is the respective notation for A with a removed row.
Most matrices and vectors in this paper are restricted to the nonnegative real numbers
R+ = [0,∞).

We use the shorthand [n] to denote the set {1, 2, . . . , n}.

Algebras. In this paper we consider matrix factorization over so called max-times (or
subtropical) algebra. It differs from the standard algebra of real numbers in that addition
is replaced with the operation of taking the maximum. Also the domain is restricted to
the set of nonnegative real numbers.

Definition 1 The max-times (or subtropical) algebra is a set R+ of nonnegative real
numbers together with operations a� b = max{a, b} (addition) and a� b = ab (mul-
tiplication) defined for any a, b ∈ R+. The identity element for addition is 0 and for
multiplication it is 1.

In the future we will use the notation a� b and max{a, b} and the names max-times
and subtropical interchangeably. It is straightforward to see that the max-times algebra
is a dioid, that is, a semiring with idempotent addition (a� a = a). It is important to
note that subtropical algebra is anti-negative, that is, there is no subtraction operation.

A very closely related algebraic structure is the max-plus (tropical) algebra (see e.g.
Akian et al 2007).

Definition 2 The max-plus (or tropical) algebra is defined over the set of extended real
numbers R̄ = R∪{−∞} with operations a⊕ b = max{a, b} (addition) and a� b = a+b

(multiplication). The identity elements for addition and multiplication are −∞ and 0,
respectively.

The tropical and subtropical algebras are isomorphic (Blondel et al 2000), which
can be seen by taking the logarithm of the subtropical algebra or the exponent of the
tropical algebra (with the conventions that log 0 = −∞ and exp(−∞) = 0). Thus,
most of the results we prove for subtropical algebra can be extended to their tropical
analogues, although caution should be used when dealing with approximate matrix
factorizations. The latter is because, as we will see in Theorem 4, the reconstruction
error of an approximate matrix factorization under the two different algebras does not
transfer directly.

Matrix products and ranks. The matrix product over the subtropical algebra is defined
in the natural way:

Definition 3 The max-times matrix product of two matrices B ∈ Rn×k
+ and C ∈

Rk×m
+ is defined as

(B�C)ij =
k

max
s=1

BisCsj . (1)

We will also need the matrix product over the tropical algebra.

Definition 4 For two matrices B ∈ R̄n×k and C ∈ R̄k×m, their tropical matrix
product is defined as

(B �C)ij =
k

max
s=1
{Bis +Csj} . (2)
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Thematrix rank over the subtropical algebra can be defined in many ways, depending
on which definition of the normal matrix rank is taken as the starting point. We will
discuss different subtropical ranks in detail in Section 3.4. Here we give the main
definition of the rank we are using throughout this paper, the so-called Schein (or
Barvinok) rank of a matrix.

Definition 5 The max-times (Schein or Barvinok) rank of a matrix A ∈ Rn×m
+ is

the least integer k such that A can be expressed as an element-wise maximum of
k rank-1 matrices, A = F 1 �F 2 � · · ·�F k. Matrix F ∈ Rn×m

+ has subtropical
(Schein/Barvinok) rank of 1 if there exist column vectors x ∈ Rn

+ and y ∈ Rm
+ such

that F = xyT . Matrices with subtropical Schein (or Barvinok) rank of 1 are called
blocks.

When it is clear from the context, we will use the term rank (or subtropical rank)
without other qualifiers to denote the subtropical Schein/Barvinok rank.

Special matrices. The final concepts we need in this paper are pattern matrices and
dominating matrices.

Definition 6 A pattern of a matrix A ∈ Rn×m is an n-by-m binary matrix P such
that P ij = 0 if and only if Aij = 0, and otherwise P ij = 1. We denote the pattern of
A by p(A).

Definition 7 Let A and X be matrices of the same size, and let Γ be a subset of
their indices. Then if for all indices (i, j) ∈ Γ , Xij ≥ Aij , we say that X dominates A
within Γ . If Γ spans the entire size of A and X, we simply say that X dominates A.
Correspondingly, A is said to be dominated by X.

Main problem definition. Now that we have sufficient notation, we can formally intro-
duce the main problem considered in the paper.

Problem 1 (Approximate subtropical rank-k matrix factorization) Given a
matrixA ∈ Rn×m

+ and an integer k > 0, find factor matrices B ∈ Rn×k
+ and C ∈ Rk×m

+

minimizing
E(A,B,C) = ‖A−B�C‖ . (3)

Here we have deliberately not specified any particular norm. Depending on the circum-
stances, different matrix norms can be used, but in this paper we will consider the two
most natural choices – the Frobenius and L1 norms.

3 Theory

Our main contributions in this paper are the algorithms for the subtropical matrix
factorization. But before we present them, it is important to understand the theoretical
aspects of subtropical factorizations. We will start by studying the computational
complexity of Problem 1, showing that it is NP-hard even to approximate. After that,
we will show that the dominated subtropical factorizations of sparse matrices are sparse.
Then we compare the subtropical factorizations to factorizations over other algebras,
analyzing how the error of an approximate decomposition behaves when moving from
tropical to subtropical algebra. Finally, we briefly summarize different ways to define
the subtropical rank, and how these different ranks can be used to bound each other,
and the Boolean rank of a binary matrix, as well.
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3.1 Computational complexity

The computational complexity of different matrix factorization problems varies. For
example, SVD can be computed in polynomial time (Golub and Van Loan 2012), while
NMF is NP-hard (Vavasis 2009). Unfortunately, the subtropical factorization is also
NP-hard.

Theorem 1 Computing the max-times matrix rank is an NP-hard problem, even for
binary matrices.

The theorem is a direct consequence of the following theorem by Kim and Roush
(2005):

Theorem 2 (Kim and Roush 2005) Computing the max-plus (tropical) matrix rank
is NP-hard, even for matrices that take values only from {−∞, 0}.

While computing the rank deals with exact decompositions, its hardness auto-
matically makes any approximation algorithm with provable multiplicative guarantees
unlikely to exist, as the following corollary shows.

Corollary 1 It is NP-hard to approximate Problem 1 to within any polynomially com-
putable factor.

Proof Any algorithm that can approximate Problem 1 to within a factor α must find
a decomposition of error α · 0 = 0 if the input matrix has exact max-times rank-k
decomposition. As this implies solving the max-times rank, per Theorem 1 it is only
possible if P=NP. ut

3.2 Sparsity of the factors

It is often desirable to obtain sparse factor matrices if the original data is sparse, as
well, and the sparsity of its factors is frequently mentioned as one of the benefits of
using NMF (see, e.g. Hoyer 2004). In general, however, the factors obtained by NMF
might not be sparse, but if we restrict ourselves to dominated decompositions, Gillis
and Glineur (2010) showed that the sparsity of the factors cannot be less than the
sparsity of the original matrix.

The proof of Gillis and Glineur (2010) relies on the anti-negativity, and hence their
proof is easy to adapt to max-times setting. Let the sparsity of an n-by-m matrix A,
s(A), be defined as

s(A) =
nm− η(A)

nm
, (4)

where η(A) is the number of nonzero elements in A. Now we have

Theorem 3 Let matrices B ∈ Rn×k
+ and C ∈ Rk×m

+ be such that their max-times
product is dominated by an n-by-m matrix A. Then the following estimate holds:

s(B) + s(C) ≥ s(A) . (5)
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Proof The proof follows that of Gillis and Glineur (2010). We first prove (5) for k = 1.
Let b ∈ Rn

+ and c ∈ Rm
+ be such that bicTj ≤ Aij for all i ∈ [n] and j ∈ [m]. Since

(bcT )ij > 0 if and only if bi > 0 and cj > 0, we have that

η(bcT ) = η(b) η(c) . (6)

By (4) we have η(bcT ) = nm(1− s(bcT )), η(b) = n(1− s(b)) and η(c) = m(1− s(c)).
Plugging these expressions into (6) we obtain (1 − s(bcT )) = (1 − s(b))(1 − s(c)).
Hence, the sparsity in a rank-1 dominated approximation of A is

s(b) + s(c) ≥ s(bcT ) . (7)

From (7) and the fact that the number of nonzero elements in bcT is no greater than
in A, it follows that

s(b) + s(c) ≥ s(A) . (8)

Now let B ∈ Rn×k
+ and C ∈ Rk×m

+ be such that B�C is dominated by A. Then
BilClj ≤ Aij for all i ∈ [n], j ∈ [m], and l ∈ [k], which means that for each l ∈ [k],
BlCl is dominated by A. To complete the proof observe that s(B) = k−1∑k

l=1B
l

and s(C) = k−1∑k
l=1Cl and that for each l estimate (8) holds. ut

3.3 Relation to other algebras

Let us now study how the max-times algebra relates to other algebras, especially the
standard, the Boolean, and the max-plus algebras. For the first two, we compare the
ranks, and for the last, the reconstruction error.

Let us start by considering the Boolean rank of a binary matrix. The Boolean
(Schein or Barvinok) rank is the following problem:

Problem 2 (Boolean rank) Given a matrix A ∈ {0, 1}n×m, find the smallest integer
k such that there exist matrices B ∈ {0, 1}n×k and C ∈ {0, 1}k×m that satisfy
A = B ◦C, where ◦ is the Boolean matrix product,

(B ◦C)ij =
k∨

l=1

BilClj .

Lemma 1 If A is a binary matrix, then its Boolean and subtropical ranks are the
same.

Proof We will prove the claim by first showing that the Boolean rank of a binary matrix
is no less than the subtropical rank, and then showing that it is no larger, either. For
the first direction, let the Boolean rank of A be k, and let B and C be binary matrices
such that B has k columns and A = B ◦C. It is easy to see that B ◦C = B�C, and
hence, the subtropical rank of A is no more than k.

For the second direction, we will actually show a slightly stronger claim: Let
A ∈ Rn×m

+ and let p(A) be its pattern. Then the Boolean rank of p(A) is never more
than the subtropical rank of A. As p(A) = A for a binary A, the claim follows. To
prove the claim, let A ∈ Rn×m

+ have subtropical rank of k and let B ∈ Rn×k
+ and
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C ∈ Rk×m
+ be such that A = B�C. Let (i, j) be such that Aij = 0. By definition,

maxk
l=1BilClj = 0, and hence

k
max
l=1

p(B)ilp(C)lj =
k∨

l=1

p(B)ilp(C)lj = 0 . (9)

On the other hand, if (i, j) is such thatAij > 0, then there exists l such thatBil,Clj > 0
and consequently,

k
max
l=1

p(B)ilp(C)lj =
k∨

l=1

p(B)ilp(C)lj = 1 . (10)

Combining (9) and (10) gives us

p(A) = p(B) ◦ p(C) , (11)

showing that the Boolean rank of p(A) is at most k. ut

Notice that Lemma 1 also furnishes us with another proof of Theorem 1, as computing
the Boolean rank is NP-hard (see, e.g. Miettinen 2009). Notice also that while the
Boolean rank of the pattern is never more than the subtropical rank of the original
matrix, it can be much less. This is easy to see by considering a matrix with no zeroes:
it can have arbitrarily large subtropical rank, but it’s pattern has Boolean rank 1.

Unfortunately, the Boolean rank does not help us with effectively estimating the
subtropical rank, as its computation is an NP-hard problem. The standard rank is
(relatively) easy to compute, but the standard rank and the max-times rank are
incommensurable, that is, there are matrices that have smaller max-times rank than
standard rank and others that have higher max-times rank than standard rank. Let us
consider an example of the first kind,1 2 0

2 4 1
0 4 2

 =

1 0
2 1
0 2

�

(
1 2 0
0 2 1

)
.

As the decomposition shows, this matrix has max-times rank of 2, while its normal rank
is easily verified to be 3. Indeed, it is easy to see that the complement of the n-by-n
identity matrix Īn, that is, the matrix that has 0s at the diagonal and 1s everywhere
else, has max-times rank of O(log n) while its standard rank is n (the result follows
from similar results regarding the Boolean rank, see, e.g. Miettinen 2009).

As we have discussed earlier, max-plus and max-times algebras are isomorphic, and
consequently for any matrix A ∈ Rn×m

+ its max-times rank agrees with the max-plus
rank of the matrix log(A). Yet, the errors obtained in approximate decompositions
do not have to (and usually will not) agree. In what follows we characterize the
relationship between max-plus and max-times errors. We denote by R the extended
real line R ∪ {−∞}.

Theorem 4 Let A ∈ Rn×m
, B ∈ Rn×k

and C ∈ Rk×m
. Let M = exp{N}, where

N = max
i∈[n]
j∈[m]

{
max

{
Aij , max

1≤d≤k
{Bid +Cdj}

}}
.
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If an error can be bounded in max-plus algebra as

‖A−B �C‖2F ≤ λ , (12)

then the following estimate holds with respect to the max-times algebra:

‖exp{A} − exp{B}� exp{C}‖2F ≤M
2λ . (13)

Proof Let αij = maxk
d=1{Bid +Cdj}. From (12) it follows that there exists a set of

numbers {λij ≥ 0 : i ∈ [n], j ∈ [m]} such that for any i, j we have (Aij − αij)
2 ≤ λij

and
∑

ij λij = λ. By the mean-value theorem, for every i and j we obtain∣∣exp{Aij} − exp{αij}
∣∣ =

∣∣Aij − αij

∣∣ exp{α∗ij} ≤
√
λij exp{α∗ij} ,

for some min{Aij , αij} ≤ α∗ij ≤ max{Aij , αij}. Hence,

(exp{Aij} − exp{αij})2 ≤ λij(exp{max{Aij , αij}})2 .

The estimate for the max-times error now follows from the monotonicity of the exponent:

‖exp{A} − exp{B}� exp{C}‖2F ≤
∑
ij

(
exp{α∗ij}

)2
λij

≤
∑
ij

(exp{max{Aij , αij}})2 λij ≤M2λ ,

proving the claim. ut

3.4 Different subtropical matrix ranks

The definition of the subtropical rank we use in this work is the so-called Schein (or
Barvinok) rank (see Definition 5). Like in the standard linear algebra, this is not the
only possible way to define the (subtropical) rank. Here we will review few other forms
of subtropical rank that can allow us to bound the Schein/Barvinok rank of a matrix.
Unless otherwise mentioned, the definitions are by Guillon et al (2015); naturally results
without citations are ours. Following Guillon et al, we will present the definitions in
this section over the tropical algebra. Recall that due to isomorphism, these definitions
transfer directly to the subtropical case.

We begin with the tropical equivalent of the subtropical Schein/Barvinok rank:

Definition 8 The tropical Schein/Barvinok rank of a matrix A ∈ Rn×m
, denoted

rankS/B(A), is defined to be the least integer k such that there exist matricesB ∈ Rn×k

and C ∈ Rk×m
for which A = B �C.

Analogous to the standard case, we can also define the rank as the number of
linearly independent rows or columns. The following definition of linear independence
of a family of vectors in a tropical space is due to Gondran and Minoux (1984b).

Definition 9 A set of vectors x1, . . . ,xk from Rn
is called linearly dependent if there

exist disjoint sets I, J ⊂ [k] and scalars {λi}i∈I∪J , such that λi 6= −∞ for all i and

max
i∈I
{λi + xi} = max

j∈J
{λj + xj} . (14)

Otherwise the vectors x1, . . . ,xk are called linearly independent.
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This gives rise to the so-called Gondran–Minoux ranks:

Definition 10 The Gondran–Minoux row (column) rank of a matrix A ∈ Rn×m
is

defined as the maximal k such that A has k independent rows (columns). They are
denoted by rankG–M;rw(A) and rankG–M;cl(A) respectively.

Another way to characterize the rank of the matrix is to consider the space its rows
or columns can span.

Definition 11 A set X ⊂ Rn
is called tropically convex if for any vectors x,y ∈ X

and scalars λ, µ ∈ R, we have max{λ+ x, µ+ y} ∈ X.

Definition 12 The convex hull H(x1, . . .xk) of a finite set of vectors {xi}ki=1 ∈ Rn

is defined as follows

H(x1, . . .xk) =

{
k

max
i=1
{λi + xi} : λi ∈ R

}
.

Definition 13 The weak dimension of a finitely generated tropically convex subset of
Rn

is the cardinality of its minimal generating set.

We can define the rank of the matrix by looking at the weak dimension of the
(tropically) convex hull its rows or columns span.

Definition 14 The row rank and the column rank of a matrix A ∈ Rn×m
are defined

as the weak dimensions of the convex hulls of the rows and the columns of A respectively.
They are denoted by rankrw(A) and rankcl(A).

None of the above definitions coincide (see Akian et al 2009), unlike in the standard
algebra. We can, however, have a partial ordering of the ranks:

Theorem 5 (Guillon et al 2015; Akian et al 2009) Let A ∈ Rn×m
. Then the

the following relations are true for the above definitions of the rank of A:

rankG–M;rw(A)

rankG–M;cl(A)

}
≤ rankS/B(A) ≤

{
rankrw(A)

rankcl(A)
. (15)

The row and column ranks of an n-by-n tropical matrix can be computed in O(n3)
time (Butkovič 2010), allowing us to bound the Schein/Barvinok rank from above.
Unfortunately, no efficient algorithm for the Gondran–Minoux rank is known. On the
other hand, Guillon et al (2015) presented what they called the ultimate tropical rank
that lower-bounds the Gondran–Minoux rank and can be computed in time O(n3). We
can also check if a matrix has full Schein/Barvinok rank in time O(n3) (see Butkovič
and Hevery 1985), even if computing any other value is NP-hard.

These bounds, together with Lemma 1 yield the following corollary regarding the
bounding of the Boolean rank of a square matrix:

Corollary 2 Given an n-by-n binary matrix A, it’s Boolean rank can be bound from
below, using the ultimate rank, and from above, using the tropical column and row ranks,
in time O(n3).
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4 Algorithms

There are some unique challenges in doing subtropical matrix factorization, that stem
from the lack of linearity and smoothness of the max-times algebra. One of such issues is
that dominated elements in a decomposition have no impact on the final result. Namely,
if we consider the subtropical product of two matrices B ∈ Rn×k

+ and C ∈ Rk×m
+ , we

can see that each entry (B�C)ij = maxs∈[k]BisCsj is completely determined by
a single element with index arg maxs∈[k]BisCsj . This means that all entries t with
BitCtj < maxs∈[k]BisCsj do not contribute at all to the final decomposition. To
see why this is a problem, observe that many optimization methods used in matrix
factorization algorithms rely on local information to choose the direction of the next
step (e.g. various forms of gradient descent). In the case of the subtropical algebra,
however, the local information is practically absent, and hence we need to look elsewhere
for effective optimization techniques.

A common approach to matrix decomposition problems is to update factor ma-
trices alternatingly, which utilizes the fact that the problem minB,C ‖A−BC‖F is
biconvex. Unfortunately, the subtropical matrix factorization problem does not have
the biconvexity property, which makes alternating updates less useful.

Here we present a different approach that, instead of doing alternating factor
updates, constructs the decomposition by adding one rank-1 matrix at a time, following
the idea by Kolda and O’Leary (2000). The corresponding algorithm is called Equator
(Algorithm 1).

First observe that the max-times product can be represented as an elementwise
maximum of rank-1 matrices (blocks)

B�C =
k

max
s=1

BsCs . (16)

Hence, Problem 1 can be split into k subproblems of the following form: given a rank-
(l − 1) decomposition B ∈ Rn×(l−1)

+ , C ∈ R(l−1)×m
+ of a matrix A ∈ Rn×m

+ , find a
column vector b ∈ Rn×1

+ and a row vector c ∈ R1×m
+ such that the error

‖A−max {B�C, bc}‖ (17)

is minimized. We assume by definition that the rank-0 decomposition is an all zero
matrix of the same size as A. The problem of rank-k subtropical matrix factorization is
then reduced to solving (17) k times. One should of course remember that this scheme
is just a heuristic and finding optimal blocks on each iteration does not guarantee
converging to a global minimum.

One prominent issue with the above approach is that an optimal rank-(k−1) decom-
position might not be very good when considered as a part of a rank-k decomposition.
This is because for smaller ranks we generally have to cover the data more crudely,
whereas when the rank increases we can afford to use smaller and more refined blocks.
In order to deal with this problem, we find and then update the blocks repeatedly, in a
cyclic fashion. That means that after discovering the last block, we go all the way back
to block one. The input parameter M defines the number of full cycles we make.

On a high level Equator works as follows. First the factor matrices are initialized to
all zeros (line 2). Since the algorithm makes iterative changes to the current solutions
that might in some cases lead to worsening of the results, it also stores the best
reconstruction error and the corresponding factors found so far. They are initialized
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Algorithm 1 Equator

Input: A ∈ Rn×m+ , k > 0, M > 0

Output: B∗ ∈ Rn×k+ , C∗ ∈ Rk×m+

1: function Equator(A, k,M)
2: B ← 0n×k, C ← 0k×m

3: B∗ ← B,C∗ ← C
4: bestError ← E(A,B,C)
5: for count ← 1 to k ×M do
6: l← (count − 1) (mod k) + 1 . Index of the current block
7: [Bl,Cl]← UpdateBlock(A,B,C, count)
8: if E(A,B,C) < bestError then
9: B∗ ← B,C∗ ← C
10: bestError ← E(A,B,C)

11: return B∗, C∗

with the starting solution on lines 3–4. The main work is done in the loop on lines 5–10,
where on each iteration we update a single rank-1 matrix in the current decomposition
using the UpdateBlock routine (line 7), and then check if the update improves the best
result (lines 8–10).

We will present two versions of the UpdateBlock function, one called Capricorn and
the other one Cancer. Capricorn is designed to work with discrete (or flipping) noise,
when some of the elements in the data are randomly changed to different values. In this
setting the level of noise is the proportion of the flipped elements relative to the total
number of nonzeros. Cancer on the other hand is robust with continuous noise, when
many elements are affected (e.g. Gaussian noise). We will discuss both of them in detail
in the following subsections. In the rest of the paper, especially when presenting the
experiments, we will use names Capricorn and Cancer not only for a specific variation
of the UpdateBlock function, but also for the Equator algorithm that uses it.

4.1 Capricorn

We first describe Capricorn, which is designed to solve the subtropical matrix factoriza-
tion problem in the presence of discrete noise, and minimizes the L1 norm of the error
matrix. The main idea behind the algorithm is to spot potential blocks by considering
ratios of matrix rows. Consider an arbitrary rank-1 block X = bc, where b ∈ Rn×1

+ and

c ∈ R1×m
+ . For any indices i and j such that bi > 0 and bj > 0, we have Xj =

bj

bi
Xi.

This is a characteristic property of rank-1 matrices – all rows are multiples of one
another. Hence, if a block X dominates some region Γ of a matrix A, then rows of A
should all be multiples of each other within Γ . These rows might have different lengths
due to block overlap, in which case the rule only applies to their common part.

UpdateBlock starts by identifying the index of the block that has to be updated
at the current iteration (line 2). In order to find the best new block we need to take
into account that some parts of the data have already been covered, and we must
ignore them. This is accomplished by replacing the original matrix with a residual
R that represents what there is left to cover. The building of the residual (line 3)
reflects the winner-takes-it-all property of the max-times algebra: if an element of A is
approximated by a smaller value, it appears as such in the residual; if it is approximated
by a value that is at least as large, then the corresponding residual element is NaN ,
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Algorithm 2 UpdateBlock (Capricorn)

Input: A ∈ Rn×m+ , B ∈ Rn×k+ , C ∈ Rk×m+ , count > 0

Output: b ∈ Rn×1
+ , c ∈ R1×m

+

Parameters: bucketSize > 0, δ > 0, θ > 0, τ ∈ [0, 1]
1: function UpdateBlock(A,B,C, count)
2: l← (count − 1) (mod k) + 1 . Index of the current block

3: Rij ←
{
Aij (B−l �C−l)ij < Aij

NaN otherwise
. Residual matrix

4: idx ← argmaxi
∑
j rij

5: H ← CorrelationsWithRow(R, idx , bucketSize, δ, τ)
6: r ← argmaxi

∑
j hij

7: c← argmaxj
∑
i hij

8: b_idx← {i : Hic = 1}
9: c_idx← {i : Hri = 1}
10: [b, c]← RecoverBlock(R, b_idx, c_idx)
11: b← AddRows(b, c,A, θ, bucketSize, δ)
12: c← AddRows(cT , bT ,AT , θ, bucketSize, δ)T

13: return b, c

indicating that this value is already covered. We then select a seed row (line 4), with
an intention of growing a block around it. We choose the row with the largest sum as
this increases the chances of finding the most prominent block. In order to find the
best block X that the seed row passes through, we first find a binary matrix H that
represents the pattern of X (line 5). Next, on lines 6–9 we choose an approximation of
the block pattern with index sets b_idx and c_idx, which define what elements of b
and c should be nonzero. The next step is to find the actual values of elements within
the block with the function RecoverBlock (line 10). Finally, we inflate the found core
block with ExpandBlock (line 11).

The function CorrelationsWithRow (Algorithm 3) finds the pattern of a new block.
It does so by comparing a given seed row to other rows of the matrix and extracting
sets where the ratio of the rows is almost constant. As was mentioned before, if two
rows locally represent the same block, then one should be a multiple of the other, and
the ratios of their corresponding elements should remain level. CorrelationsWithRow
processes the input matrix row by row using the function FindRowSet, which for every
row outputs the most likely set of indices, where it is correlated with the seed row (lines
4–6). Since the seed row is obviously the most correlated with itself, we compensate for
this by replacing its pattern with that of the second most correlated row (lines 7–8).
Finally, we drop some of the least correlated rows after comparing their correlation
value φ to that of the second most correlated row (after the seed row). The correlation
function φ is defined as follows

φ(H, idx , i) =
〈Hi,Hidx 〉
〈Hi,Hi〉+ 1

. (18)

The parameter τ is a threshold determining whether a row should be discarded or
retained. The auxiliary function FindRowSet (Algorithm 4) compares two vectors and
finds the biggest set of indices where their ratio remains almost constant. It does so by
sorting the log-ratio of the input vectors into buckets of a fixed size and then choosing
the bucket with the most elements. The notation u ./ v on line 2 means elementwise
ratio of vectors u and v.
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Algorithm 3 CorrelationsWithRow

Input: R ∈ Rn×m+ , idx ∈ [n], bucketSize > 0, δ > 0, τ ∈ [0, 1]

Output: H ∈ {0, 1}n×m
1: function CorrelationsWithRow(R, idx , bucketSize, δ, τ)
2: turn all NaN elements of R to 0
3: H ← 0n×m

4: for i← 1 to n do
5: Vi ← FindRowSet(Ridx ,Ri, bucketSize, δ)
6: H(i, Vi)← 1

7: s← argmaxi : i 6=idx

∑
j hij

8: Hidx ←Hs

9: for i← 1 to n do
10: if φ(H, idx , i) < φ(H, idx , s)− τ then
11: Hi ← 0

12: return H

Algorithm 4 FindRowSet
Input: u ∈ Rm+ ,v ∈ Rm+ , bucketSize > 0, δ > 0

Output: V ⊂ [m]
1: function FindRowSet(u,v, bucketSize, δ)
2: r ← log(u ./ v)
3: nBuckets ← d(max{r} −min{r})/δe
4: for i← 0 to nBuckets do
5: Vi ← {idx ∈ [m] : min{r}+ iδ ≤ ridx < min{r}+ (i+ 1)δ}
6: V ← argmax{|Vi| : i = 1, . . . ,nBuckets}
7: if |V | < bucketSize then
8: V ← ∅
9: return V

It accepts two additional parameters: bucketSize and δ. If the largest bucket has
fewer than bucketSize elements, the function will return an empty set – this is done
because very small patterns do not reveal much structure and are mostly accidental.
The width of the buckets is determined by the parameter δ.

At this point we know the pattern of the new block, that is, the locations of its
non-zeros. To fill in the actual values, we consider the submatrix defined by the pattern,
and find the best rank-1 approximation of it. We do this using the RecoverBlock
function (Algorithm 5). It begins by setting all elements outside of the pattern to 0 as
they are irrelevant to the block (line 2). Then it chooses one row to represent the block
(lines 3–4), which will be used to find a good rank-1 cover.

Finally, we find the optimal column vector for the block by computing the best
weights to be used for covering different rows of the block with its representing row
(line 5). Here we optimize with respect to the Frobenius norm, rather than L1 matrix
norm, since it allows to solve the optimization problem in closed form.

Since blocks often heavily overlap, we are susceptible to finding only fragments of
patterns in the data – some parts of a block can be dominated by another block and
subsequently not recognized. Hence, we need to expand found blocks to make them
complete. This is done separately for rows and columns in the method called AddRows
(Algorithm 6), which, given a starting block X = bc and the original matrix A, tries to
add new nonzero elements to b. It iterates through all rows of A and adds those that
would make a positive impact on the objective without unnecessarily overcovering the
data. In order to decide whether a given row should be added, it first extracts a set Vi
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Algorithm 5 RecoverBlock

Input: R ∈ Rn×m+ , bIdx ⊂ [n], cIdx ⊂ [m]

Output: b ∈ Rn×1
+ , c ∈ R1×m

+

1: function RecoverBlock(R, bIdx , cIdx)
2: turn R to 0 except elements with indices (bIdx , cIdx)
3: p← RowRepresentingBlock(R, bIdx)
4: c← Rp

5: b← argmin
t∈Rn×1

+
‖R− tc‖F

6: return b, c

Algorithm 6 AddRows

Input: b ∈ Rn×1
+ , c ∈ R1×m

+ , A ∈ Rn×m+ , θ > 0, bucketSize > 0, δ > 0

Output: b ∈ Rn×1
+

1: function AddRows(b, c,A, θ, bucketSize, δ)
2: b_idx← {t : bt > 0}
3: for i ∈ [n] \ b_idx do
4: Vi ← FindRowSet(c,Ri, bucketSize, δ)
5: if Vi = ∅ then
6: continue
7: α← mean(RiVi

./ cVi
)

8: impact ←
∑

s∈Vi
max{0, αcs−Ais}∑

s∈Vi
Ais−|Ais−αcs|

9: if impact ≤ θ then
10: bi ← α

11: return b

of indices where this row is a multiple of the row vector c of the block (if they are not
sufficiently correlated, then the row does not belong to the block) (line 4). A row is
added if the evaluation of the following function (line 8)

ψ(α) =

∑
s∈Vi

max{0, αcs −Ais}∑
s∈Vi

Ais − |Ais − αcs|
(19)

is below the threshold θ. In (19) the numerator measures by how much the new row
would overcover the original matrix, and the denominator reflects the improvement in
the objective compared to a zero row.

Parameters. Capricorn has four parameters in addition to the common parameters
in the Equator framework: bucketSize > 0, δ > 0, θ > 0, and τ ∈ [0, 1]. The first one,
bucketSize determines the minimum number of elements in two rows that must have
“approximately” the same ratio for them to be considered for building a block. The
parameter δ defines the bucket width when computing row correlations. When expanding
a block, θ is used to decide whether to add a row (or column) to it – the decision is
positive whenever the expression (19) is at most θ. Finally τ is used during the discovery
of correlated rows. The value of τ belongs to the closed unit interval, and the higher it
is, the more rows will be added.

4.2 Cancer

We now present our second algorithm, Cancer, which is a counterpart of Capricorn
specifically designed to work in the presence of high levels of continuous noise. The
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reason why Capricorn cannot deal with continuous noise is that it expects the rows
in a block to have an “almost” constant elementwise ratio, which is not the case when
too many entries in the data are disturbed. For example, even low levels of Gaussian
noise would make the ratios vary enough to hinder Capricorn’s ability to spot blocks.
With Cancer we take a new approach which is based on polynomial approximation of
the objective. We also replace the L1 matrix norm, which was used as an objective
for Capricorn, with the Frobenius norm. The reason for that is that when the noise
is continuous, its level is defined as the total deviation of the noisy data from the
original, rather than a count of the altered elements. This makes the Frobenius norm a
good estimator for the amount of noise. Cancer conforms to the general framework of
Equator (Algorithm 1), and differs from Capricorn only in how it finds the blocks and
in the objective function.

Observe that in order to solve the problem (17) we need to find a column vector b ∈
Rn×1

+ and a row vector c ∈ R1×m
+ such that they provide the best rank-1 approximation

of the input matrix given the current factorization. The objective function is not convex
in either b or c and is generally hard to optimize directly, so we have to simplify the
problem, which we do in two steps. First, instead of doing full optimization of b and c
simultaneously, we update only a single element of one of them at a time. This way the
problem is reduced to single variable optimization. Even then the objective is hard to
minimize, and we replace it with a polynomial approximation, which is easy to optimize
directly.

The Cancer version of the UpdateBlock function is described in Algorithm 7. It
alternatingly updates the vectors b and c using the AdjustOneElement routine. Both b
and c will be updated bf(n+m)/2c times. UpdateBlock starts by finding the index
of the block that has to be changed (line 2). Since the purpose of UpdateBlock is to
find the best rank-1 matrix to replace the current block, we also need to compute the
reconstructed matrix without it, which is done on line 3. We then find the number of
times AdjustOneElement will be called (line 4) and change the degree of polynomials
used for objective function approximation (line 5). This is needed because high degree
polynomials are better at finalizing a solution that is already reasonably good, but
tend to overfit the data and cause the algorithm to get stuck in local minima at the
beginning. It is therefore beneficial to start with polynomials of lower degrees and then
gradually increase it. The actual changes to b and c happen in the loop (lines 7–9),
where we update them using AdjustOneElement.

The AdjustOneElement function (Algorithm 8) updates a single entry in either a
column vector b or a row vector c. Let us consider the case when b is fixed and c varies.
In order to decide which element of c to change, we need to compare the best changes to
all m entries and then choose the one that yields the most improvement to the objective.
A single element cl only has an effect on the error along the column l. Assume that we
are currently updating block with index q and let N denote the reconstruction matrix
without this block, that is N = B−q �C−q. Minimizing E(A,B,C) with respect to
cl is then equivalent to minimizing

γ(Al,N l, b, cl) =
n∑

i=1

(Ail −max{N il, bicl})2 . (20)

Instead of minimizing (20) directly, we use polynomial approximation in the PolyMin
routine (line 4). It returns the (approximate) error err and the value x achieving that.
The polynomial approximation is obtained by evaluating the objective function at
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Algorithm 7 UpdateBlock (Cancer)

Input: A ∈ Rn×m+ , B ∈ Rn×k+ , C ∈ Rk×m+ , count > 0

Output: b ∈ Rn×1
+ , c ∈ R1×m

+
Parameters: t > 2, 0 < f < 1
1: function UpdateBlock(A,B,C, count)
2: l← (count − 1) (mod k) + 1 . Index of the current block
3: N ← B−l �C−l . Reconstructed matrix without the i-th block
4: niters ← bf(n+m)/2c
5: deg ← 2 + b(count − 1)/kc (mod t)
6: b← Bl, c← Cl

7: for iter ← 1 to niters do
8: c = AdjustOneElement(A,N , b, c, deg)
9: b = AdjustOneElement(AT ,NT , cT , bT , deg)T

10: return b, c

Algorithm 8 AdjustOneElement

Input: A ∈ Rn×m+ , N ∈ Rn×m+ , b ∈ Rn×1
+ , c ∈ R1×m

+ , deg ≥ 2

Output: c ∈ R1×m
+

1: function AdjustOneElement(A,N , b, c, deg)
2: for j ← 1 to m do
3: baseError ←

∑n
i=1 (Aij −max{N ij , bicj})2

4: [err,xi]← PolyMin(Aj ,Nj , b, deg)
5: ui ← baseError − err

6: i← the index i of largest value of u
7: ci ← xi
8: return c

deg + 1 points generated uniformly at random from the interval [0, 5] and then fitting
a polynomial to the obtained values. The upper bound of 5 does not have any special
meaning, rather it was chosen by trial and error. PolyMin is a heuristic and does not
necessarily find the global minimum of the objective function. Moreover, in rare cases
it might even cause an increase in the objective value. In such cases it would, in theory,
make sense to just keep the value prior to the update, as in that case the objective at
least does not increase. However in practice this phenomenon helps to get out of local
minima. Since we are only interested in the improvement of the objective achieved by
updating a single entry of c, we compute the improvement of the objective after the
change (line 5). After trying every column of c, we update only the column that yield
the largest improvement.

The function γ that we need to minimize in order to find the best change to the
vector c in AdjustOneElement is hard to work with directly since it is not convex, and
also not smooth because of the presence of the maximum operator. To alleviate this,
we approximate the error function γ with a polynomial g of degree deg. Notice that
when updating cl, other variables of γ are fixed and we only need to consider function
γ′(x) = γ(Al,N l, b, x). To build g we sample deg + 1 points from (0, 1) and fit g to
the values of γ′ at these points. We then find the x ∈ R+ that minimizes g(x) and
return g(x) (the approximate error) and x (the optimal value).

Parameters. Cancer has two parameters, t > 2 and 0 < f < 1, that control its
execution. The first one, t, is the maximum allowed degree of polynomials used for
approximation of the objective, which we set to 16 in all our experiments. The second
parameter, f , determines the number of single element updates we make to the row



20 Sanjar Karaev, Pauli Miettinen

and column vectors of a block in UpdateBlock. To demonstrate that the chosen values
of the parameters are reasonable, we performed a grid search for various parameter
values (see Figure 4 in Section 5).

Generalized Cancer. The Cancer algorithm can be adapted to optimize other
objective functions. Its general polynomial approximation framework allows for a wide
variety of possible objectives, the only constraint being that they have to be additive
(we call a function E(A,R) additive if there exists a mapping φ : R+ ×R+ → R+ such
that for all A ∈ Rn×m

+ and R ∈ Rn×m
+ we have E(A,R) =

∑
ij φ(Aij ,Rij)). Some

examples of such functions are L1 and Frobenius matrix norms, as well as Kullback–
Leibler and Jensen–Shannon divergences. In order to use the generalized form of Cancer
one simply has to replace the Frobenius norm with another cost function wherever the
error is evaluated.

4.3 Time complexity

The main work in Equator is performed inside the UpdateBlock routine, which is called
Mk times. Since M is a constant parameter, the complexity of Equator is k times the
complexity of UpdateBlock. In the following we find the theoretical bounds on the
execution time of UpdateBlock for both Capricorn and Cancer.

Capricorn. In the case of Capricorn there are three main contributors to UpdateBlock
(Algorithm 2): CorrelationsWithRow, RecoverBlock, and AddRows.
CorrelationsWithRow compares every row to the seed row, each time calling FindRowSet,
which in turn has to process all m elements of both rows. This results in the total com-
plexity of CorrelationsWithRow being O(nm). To find the complexity of RecoverBlock,
first observe that any “pure” block X can be represented as X = bc, where b ∈ Rn′×1

+

and c ∈ R1×m′
+ with n′ ≤ n and m′ ≤ m. RecoverBlock selects c from the rows of

X and then finds the corresponding column vector b that minimizes ‖X − bc‖F . In
order to select the best row, we have to try each of the n′ candidates, and since finding
the corresponding b for each of them takes time O(n′m′), this gives the runtime of
RecoverBlock as O(n′)O(n′m′) = O(n2m). The most computationally expensive parts
of AddRows are FindRowSet (line 4), finding the mean (line 7), and computing the
impact (line 8), which all run in O(m) time. All of these operations have to be repeated
O(n) times, and hence the runtime of AddRows is O(nm). Thus, we can now estimate
the complexity of UpdateBlock to be O(nm) + O(n2m) + O(nm) = O(n2m), which
leads to the total runtime of Capricorn to be O(n2mk).

Cancer. Here UpdateBlock (Algorithm 7) is a loop that calls AdjustOneElement
bf(n+m)c times. In AdjustOneElement the contributors to the complexity are comput-
ing the base error (line 3) and a call to PolyMin (line 4). Both of them are performed n
or m times depending on whether we supplied the column vector b or the row vector c
to AdjustOneElement. Finding the base error takes time O(m) for b and O(n) for c.
The complexity of PolyMin boils down to that of evaluating the max-times objective at
deg + 1 points and then minimizing a degree deg polynomial. Hence, PolyMin runs in
time O(m) or O(n) depending on whether we are optimizing b or c, and the complexity
of AdjustOneElement is O(nm).

Since AdjustOneElement is called bf(n+m)/2c times and f is a fixed parameter,
this gives the complexity O

(
(n + m)nm

)
for UpdateBlock and O

(
(n + m)nmk

)
=

O(max{n,m}nmk) for Cancer.
Empirical evaluation of the time complexity is reported in Section 5.3.
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5 Experiments

We tested both Capricorn and Cancer on synthetic and real-world data. In addition
we also compare against a variation of Cancer that optimizes the Jensen–Shannon
divergence, which we call CancerJS. The purpose of the synthetic experiments is to
evaluate the properties of the algorithm in controlled environments where we know
the data has the max-times structure. They also demonstrate on what kind of data
each algorithm excels and what their limitations are. The purpose of the real-world
experiments is to confirm that these observations also hold true in real-world data, and
to study what kinds of data sets actually have max-times structure. The source code
of Capricorn and Cancer and the scripts that run the experiments in this paper are
freely available for academic use.3

Parameters of Cancer. Both variations of Cancer use the same set of parameters. For
the synthetic experiments we used M = 14, t = 16, and f = 0.1. For the real world
experiments we set t = 16, f = 0.1, and M = 40 (except for Eigenfaces, where we
used M = 50 and Bas1LP, where we set M = 8). Increasing M , which controls the
number of cycles of execution of Cancer, almost invariably improves the results. At
some point though, the gains become marginal, and the value of M = 40 is chosen so
as to reach the point where increasing M further would not yield much improvement.
Sometimes though, this moment can be reached faster – for example the smaller choice
of M for Bas1LP is motivated by the fact that Cancer quickly reached a point where
it could no longer make significant progress, despite Bas1LP being the largest dataset.
The relationship of the other two parameters and the quality of decomposition is more
complex. We see in Figure 4(a) that the dependence on f and t is not monotone, and
it is hard to pinpoint the best combination exactly. Moreover, the optimal values can
differ depending on the dataset; for example, Figure 4(b) features an almost monotone
dependence on f that flattens out before f reaches 0.1. From our experience, however,
the values of t = 16 and f = 0.1 seem to be a good choice.

Parameters of Capricorn. In both synthetic and real-world experiments we used the
following default set of parameters: M = 4, bucketSize = 3, δ = 0.01, θ = 0.5, and
τ = 0.5. As with Cancer, there is a complex dependency of the results on the parameters,
but the values chosen above seem to produce good results in most cases. We do not
show a comparison table, as we did with Cancer, due to a bigger number of parameters.

5.1 Other methods

We compared our algorithms against SVD and five versions of NMF. For SVD, we used
Matlab’s built-in implementation. The first form of NMF is a sparse NMF algorithm
by Hoyer (2004),4 which we call SNMF. It defines the sparsity of a vector x ∈ Rn

+ as

sparsityH(x) =

√
n− (

∑
i |xi|) /

√∑
i x

2
i√

n− 1
, (21)

3http://cs.uef.fi/~pauli/tropical/
4https://github.com/aludnam/MATLAB/tree/master/nmfpack, accessed 18 July 2017

http://cs.uef.fi/~pauli/tropical/
https://github.com/aludnam/MATLAB/tree/master/nmfpack
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Fig. 4 Results of Cancer with different values of parameters t and f .

0
10

0.1

8
10

0.2

6

F
ro

be
ni

us
 e

rr
or

beta

4

0.3

alpha

5
2

0.4

0 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) HPI.

0.15
10

0.2

10

0.25

F
ro

be
ni

us
 e

rr
or

0.3

beta

5

alpha

0.35

5

0 0

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(b) Synthetic experiment with Gaussian
noise.

Fig. 5 Results of ALSR with different regularization parameters for the two factors matrices,
which are denoted by α and β respectively.

and returns factorizations where the sparsity of the factor matrices is user-controllable.
Note that the above definition of sparsity is different from the one we use elsewhere (see
Equation (4)). In order to run SNMF we used the sparsity of Cancer’s factors (as defined
by (21)) as its sparsity parameter. We also compare against a standard alternating
least squares algorithm called ALS (Cichocki et al 2009). Next we have two versions of
NMF that are essentially the same as ALS, but they use L1 regularization for increased
sparsity (Cichocki et al 2009), that is, they aim at minimizing

‖A−BC‖F + α ‖B‖1 + β ‖C‖1 .

The first method is called ALSR and uses regularizer coefficient α = β = 1, and the
other, called ALSR5, has regularizer coefficient α = β = 5. It is natural to ask how
ALSR would fare with different values of parameters. In Figure 5 we perform a grid
search for the best parameter combination. While the experiment with HPI has a very
uneven surface without much structure apart from a couple of spikes, the synthetic
dataset demonstrates that high values of α and β can have serious adverse effects on
the reconstruction error. It therefore seems safest to set α = β = 0, which corresponds
to the ALS method. It is worth mentioning that in many of our experiments larger
values of α and β resulted in factors becoming close to zero, or some elements in the
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factors getting enormous values due to numeric instability. This was the case for some
other real-world experiments, such as 4News, which is another indication to use the
parameter values of α = β = 0.

The last NMF algorithm, WNMF by Li and Ngom (2013), is designed to work with
missing values in the data.

5.2 Synthetic experiments

The purpose of synthetic experiments is to prove the concept, that is that our algorithms
are capable of identifying the max-times structure when it is there. In order to test
this, we first generate the data with the pure max-times structure, then pollute it with
some level of noise, and finally run the methods. The noise-free data is created by first
generating random factors of some density with nonzero elements drawn from a uniform
distribution on the [0, 1] interval and then multiplying them using the max-times matrix
product.

We distinguish two types of noise. The first one is the discrete (or tropical) noise,
which is introduced in the following way. Assume that we are given an input matrix
A of size n-by-m. We first generate an n-by-m noise matrix N with elements drawn
from a uniform distribution on the [0, 1] interval. Given a level of noise l, we then turn
b(1− l)nmc random elements of N to 0, so that its resulting density is l. Finally, the
noise is applied by taking elementwise maximum between the original data and the
noise matrix F = max{A,N}. This is the kind of noise that Capricorn was designed
to handle, so we expect it to be better than Cancer and other comparison algorithms.

We also test against continuous noise, as it is arguably more common in the real
world. For that we chose Gaussian noise with 0 mean, where the noise level is defined to
be its standard deviation. Since adding this noise to the data might result in negative
entries, we truncate all values in a resulting matrix that are below zero.

Unless specified otherwise, all matrices in the synthetic experiments are of size
1000-by-800 with true max-times rank 10. All results presented in this section are
averaged over 10 instances. For reconstruction error tests, we compared our algorithms
Capricorn, Cancer, and CancerJS against SVD, NMF, SNMF, ALS, ALSR, and ALSR5. The
error is measured as the relative Frobenius norm ‖Ã−A‖F / ‖A‖, where A is the data
and Ã its approximation, as that is the measure both SVD and NMF aim at minimizing.
We also report the sparsity s of factor matrices obtained by algorithms, which is defined
as a fraction of zero elements in the factor matrices, see (4). for an n-by-m matrix A. For
the experiments with tropical noise, the reconstruction errors are reported in Figure 6
and factor sparsity in Figure 7. For the Gaussian noise experiments, the reconstruction
errors and factor sparsity are shown in Figure 8 and Figure 9 respectively.

Varying density with tropical noise. In our first experiment we studied the effects
of varying the density of the factor matrices in presence of the tropical noise. We
changed the density of the factors from 10% to 100% with an increment of 10%,
while keeping the noise level at 10%. Figure 6(a) shows the reconstruction error and
Figure 7(a) the sparsity of the obtained factors. Capricorn is consistently the best
method, obtaining almost perfect reconstruction; only when the density approaches
100% does its reconstruction error deviate slightly from 0. This is expected since the
data was generated with the tropical (flipping) noise that Capricorn is designed to
optimize. Compared to Capricorn all other methods clearly underperform, with Cancer
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being the second best. With the exception of ALSR5, all NMF methods obtain results
similar to those of SVD, while having a somewhat higher reconstruction error than
Cancer. That SVD and NMF methods (except ALSR5) start behaving better at higher
levels of density indicates that these matrices can be explained relatively well using
standard algebra. Capricorn and Cancer also have the highest sparsity of factors, with
Capricorn exhibiting a decrease in sparsity as the density of the input increases. This
behaviour is desirable since ideally we would prefer to find factors that are as close
to the original ones as possible. For NMF methods there is a trade-off between the
reconstruction error and the sparsity of the factors – the algorithms that were worse at
reconstruction tend to have sparser factors.

Varying tropical noise. The amount of noise is always with respect to the number of
nonzero elements in a matrix, that is, for a matrix A with κ(A) nonzero elements
and noise level α, we flip ακ(A) elements to random values. There are two versions of
this experiment – one with factor density 30% and the other with 60%. In both cases
we varied the noise level from 0% to 110% with increments of 10%. Figure 6(b) and
Figure 6(c) show the respective reconstruction errors and Figure 7(b) and Figure 7(c)
the corresponding sparsities of the obtained factors. In the low-density case, Capricorn
is consistently the best method with essentially perfect reconstruction for up to 80%
of noise. In the high-density case, however, the noise has more severe effects, and in
particular after 60% of noise, Cancer, SVD, and all versions of NMF are better than
Capricorn. The severity of the noise is, at least partially, explained by the fact that in
the denser data we flip more elements than in sparser data: for example when the data
matrices are full, at 50% of noise, we have already replaced half of the values in the
matrices with random values. Further, the quick increase of the reconstruction error
for Capricorn hints strongly that the max-times structure of the data is mostly gone
at these noise levels. Capricorn also produces clearly the sparsest factors for the low
density case, and is mostly tied with Cancer and ALSR5 when the density is high. It
should be noted, however, that ALSR5 generally has the highest reconstruction error
among all the methods, which suggests that its sparse factors come at the cost of
recovering little structure from the data.

Varying rank with tropical noise. Here we test the effects of the (max-times) rank, with
the assumption that higher-rank matrices are harder to reconstruct. The true max-times
rank of the data varied from 2 to 20 with increments of 2. There are three variations
of this experiment: with 30% factor density and 10% noise (Figure 6(d)), with 30%
factor density and 50% noise (Figure 6(e)), and with 60% factor density and 10% noise
(Figure 6(f)). The corresponding sparsities are shown on Figures 7(d)–(f). Capricorn
has a clear advantage for all settings, obtaining nearly perfect reconstruction. Cancer
is generally second best, except for the high noise case, where it is mostly tied with a
bunch of NMF methods. It also has a relatively high variance. To see why this happens,
consider that Cancer always updates one element in factor matrices at a time. This
update is completely dependent on values on a single row (or column) and is sensitive to
the spikes that tropical noise introduces to some elements. Interestingly, on the last two
plots the reconstruction error actually drops for Cancer, SVD, and NMF-based methods.
This is a strong indication that at this point they no longer can extract meaningful
structure in the data, and the improvement of the reconstruction error is largely due to
uniformization of the data caused by high density and high noise levels.
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Fig. 6 Reconstruction errors on synthetic data with tropical noise. x-axis is the parameter
varied and y-axis is the relative Frobenius norm. All results are averages over 10 random
matrices and the width of the error bars is twice the standard deviation.

Varying Gaussian noise. Here we investigate how the algorithms respond to different
levels of Gaussian noise, which was varied from 0 to 0.14 with increments of 0.01. A
level of noise is a standard deviation of the Gaussian noise used to generate the noise
matrix as described earlier. The factor density was kept at 50%. The results are given
on Figure 8(a) (reconstruction error) and Figure 9(a) (sparsity of factors).

Here Cancer is generally the best method in reconstruction error, and second in
sparsity only to Capricorn. The only time it loses to any method is when there is no
noise, and Capricorn obtains a perfect decomposition. This is expected since Capricorn
is by design better at spotting pure subtropical structure.

Varying density with Gaussian noise. In this experiment we studied what effects the
density of factor matrices used in data generation has on the algorithms’ performance.
For this purpose we varied the density from 10% to 100% with increments of 10% while
keeping the other parameters fixed. There are two versions of this experiment, one
with low noise level of 0.01 (Figures 8(b) and 9(b)), and a more noisy case at 0.08
(Figures 8(c) and 9(c)).

Cancer provides the least reconstruction error in this experiment, being clearly the
best until the density is 0.7, from which point on it is tied with SVD and the NMF-based
methods (the only exception being the least-dense high-noise case, where ALSR obtains
a slightly better reconstruction error). Capricorn is the worst by a wide margin, but
this is not surprising, as the data does not follow its assumptions. On the other hand,
Capricorn does produce generally the sparsest factorization, but these are of little
use given its bad reconstruction error. Cancer produces the sparsest factors from the
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density.
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Fig. 7 Sparsity (fraction of zeroes) of the factor matrices for synthetic data with tropical
noise. x-axis is the parameter varied and y-axis is the sparsity of the factors. The markers are
averages of 10 random matrices and the width of the error bars is twice the standard deviation.

remaining methods, except in the first few cases where ALSR5 is sparser (and worse in
reconstruction error), meaning that Cancer produces factors that are both the most
accurate and very sparse.

Varying rank with Gaussian noise. The purpose of this test is to study the performance
of algorithms on data of different max-times ranks. We varied the true rank of the
data from 2 to 20 with increments of 2. The factor density was fixed at 50% and
Gaussian noise at 0.01. The results are shown on Figure 8(d) (reconstruction error)
and Figure 9(d) (sparsity of factors). The results are similar to those considered above,
with Cancer returning the most accurate and second sparsest factorizations.

Optimizing the Jensen–Shannon divergence. By default Cancer optimizes the Frobenius
reconstruction error, but it can be replaced by an arbitrary additive cost function. We
performed experiments with Jensen–Shannon divergence, which is given by the formula

J(A,B) =
∑
ij

Aij log

(
2Aij

Aij +Bij

)
+Bij log

(
2Bij

Aij +Bij

)
. (22)

It is easy to see that (22) is an additive function, and hence can be plugged into Cancer.
Figure 10 shows how this version of Cancer compares to other methods. The setup is
the same as in the corresponding experiments on Figure 8. In all these experiments it is
apparent that this version of Cancer is inferior to that optimizing the Frobenius error,
but is generally on par with SVD and NMF-based methods. Also for the varying density
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Fig. 8 Reconstruction error (Frobenius norm) for synthetic data with Gaussian noise noise.
The markers are averages of 10 random matrices and the width of the error bars is twice the
standard deviation.

test (Figure 10(b)) it produces better reconstruction errors than SVD and all the NMF
methods, until the density reaches 50%, after which they become tied.

Prediction. In this experiment we choose a random holdout set and remove it from
the data (elements of this set are marked as missing values). We then try to learn the
structure of the data from its remaining part using the algorithms, and finally test how
well they predict the values inside the holdout set. The factors are drawn uniformly at
random from the set of integers in an interval [0, a] with a predefined density of 30%,
and then multiplied using the subtropical matrix product. We use two different values
of a for each experiment, 10 and 3. With a = 10 input matrices have values in the
range [0, 100], and when a = 3, the range is [0, 9]. We then apply noise to the obtained
matrices and feed them to the algorithms. Since all input matrices are integer-valued,
and since the recovered data produced by the algorithms can be continuous-valued,
we round it to the nearest integer. We report two measures of the prediction quality
– prediction rate, which is defined as the fraction of correctly guessed values in the
hold-out set, and root mean square error (RMSE). We tested this setup with both
tropical noise (Figure 11) and Gaussian noise (Figure 12).

Capricorn gives by far the best prediction rate when using the higher [0, 100] range
of values in input matrices (Figures 11(a) and 12(a)). Especially interesting is that it
also beats all other methods in the presence of Gaussian noise. In terms of RMSE it
generally lands somewhere in the middle of the pack among various NMF methods.
Such a large difference between these measures is caused by Capricorn not really being
an approximation algorithm. It extracts subtropical patterns where they exist, while
ignoring parts of the data where they cannot be found. This results in it either predicting
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Fig. 9 Sparsity (fraction of zeroes) of the factor matrices for synthetic data with Gaussian
noise. The markers are averages of 10 random matrices and the width of the error bars is twice
the standard deviation.
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Fig. 10 Comparison of Cancer with Jensen–Shannon objective and other methods on synthetic
data with Gaussian noise. x-axis is the parameter varied and y-axis is the relative Frobenius
error. All results are averages over 10 random matrices and the width of the error bars is twice
the standard deviation.

the integer values exactly or missing by a wide margin. With the [0, 9] range of values
the results of Capricorn become worse, which is especially evident with Gaussian noise.
Although this behaviour might seem counterintuitive, it is simply a consequence of noise
having a larger effect when values in the data are smaller. Cancer shows the opposite
behaviour to Capricorn in that it benefits from smaller value range and Gaussian
noise, where it consistently outperforms all other methods. Unlike Capricorn, Cancer
approximates values in input data, which allows it to get a high number of hits with the
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Fig. 11 Prediction rate on synthetic data with tropical noise. The x-axis represents the size
of the holdout set. The y-axis is the correct prediction rate in Figures 11(a) and 11(c), and
RMSE in Figures 11(b) and 11(d). The range is the interval that the values in input matrices
are restricted to. All results are averages over 10 random matrices and the width of the error
bars is twice the standard deviation.

[0, 9] range after the rounding. On the [0, 100] interval though, it is liable to guessing
many values incorrectly since a much higher level of precision is required. For many
prediction tasks, like predicting user ratings, Cancer’s approach seems more useful as
input values are usually drawn from a relatively small range (for example, in Movielens,
all ratings are from [0, 5]). Other competing methods generally do not perform well,
with the exception of SVD winning the first place with RMSE measure for the high
range experiments (Figures 11(b) and 12(b)). It illustrates once again that SVD is a
good approximation method but does not help its prediction accuracy. In all other
experiments the first place is held by either Capricorn or Cancer. As a general guideline,
when choosing between Capricorn and Cancer for value prediction, one should consider
that Cancer usually gives a superior performance, while Capricorn tends to be better
for exact guessing of values having a wider range.

Discussion. The synthetic experiments confirm that both Capricorn and Cancer are
able to recover matrices with max-times structure. The main practical difference between
them is that Capricorn is designed to handle the tropical (flipping) noise, while Cancer
is meant for the data that is perturbed with white (Gaussian) noise. While Capricorn
is clearly the best method when the data has only the flipping noise – and is capable of
tolerating very high noise levels – its results deteriorate when we apply Gaussian noise.
Hence, when the exact type of noise is not known a priori, it is advisable to try both
methods. It is also important to note that Cancer is actually a framework of algorithms
as it can optimize various objectives. In order to demonstrate that, we performed
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Fig. 12 Prediction rate on synthetic data with Gaussian noise. The x-axis represents the size
of the holdout set. The y-axis is the correct prediction rate in Figures 12(a) and 12(c), and
RMSE in Figures 12(b) and 12(d). The range is the interval that the values in input matrices
are restricted to. All results are averages over 10 random matrices and the width of the error
bars is twice the standard deviation.

experiments with Jensen–Shannon divergence as objective and obtained results that
are, while inferior to Cancer that optimizes the Frobenius error, still slightly better
than the rest of the algorithms. Overall we can conclude that SVD and the NMF-based
methods generally cannot recover the structure from subtropical data, that is, we cannot
use existing methods as a substitute to find the max-times structure neither for the
reconstruction nor for the prediction tasks.

5.3 Real-world experiments

The main purpose of the real-world experiments is to study to which extend Capricorn
and Cancer can find max-times structure from various real-world data sets. Having
established with the synthetic experiments that both algorithms are capable of finding
the structure when it is present, here we look at what kind of results they obtain in the
real-world data.

It is probably unrealistic to expect real-world data sets to have “pure” max-times
structure, as in the synthetic experiments. Rather, we expect SVD to be the best method
(in reconstruction error’s sense), and our algorithms to obtain reconstruction error
comparable to the NMF-based methods. We will also verify that the results from the
real-world data sets are intuitive.
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The datasets

Bas1LP represents a linear program.5 It is available from the University of Florida
Sparse Matrix Collection6 (Davis and Hu 2011).

Trec12 is a brute force disjoint product matrix in tree algebra on n nodes.7 It can
be obtained from the same repository as Bas1LP.

Worldclim contains weather records for various locations in Europe (full description
can be found in Section 1).

NPAS is a nerdiness personality test that uses different attributes to determine the
level of nerdiness of a person.8 It contains answers by 1418 respondents to a set of 36
questions that asked them to self-assess various statements about themselves on a scale
of 1 to 7. We preprocessed the input matrix by dividing each column by its standard
deviation and subtracting its mean. To make sure that the data is nonnegative, we
subtracted the smallest value of the obtained normalized matrix from every its element.

Eigenfaces is a subset of the Extended Yale Face collection of face images (Georghi-
ades et al 2000). It consists of 32-by-32 pixel images under different lighting conditions.
We used a preprocessed data by Xiaofei He et al.9 We selected a subset of pictures with
lighting from the left and then preprocessed the input matrix by first subtracting from
every column its smallest element and then dividing it by its standard deviation.

4News is a subset of the 20Newsgroups dataset,10 containing the usage of 800 words
over 400 posts for 4 newsgroups.11 Before running the algorithms we represented the
dataset as a TF-IDF matrix, and then scaled it by dividing each entry by the greatest
entry in the matrix.

HPI is a land registry house price index.12 Rows represent months, columns are
locations, and entries are residential property price indices. We preprocessed the data by
first dividing each column by its standard deviation and then subtracting its minimum,
so that each column has minimum 0.

Movielens is a collection of user ratings for a set of movies. The original dataset13

consists of 100 000 ratings from 1000 users on 1700 movies, with ratings ranging from
1 to 5. In order to be able to perform cross-validation on it, we had to preprocess
Movielens by removing users that rated fewer than 10 movies and movies that were
rated less than 5 times. After that we were left with 943 users, 1349 movies and 99 287
ratings.

The basic properties of these data sets are listed in Table 1.

5Submitted to the matrix repository by Csaba Meszaros.
6http://www.cise.ufl.edu/research/sparse/matrices/, accessed 18 July 2017
7Submitted by Nicolas Thiery.
8Tha dataset can be obtained on the online personality website http://personality-tes

ting.info/_rawdata/NPAS-data.zip, accessed 18 July 2017.
9http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html, accessed 18 July 2017

10http://qwone.com/~jason/20Newsgroups/, accessed 18 July 2017
11The authors are grateful to Ata Kabán for pre-processing the data, see Miettinen (2009).
12Available at https://data.gov.uk/dataset/land-registry-house-price-index-backg

round-tables/, accessed 18 July 2017
13Available at http://grouplens.org/datasets/movielens/100k/, accessed 18 July 2017

http://www.cise.ufl.edu/research/sparse/matrices/
http://personality-testing.info/_rawdata/NPAS-data.zip
http://personality-testing.info/_rawdata/NPAS-data.zip
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://qwone.com/~jason/20Newsgroups/
https://data.gov.uk/dataset/land-registry-house-price-index-background-tables/
https://data.gov.uk/dataset/land-registry-house-price-index-background-tables/
http://grouplens.org/datasets/movielens/100k/
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Table 1 Real world datasets properties.

Dataset Rows Columns Density

Bas1LP 9825 5411 1.1%
Trec12 2726 551 10.0%
Worldclim 2575 48 99.9%
NPAS 1418 36 99.6%
Eigenfaces 1024 222 97.0%
4News 400 800 3.5%
HPI 253 177 99.5%
Movielens 943 1349 7.8%

Table 2 Reconstruction error for various real-world datasets.

Worldclim NPAS Eigenfaces 4News HPI Movielens Trec12 Bas1LP
k = 10 10 40 20 15 10 25 25

Cancer 0.071 0.240 0.204 0.556 0.027 0.756 0.864 0.813
Capricorn 0.392 0.395 0.972 0.987 0.217 1.003 0.998 0.912
SNMF 0.046 0.225 0.178 0.546 0.023 0.745 0.841 0.749
ALS 0.087 0.227 0.313 0.538 0.074 0.749 0.828 0.733
ALSR 0.122 0.226 0.294 1.000 0.045 0.748 0.827 0.733
ALSR5 0.081 0.233 0.291 1.000 0.063 0.748 0.826 0.733
WNMF 0.034 0.221 0.169 0.545 0.021 0.741 0.824 0.733
SVD 0.025 0.209 0.140 0.533 0.015 0.728 0.802 0.722

Quantitative results: reconstruction error, sparsity, convergence, and runtime

The following experiments are meant to test Cancer and Capricorn, and how they
compare to other methods, such as SVD and NMF. Table 2 provides the relative
Frobenius reconstruction errors for various real-world data sets, as well as ranks used for
factorization.14 Since there is no ground truth for these datasets, the ranks are chosen
based mainly on the size of the data and our intuition on what the true rank should be.
SVD is, as expected, consistently the best method, followed by WNMF and SNMF. Cancer
generally lands in the middle of the pack of the NMF methods, which suggests that it is
capable of finding max-times structure that is comparable to what NMF-based methods
provide. Consequently, we can study the max-times structure found by Cancer, knowing
that it is (relatively) accurate. On the other hand, Capricorn has a high reconstruction
error. The discrepancy between Cancer’s and Capricorn’s results indicates that the
datasets used cannot be represented using “pure” subtropical structure. Rather, they
are either a mix of NMF and subtropical patterns or have relatively high levels of
continuous noise.

The sparsity of the factors for real-world data is presented in Table 3 (we do not
include the sparsities for SVD and WNMF as they were all 0). Here, Cancer often returns
the second-sparsest factors (behind only Capricorn), but with 4News and HPI, ALSR
and ALSR5 obtains sparser decompositions.

We also studied the convergence behavior of Cancer using some of the real-world
data sets. The results can be seen in Figure 13, where we plot the relative error with
respect to the iterations over the main for-loop in Cancer. As we can see, in both cases

14The values are different than those presented by Karaev and Miettinen (2016b) because
we used Frobenius error instead of L1 and counted all elements towards the error, not just
nonnegative ones.
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Table 3 Factor sparsity for various real-world datasets.

Worldclim NPAS Eigenfaces 4News HPI Movielens Trec12 Bas1LP
k = 10 10 40 20 15 10 25 25

Cancer 0.645 0.528 0.571 0.812 0.422 0.666 0.838 0.951
Capricorn 0.795 0.733 0.949 0.991 0.685 0.957 0.988 0.978
SNMF 0.383 0.330 0.403 0.499 0.226 0.543 0.758 0.738
ALS 0.226 0.120 0.434 0.513 0.331 0.420 0.573 0.634
ALSR 0.275 0.117 0.480 1.000 0.729 0.438 0.681 0.748
ALSR5 0.549 0.189 0.648 1.000 0.622 0.481 0.743 0.811

0 100 200 300 400
Iter

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
er

ro
r

(a) NPAS

0 200 400 600
Iter

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
er

ro
r

(b) HPI

Fig. 13 Convergence rate of Cancer for two real-world datasets. Each iteration is a single run
of UpdateBlock, that is if a factorization has rank k, then one full cycle would correspond to k
iterations.

Table 4 The average runtime in seconds and standard deviation of the algorithms for various
real-world datasets. The results were calculated based on 5 restarts of each method.

Worldclim NPAS 4News HPI

Cancer 20116.000± 15.14 6023.000± 25.00 25520.000± 60.44 924.000± 8.00
Capricorn 205.870± 1.39 87.000± 1.30 165.960± 7.12 41.000± 0.72
SNMF 115.100± 0.53 72.000± 1.50 195.570± 1.76 64.000± 0.51
ALS 0.194± 0.08 0.374± 0.14 3.649± 1.45 0.156± 0.12
ALSR 0.187± 0.02 0.280± 0.04 4.684± 0.74 0.309± 0.13
WNMF 2.240± 0.20 1.201± 0.11 5.164± 0.87 1.288± 0.10
SVD 0.598± 0.04 0.155± 0.04 0.142± 0.04 0.027± 0.01

Cancer has obtained a good reconstruction error already after few full cycles, with the
remaining runs only providing minor improvements. We can deduce that Cancer quickly
reaches an acceptable solution.

To give some idea about the speed performance of the algorithms, we ran each
of the competing methods on some of the real-world datasets. The runtime of each
algorithm (in seconds) is shown in Table 4, where we report its mean value and the
standard deviation averaged over 5 runs. All tests were performed on a Linux machine
with Intel Xeon E5530 CPU with 16 2.40GHz cores, although Cancer and Capricorn
were only utilizing one core. As we can see, the simplest methods, such as SVD and ALS,
are also the fastest, while more involved algorithms, such as Cancer or SNMF, take much
longer to run. It is worth noting that Cancer and Capricorn are written in Matlab,
and their performance can be potentially significantly improved by implementing time
critical parts in C or another low-level programming language.
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Prediction

Here we investigate how well both Capricorn and Cancer can predict missing values in
the data. We used three real-world datasets, a user-movie rating matrix Movielens, a
brute force disjoint product matrix in tree algebra Trec12 and Bas1LP, that represents
a linear program. All these matrices are integer valued, and hence we will also round
the results of all methods to the nearest integer. We compare the results of our methods
against WNMF and SVD. The choice of WNMF is motivated by its ability to ignore missing
elements in the input data and its generally good performance on the previous tests.
There is only one caveat: WNMF sometimes produces very high spikes for some elements
in the matrix. They do not cause too much problem with prediction, but they seriously
deteriorate the results of WNMF with respect to various distance measures. For this
reason we always ignore such elements. While this comparison method is obviously not
completely fair towards other methods, it can serve as a rough upper bound for what
performance is possible with NMF-based algorithms. Comparing against other methods
is obviously not fair as they are not designed to deal with missing values, but we will
still present the results of SVD for completeness.

On Movielens we perform standard cross-validation tests, where a random selection
of elements is chosen as a holdout set and removed from the data. The data has 943
users, each having rated from 19 to 648 movies. A holdout set is chosen by sampling
uniformly at random 5 ratings from each user. We run the algorithms, while treating the
elements from the holdout set as missing values, and then compare the reconstructed
matrices to the original data. This procedure is repeated 10 times.

To get a more complete view on how good the predictions are, we report various
measures of quality: Frobenius error, root mean square error (RMSE), reciprocal rank,
Spearman’s ρ, mean absolute error (MAE), Jensen–Shannon divergence (JS), optimistic
reciprocal rank, Kendall’s τ , and prediction accuracy. The prediction accuracy allows us
to see if the methods are capable of recovering the missing user ratings. The remaining
tests can be divided into two categories. The first one, which comprises Frobenius error,
root mean square error, mean absolute error, and Jensen–Shannon divergence, aims
to quantify the distance between the original data and the reconstructed matrix. The
second group of tests finds the correlation between rankings of movies for each user.
It includes Spearman’s ρ, Kendall’s τ , reciprocal rank, and optimistic reciprocal rank.
All these measures are well known, with perhaps only the reciprocal rank requiring
some explanation. Let us first denote by U the set of all users. In the following, for
each user u ∈ U we only consider the set of movies M(u) that this user has rated
that belong to the holdout set. The ratings by user u induce a natural ranking on
M(u). On the other hand, the algorithms produce approximations r′(u,m) to the true
ratings r(u,m), which also induce a corresponding ranking of the movies. The reciprocal
rank is a convenient way of comparing the rankings obtained by the algorithms to
the original one. For any user u ∈ U , denote by H(u) a set of movies that this user
ranked the highest (that is H(u) = {m ∈ M(u) : r(u,m) = maxm′∈M(u) r(u,m

′)}).
The reciprocal rank for user u is now defined as

RR(u) =
1

min
m∈H

R(u,m)
, (23)

where R(u,m) is the rank of the movie m within M(u) according to the rating approxi-
mations given by the algorithm in question. Now the mean reciprocal rank is defined as
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the average of the reciprocal ranks for each individual user MRR = 1
|U |
∑

u∈U RR(u).
When computing the ranks R(u,m), all tied elements receive the same rank, which is
computed by averaging. That means that if, say, movies m1 and m2 have tied ranks of
2 and 3, then they both receive the rank of 2.5. An alternative way is to always assign
the smallest possible rank. In the above example both m1 and m2 will receive rank 2.
When ranks R(u,m) are computed like this, the equation (23) defines the optimistic
reciprocal rank.

For each test, Table 5 shows the mean and the standard deviation of the results of
each algorithm. In addition we report the p-value based on the Wilcoxon signed-rank
test. It shows if an advantage of one method over another is statistically significant.
We say that a method A is significantly better than method B if the p-value is < 0.05.
It is unreasonable to report the p-value for every method pair – instead we only show
p-values involving the best method. For each method, the value given next to it is the
p-value for this method and the best method.

Cancer is significantly better for the Frobenius error, root mean square error, mean
absolute error, Jensen–Shannon divergence, and accuracy. For the remaining tests the
results are less clear, with Cancer winning on the reciprocal rank, Capricorn taking the
optimistic reciprocal rank, and WNMF being better on Spearman’s ρ and Kendall’s τ tests.
It should be noted though, that the victories of WNMF on Spearman’s ρ and Kendall’s
τ tests, as well as Cancer’s on the reciprocal rank, are not statistically significant
as the p-values are quite high. In summary, our experiments show that Cancer is
significantly better in tests that measure the direct distance between the original and
the reconstructed matrices, as well as the prediction accuracy, whereas for the ranking
experiments it is difficult to give any of the algorithms an edge.

For Trec12 and Bas1LP we also perform cross-validation, where on each fold we take
10% of the nonzero values in the data as a holdout set and then try to predict them.
In total there are 5 folds. Unlike Movielens, Trec12 and Bas1LP datasets are not so
readily interpretable as they were generated from abstract mathematical data structures.
Ranking, in particular, makes no sense, and hence we do not perform any ranking
associated experiments. The results for Trec12 are shown in Table 6 and for Bas1LP in
Table 7. It is apparent that on Trec12 WNMF performs significantly better than any other
method, being better in all metrics. As discussed earlier, however, that should be taken
with a grain of salt as we ignore the elements where WNMF produced unreasonably large
values. Without this preprocessing its results are much worse than those of Cancer. This
presents evidence, although not conclusive, that the Trec12 dataset has less subtropical
structure than Movielens. The p-value is 0.004 in for all metrics, which is the result
of a particular number of folds (5) that we used. The fact that we have this number
everywhere in the table simply indicates that WNMF was better than any other method
on every fold with respect to all measures. With Bas1LP the roles reverse, and this time
Cancer is clearly the best method, winning according to all metrics and on all folds,
just as WNMF did on Trec12.

Interpretability of the results

The crux of using max-times factorizations instead of standard (nonnegative) ones is
that the factors (are supposed to) exhibit the “winner-takes-it-all” structure instead
of the “parts-of-whole” structure. To demonstrate this, we analysed results in four
different datasets: Eigenfaces, NPAS, Worldclim, and Mammals. The Mammals dataset
is explained below.
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Table 5 Comparison between the predictive power of different methods on the Movielens data.
The arrow after the value indicates whether higher or lower values are preferable. The p-values
are computed using the Wilcoxon signed-rank test.

Frobenius RMSE

value(↓) p-value value(↓) p-value

Cancer 0.2876± 0.003 1.0802± 0.011
Capricorn 0.6993± 0.024 0.0001 2.6267± 0.085 0.0001
WNMF 0.2989± 0.003 0.0001 1.1227± 0.012 0.0001
SVD 0.7336± 0.002 0.0001 2.7558± 0.014 0.0001

Recip. rank Spearman’s ρ

value(↑) p-value value(↑) p-value

Cancer 0.7451± 0.010 0.3071± 0.015 0.5749
Capricorn 0.5601± 0.017 0.0001 0.2354± 0.017 0.0001
WNMF 0.7395± 0.004 0.0521 0.3084± 0.012
SVD 0.7217± 0.008 0.0004 0.2445± 0.013 0.0001

MAE JS

value(↓) p-value value(↓) p-value

Cancer 0.8203± 0.008 0.0201± 0.000
Capricorn 2.0518± 0.106 0.0001 0.2826± 0.026 0.0001
WNMF 0.8555± 0.008 0.0001 0.0209± 0.000 0.0057
SVD 2.4756± 0.014 0.0001 0.1153± 0.001 0.0001

Recip. rank opt. Kendall’s τ

value(↑) p-value value(↑) p-value

Cancer 0.7451± 0.010 0.0001 0.2659± 0.013 0.4251
Capricorn 0.8547± 0.010 0.2127± 0.016 0.0001
WNMF 0.7395± 0.004 0.0001 0.2679± 0.010
SVD 0.7217± 0.008 0.0001 0.2111± 0.012 0.0001

Accuracy

value(↑) p-value

Cancer 0.3968± 0.008
Capricorn 0.2053± 0.019 0.0001
WNMF 0.3828± 0.006 0.0011
SVD 0.0588± 0.003 0.0001

We plotted the left factor matrices for the Eigenfaces data for Cancer and ALS in
Figure 14. At first, it might look like ALS provides more interpretable results, as most
factors are easily identifiable as faces. This, however, is not a very interesting result: we
already knew that the data has faces, and many factors in the ALS’s result are simply
some kind of “prototypical” faces. The results of Cancer are harder to identify on the
first sight. Upon closer inspection, though, one can see that they identify areas that are
lighter in the different images, that is, have higher grayscale values. These factors tell
us the variances in the lighting in the different photos, and can reveal information we
did not know a priori. In addition almost every one of Cancer’s factors contains one or
two main feature of the face (such as nose, left eye, right cheek, etc.). In other words,
while NMF’s patterns are for the most part close to fully formed faces, Cancer finds
independent fragments that indicate the direction of the lighting and (or) contain some
of the main features of a face.
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Table 6 Comparison between the predictive power of different methods on the Trec12 data.
The arrow after the value indicates whether higher or lower values are preferable. The p-values
are computed using the Wilcoxon signed-rank test.

Frobenius RMSE

value(↓) p-value value(↓) p-value

Cancer 0.4824± 0.016 0.0040 2.3124± 0.085 0.0040
Capricorn 0.7827± 0.023 0.0040 3.7521± 0.131 0.0040
WNMF 0.4374± 0.006 2.0925± 0.041
SVD 0.6005± 0.003 0.0040 2.8784± 0.032 0.0040

MAE JS

value(↓) p-value value(↓) p-value

Cancer 1.5852± 0.050 0.0040 0.0675± 0.005 0.0040
Capricorn 2.3871± 0.099 0.0040 0.2929± 0.028 0.0040
WNMF 1.2138± 0.011 0.0367± 0.000
SVD 1.8413± 0.013 0.0040 0.0786± 0.001 0.0040

Accuracy

value(↑) p-value

Cancer 0.2315± 0.010 0.0040
Capricorn 0.1918± 0.019 0.0040
WNMF 0.3996± 0.004
SVD 0.2061± 0.002 0.0040

Table 7 Comparison between the predictive power of different methods on the Bas1LP data.
The arrow after the value indicates whether higher or lower values are preferable. The p-values
are computed using the Wilcoxon signed-rank test.

Frobenius RMSE

value(↓) p-value value(↓) p-value

Cancer 0.3690± 0.018 1.1462± 0.065
Capricorn 0.5741± 0.054 0.0040 1.7822± 0.161 0.0040
WNMF 0.4113± 0.014 0.0040 1.2748± 0.038 0.0040
SVD 0.5003± 0.002 0.0040 1.5534± 0.019 0.0040

MAE JS

value(↓) p-value value(↓) p-value

Cancer 0.3286± 0.014 0.0228± 0.001
Capricorn 0.6712± 0.094 0.0040 0.1208± 0.037 0.0040
WNMF 0.3932± 0.006 0.0040 0.0268± 0.000 0.0040
SVD 0.9391± 0.006 0.0040 0.0919± 0.000 0.0040

Accuracy

value(↑) p-value

Cancer 0.8841± 0.002
Capricorn 0.7111± 0.050 0.0040
WNMF 0.8562± 0.001 0.0040
SVD 0.2837± 0.002 0.0040



38 Sanjar Karaev, Pauli Miettinen

(a) Cancer

(b) ALS

Fig. 14 Cancer finds the dominant patterns from the Eigenfaces data. Pictured are the left
factor matrices for the Eigenfaces data.

Further, as seen in Table 2, Cancer obtains a better reconstruction error than ALS
with this data, confirming that these factors are indeed useful to recreate the data.

In order to interpret NPAS we first observe that each column represents a single
personality attribute. Denote by A the obtained approximation of the original matrix.
For each rank-1 factor X and each column Ai we define the score σ(i) as the number
of elements in Ai that are determined by X. By sorting attributes in descending order
of σ(i) we obtain relative rankings of the attributes for a given factor. The results are
shown in Table 8. The first factor clearly shows introverted tendencies, while the second
one can be summarized as having interests in fiction and games.

Figure 15 shows all of the factors for the Worldclim data, as obtained by Cancer and
WNMF (the best NMF-method in Table 2). Figures 15(a) and 15(b) show left-hand sides
of factors found by Cancer and WNMF, respectively, plotted on the map. Darker colours
indicate higher values, that can be interpreted as “more important”. The right-hand
side factors are presented in Figures 15(c) and 15(d), respectively. Here, each row
corresponds to a factor, and each column to a single observation column from the
original data (that is columns 1–12 represent average low temperatures for each month,
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Table 8 Top three attributes for the first two factors of NPAS.

Factor 1 Factor 2

I am more comfortable with my hobbies I have played a lot of video games
than I am with other people

I gravitate towards introspection I collect books
I sometimes prefer fictional people to real ones I care about super heroes

columns 13–24 average high temperatures, columns 25–36 daily means, and columns
37–48 average monthly precipitation). Again, higher values can be seen as having more
importance. Recall that a pattern is formed by taking an outer product of a single
left-hand factor and the corresponding right-hand factor. It is easy to see that largest
(and thus the most important) values in a pattern are those that are products of high
values in both right-hand side and left-hand side factors.

The WNMF factors have less high values (dark colours – all factors are normalized to
the unit interval). For Cancer, there are more large values in each factor. This highlights
the difference between the subtropical and the normal algebra: in normal algebra, if
you sum two large values, the result is even larger, whereas in subtropical algebra, the
result is no larger than the largest of the summands. In decompositions, this means that
WNMF cannot have overlapping high values in its factors; instead it has to split its factors
to mostly non-overlapping parts. Cancer, on the other hand, can have overlap, and
hence its factors can share some phenomena. For instance, the seventh factor of Cancer
clearly indicates areas of high precipitation (cf. Figure 1). The same phenomenon is split
into many factors by WNMF (at least third, sixth, and seventh factor), mostly explaining
areas with higher precipitation at different parts of the year. While many elements
in the right-hand side factors of Cancer are nonzero, that does not mean that all of
them are of equal importance. Because some of them are dominated by larger features,
they do not influence the final outcome. Generally, since larger values are more likely
to make a contribution than smaller ones, they should be considered more important
when interpreting the data.

The possibility of the factors to overlap is not always desired, but in some applications
it can be seen to be almost necessary. Consider, for example, mammal species’ co-location
data. This dataset, called Mammals, is a matrix whose rows and columns correspond to
locations in Europe, and for every column-row pair, the corresponding entry represents
the degree to which the sets of mammals inhabiting them overlap. This dataset15 was
obtained from the original binary location-species matrix (see Mitchell-Jones et al 1999)
by multiplying it with its transpose and then normalizing by dividing each column by
its maximal element. The obtained matrix has 2670 rows and columns and density 91%.
Due to its special nature, we use it only in this experiment to provide intuition about
the subtropical factorizations.

The factors obtained by Cancer with the Mammals data are depicted in Figure 16,
where we can see that many of these factors cover the central parts of the European
Plain, extending a bit south to cover most of Germany. There are, naturally, many
mammal species that inhabit the whole European Plain, and the east–west change is
gradual. This gradual change is easier to model in subtropical algebra, as we do not
have to worry about the sums of the factors getting too large. Factors 1–6 model various

15Available for research purposes from the Societas Europaea Mammalogica at http://www.
european-mammals.org

http://www.european-mammals.org
http://www.european-mammals.org
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(a) Cancer left-hand factors.

(b) WNMF left-hand factors.

(c) Cancer right-hand factors. (d) WNMF right-hand factors.

Fig. 15 Cancer factors in the Worldclim data. The factor vectors are normalized to take values
from the unit interval and darker shades indicate higher values.

aspects of the east–west change, emphasizing either the south–west, central, or eastern
parts of the plain. Similarly, the ninth factor explains mammal species found in the
UK and southern Scandinavia, while the tenth factor covers species found in Scotland,
Scandinavia, and Baltic countries, indicating that these areas have roughly the same
biome. If we compare these results to those of WNMF (Figure 17), then it becomes evident
that the latter tries to find relatively disjoint factors and avoids the factor overlap
whenever possible. This is because in NMF any feature that is nonzero at a given data
point is always “active” in a sense that it contributes to the final value. That being said,
WNMF does find some interesting patterns, such as rather distinct factors representing
France and Scandinavian peninsula.
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Fig. 16 Values in the factors by Cancer in the Mammals data plotted on a map. Every factor
is normalized to take values from the unit interval and darker shades indicate higher values.

Fig. 17 Values in the factors by WNMF in the Mammals data plotted on a map. Every factor is
normalized to take values from the unit interval and darker shades indicate higher values.

6 Related Work

Here we present earlier research that is related to the subtropical matrix factorization.
We start by discussing classic methods, such as SVD and NMF, that have long been used
for various data analysis tasks, and then continue with approaches that use idempotent
structures. Since the tropical algebra is very closely related to the subtropical algebra,
and since there has been a lot of research on it, we dedicate the last subsection to
discuss it in more detail.

6.1 Matrix factorization in data analysis

Matrix factorization methods play a crucial role in data analysis as they help to
find low-dimensional representations of the data and uncover the underlying latent
structure. A classic example of a real-valued matrix factorization is the singular value
decomposition (SVD) (see e.g. Golub and Van Loan 2012), which is very well known
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and finds extensive applications in various disciplines, such as signal processing and
natural language processing. The SVD of a real n-by-m matrix A is a factorization of
the form A = UΣV T , where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices, and
Σ ∈ Rn×m is a rectangular diagonal matrix with nonnegative entries. An important
property of SVD is that it provides the best low-rank approximation of a given matrix
with respect to the Frobenius norm (Golub and Van Loan 2012), giving rise to the so
called truncated SVD. This property is frequently used to separate important parts of
data from the noise. For example, it was used by Jha and Yadava (2011) to remove
the noise from sensor data in electronic nose systems. Another prominent usage of
the truncated SVD is in dimensionality reduction (see for example Sarwar et al 2000;
Deerwester et al 1990).

Despite SVD being so ubiquitous, there are some restrictions to its usage in data
mining due to possible presence of negative elements in the factors. In many applications
negative values are hard to interpret, and thus other methods have to be used. Nonnega-
tive matrix factorization (NMF) is a way to tackle this problem. For a given nonnegative
real matrix A, the NMF problem is to find a decomposition of A into two matrices
A ≈ BC such that B and C are also nonnegative. Its applications are extensive and
include text mining (Pauca et al 2004), document clustering (Xu et al 2003), pattern
discovery (Brunet et al 2004), and many other. This area drew considerable attention
after a publication by Lee and Seung (1999), where they provided an efficient algorithm
for solving the NMF problem. It is worth mentioning that even though the paper by
Lee and Seung is perhaps the most famous in NMF literature, it was not the first one
to consider this problem. Earlier works include Paatero and Tapper (1994) (see also
Paatero 1997), Paatero (1999), and Cohen and Rothblum (1993). Berry et al (2007)
provide an overview of NMF algorithms and their applications. There exist various
flavours of NMF that impose different constraints on the factors; for example Hoyer
(2004) used sparsity constraints. Though both NMF and SVD perform approximations
of a fixed rank, there are also other ways to enforce compact representation of data.
For example, in maximum-margin matrix factorization constraints are imposed on the
norms of factors. This approach was exploited by Srebro et al (2004), who showed it
to be a good method for predicting unobserved values in a matrix. The authors also
indicate that posing constraints on the factor norms, rather than on the rank, yields a
convex optimization problem, which is easier to solve.

6.2 Idempotent semirings

The concept of the subtropical algebra is relatively new, and as far as we know, its
applications in data mining are not yet well studied. Indeed, its only usage for data
analysis that we are aware of was by Weston et al (2013), where it was used as a part of
a model for collaborative filtering. The authors modeled users as a set of vectors, where
each vector represents a single aspect about the user (e.g. a particular area of interest).
The ratings are then reconstructed by selecting the highest scoring prediction using the
max operator. Since their model uses max as well as the standard plus operation, it
stands on the border between the standard and the subtropical worlds.

Boolean algebra, despite being limited to the binary set {0, 1}, is related to the
subtropical algebra by virtue of having the same operations, and is thus a restriction
of the latter to {0, 1}. By the same token, when both factor matrices are binary, their
subtropical product coincides with the Boolean product, and hence the Boolean matrix
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factorization can be seen as a degenerate case of the subtropical matrix factorization
problem. The dioid properties of the Boolean algebra can be checked trivially. The
motivation for the Boolean matrix factorization comes from the fact that in many
applications data is naturally represented as a binary matrix (e.g. transaction databases),
which makes it reasonable to seek decompositions that preserve the binary character of
the data. The conceptual and algorithmic analysis of the problem was done by Miettinen
(2009), with the focus mainly on the data mining perspective of the problem. For a
linear algebra perspective see Kim (1982), where the emphasis is put on the existence of
exact decompositions. A number of algorithms have been proposed for solving the BMF
problem (Miettinen et al 2008; Lu et al 2008; Lucchese et al 2014; Karaev et al 2015).

6.3 Tropical algebra

Another close cousin of the max-times algebra is the max-plus, or so called tropical
algebra, which uses plus in place of multiplication. It is also a dioid due to the idempotent
nature of the max operation. As was mentioned earlier, the two algebras are isomorphic,
and hence many of the properties are identical (see Sections 2 and 3 for more details).

Despite the theory of the tropical algebra being relatively young, it has been
thoroughly studied in recent years. The reason for this is that it finds extensive
applications in various areas of mathematics and other disciplines. An example of such
a field is the discrete event systems (DES) (Cassandras and Lafortune 2008), where the
tropical algebra is ubiquitously used for modeling (see e.g. Baccelli et al 1992; Cohen
et al 1999). Other mathematical disciplines where the tropical algebra plays a crucial
role are optimal control (Gaubert 1997), asymptotic analysis (Dembo and Zeitouni
2010; Maslov 1992; Akian 1999), and decidability (Simon 1978, 1994).

Research on tropical matrix factorization is of interest to us because of the above
mentioned isomorphism between the two algebras. However, as was explained in Section
3, the approximate matrix factorizations are not directly transferable as the errors can
differ dramatically. It should be mentioned that in the general case the problem of the
tropical matrix factorization is NP-hard (see e.g. Shitov 2014). De Schutter and De Moor
(2002) demonstrated that if the max-plus algebra is extended in such a way that there
is an additive inverse for each element, then it is possible to solve many of the standard
matrix decomposition problems. Among other results the authors obtained max-plus
analogues of QR and SVD. They also claimed that the techniques they propose can
be readily extended to other types of classic factorizations (e.g. Hessenberg and LU
decomposition).

The problem of solving tropical linear systems of equations arises naturally in
numerous applications, and is also closely related to matrix factorization. In order to
illustrate this connection, assume that we are given a tropical matrix A ∈ Rn×m

and
one of the factors B ∈ Rn×k

. Then the other factor C ∈ Rk×m
can be found by solving

the following set of problems

Cj = arg min
c∈Rk

‖B � c−Aj‖F , j = 1, . . . ,m . (24)

Each problem in (24) requires “approximately” solving a system of tropical linear
equations. The minus operation in (24) does not belong to the tropical semiring, so the
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approximation here should be understood in terms of minimizing the classical distance.
The general form of tropical linear equations

Ax⊕ b = Cx⊕d (25)

is not always solvable (see e.g. Gaubert 1997); however various techniques exist for
checking the existence of the solution for particular cases of (25).

For equations of the form Ax = b the feasibility can be established for example
through the so called matrix residuation. There is a general result that for an n-by-
m matrix A over a complete idempotent semiring, the existence of the solution can
be checked in O(nm) time (see Gaubert 1997). Although the tropical algebra is not
complete, there is an efficient way of finding if the solution exists (Cuninghame-Green
1979; Zimmermann 2011). It was shown by Butkovič (2003) that this type of tropical
equations is equivalent to the set cover problem, which is known to be NP-hard. This
directly affects the max-times algebra through the above-mentioned isomorphism and
makes the problem of precisely solving max-times linear systems of the form Ax = b

infeasible for high dimensions.
Homogeneous equations Ax = Bx can be solved using the elimination method,

which is based on the fact that the set of solutions of a homogeneous system is a finitely
generated semimodule (Butkovič and Hegedüs 1984) (independently rediscovered by
Gaubert 1992). If only a single solution is required, then according to Gaubert (1997),
a method by Walkup and Borriello (1998) is usually the fastest in practice.

Now let A be a tropical square matrix of size n × n. For complete idempotent
semirings a solution to the equation x = Ax⊕ b is given by x = A∗b (see e.g. Salomaa
and Soittola 2012), where the operator A∗ is defined as

A∗ = ⊕∞k=1A
k .

Since the tropical semiring is not complete (it is missing the ∞ element), A∗ can not
always be computed. However, when there are no positive weight circuits in the graph
defined by A, then we have A∗ = A0⊕ . . .⊕An−1, and all entries of A∗ belong to the
tropical semiring (Baccelli et al 1992). Computing the operator A∗ takes time O(n3)
(see e.g. Gondran and Minoux 1984a; Gaubert 1997).

Another important direction of research is the eigenvalue problem Ax = λx.
Tropical analogues of the Perron–Frobenius theorem (see e.g. Vorobyev 1967; Maslov
1992), and Collatz–Wielandt formula (Bapat et al 1995; Gaubert 1992) were developed.
For a general overview of the results in the (max,+) spectral theory, see for example
Gaubert (1997).

Tropical algebra and tropical geometry were used by Gärtner and Jaggi (2008) to
construct a tropical analogue of an SVM. Unlike in the classical case, tropical SVMs
are localized, in the sense that the kernel at any given point is not influenced by all
the support vectors. Their work also utilizes the fact that tropical hyperplanes are
somewhat more complex than their counterparts in the classical geometry, which makes
it possible to do multiple category classification with a single hyperplane.

7 Conclusions

Subtropical low-rank factorizations are a novel approach for finding latent structure from
nonnegative data. The factorizations can be interpreted using the winner-takes-it-all
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interpretation: the value of the element in the final reconstruction depends only on
the largest of values in the corresponding elements of the rank-1 components (compare
that to NMF, where the value in the reconstruction is the sum of the corresponding
elements). That the factorizations are different does not necessarily mean that they are
better in terms of reconstruction error, although they can yield lower reconstruction
error than even SVD. It does mean, however, that they find different structure from
the data. This is an important advantage, as it allows the data analyst to use both the
classical factorizations and the subtropical factorizations to get a broader understanding
of the kinds of patterns that are present in the data.

Working in the subtropical algebra is harder than in the normal algebra, though.
The various definitions for the rank, for example, do not agree, and computing many of
them – including the subtropical Schein rank, which is arguably the most useful one for
data analysis – is computationally hard. That said, our proposed algorithms, Capricorn
and Cancer, can find the subtropical structure when it is present in the data. Not every
data has subtropical structure, though, and due to the complexity of finding the optimal
subtropical factorization we cannot distinguish between the cases where our algorithms
fail to find the latent subtropical structure, and where it does not exist. Based on our
experiments with synthetic data, our hypothesis is that the failure of finding a good
factorization more probably indicates the lack of the subtropical structure rather than
the algorithms’ failure. Naturally, more experiments using data with known subtropical
structure should improve our confidence of the correctness of the hypothesis.

The presented algorithms are heuristics. Developing algorithms that achieve better
reconstruction error is naturally an important direction of future work. In our Equator
framework, this hinges on the task of finding the rank-1 components. In addition, the
scalability of the algorithms could be improved. A potential direction could be to take
into account the sparsity of the factor matrices in dominated decompositions. This
could allow one to concentrate only on the non-zero entries in the factor matrices.

The connection between Boolean and (sub-)tropical factorizations raises potential
directions for future work. The continuous framework could allow for easier optimization
in the Boolean algebra. Also, the connection allows us to model combinatorial structures
(e.g. cliques in a graph) using subtropical matrices. This could allow for novel approaches
on finding such structures using continuous subtropical factorizations.
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