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A Motivating Problem

A dialectologist has some dialectal information in a matrix
A = (aij)

rows correspond to dialectal features

columns correspond to areas (e.g., municipalities)

aij = 1 if feature is present in the dialect spoken in the area.

Dialectologist wants to solve the following two problems:
1 What are the k main characteristic features of dialects?
2 What are the k characteristic areas for dialects?

To make more studies on few selected areas.

Some type of matrix decomposition is sought.
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First Idea: NMF

Dialectologist don’t want to see negative values in the
decomposition.

“Dialect spoken in area A contains 1.2 of feature X and −0.2
of feature Y” vs. “Dialect spoken in area A contains 0.7 of
feature Z and 0.3 of feature V .”

Negative values can yield negative features

She considers Nonnegative Matrix Factorization.
A is represented as A ≈WH where W and H are
nonnegative and their inner dimension is k.

But the columns of W and rows of H are just some nonnegative
vectors

⇒ They don’t give the Dialectologist her characteristic areas and
features.
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Second Idea: CX and CUR Decompositions

Dialectologist could use Column (CX) and Column-Row (CUR)
decompositions.

CX Matrix A is represented as A ≈ CX with C

containing k columns of A (while X is arbitrary).

CUR Matrix A is represented as A ≈ CUR with C as
above and R containing r rows of A (while U is
arbitrary).

Columns of C and rows of R now give the desired characteristic
areas and features.
But now X and U can have negative values.
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Solution: Nonnegative CX and CUR Decompositions

Dialectologist’s solution is to force also
X and U be nonnegative.
Thus

Characteristic areas are given by
columns of C.

Characteristic features are given by
rows of R (or, by columns of C

when CX decomposition is done to
AT ).

Other features and areas are
represented using only
nonnegative linear combinations.
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The Nonnegative CX Decomposition

Problem (Nonnegative CX Decomposition, NNCX)

Given a matrix A ∈ Rm×n
+ and an integer k, find an m× k matrix

C of k columns of A and a matrix X ∈ Rk×n
+ minimizing

‖A − CX‖F.

Example:

A =

0.6 0.9 0.6 0.4 0.7
1.0 0.7 0.9 1.0 0.9
0.6 0.5 0.2 0.4 1.0


C =

0.6 0.9 0.6
1.0 0.7 0.9
0.6 0.5 0.2

X =

1.0 0.0 0.0 0.9 1.7
0.0 1.0 0.0 0.0 0.5
0.0 0.0 1.0 0.5 0.0
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The Nonnegative CUR Decomposition

Problem (Nonnegative CUR Decomposition, NNCUR)

Given a matrix A ∈ Rm×n
+ and integers k and r, find an m× k

matrix C of k columns of A, an r×n matrix R of r rows of A, and a
matrix U ∈ Rk×r

+ minimizing ‖A − CUR‖F.

Example:

A =

0.6 0.9 0.6 0.4 0.7
1.0 0.7 0.9 1.0 0.9
0.6 0.5 0.2 0.4 1.0


C =

0.6 0.9 0.6
1.0 0.7 0.9
0.6 0.5 0.2

U =

0.0 1.3
2.2 0.0
0.0 0.7

R =

(
0.6 0.9 0.6 0.4 0.7
1.0 0.7 0.9 1.0 0.9

)
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NNCX as a Convex Cone

Columns of A represent
points in space.0.6 0.9 0.6 0.4 0.7

1.0 0.7 0.9 1.0 0.9
0.6 0.5 0.2 0.4 1.0
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NNCX as a Convex Cone

C selects some of these
points.0.6 0.9 0.6 0.4 0.7

1.0 0.7 0.9 1.0 0.9
0.6 0.5 0.2 0.4 1.0
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NNCX as a Convex Cone

Points in C generate
some convex cone C.

v ∈ C if there is x ∈ Rk
+

s.t. v = Cx.
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NNCX as a Convex Cone

‖A − CX‖2
F equals to the

sum of squared shortest
distances from A’s
columns to cone’s points.∥∥∥∥∥∥
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The Two Subproblems of [NN]CX

Finding matrix C (aka Column Subset Selection problem)

more combinatorial on its nature

nonnegativity constraint, in general, does not have any effects

computational complexity is unknown (assumed to be
NP-hard)

Finding matrix X when some matrix C is given

constrained (in NNCX) least squares fitting problem
well-known methods to solve the problem in polynomial time

for CX one can use Moore–Penrose pseudo-inverse for
X = C†A

for NNCX the problem is a convex quadratic program (solved
using, e.g., quasi-Newtonian methods).
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The Local Algorithm for NNCX

Assume we can find X when C is given. Local performs a
standard greedy local search to select C.

Local
1 initialize C randomly and compute X

2 while reconstruction error decreases
1 select c, a column of C, and a, a column of A not in C such

that if c is replaced with a the reconstruction error decreases
most

2 replace c with a

3 compute X and return C and X

N.B. We need to solve X in step 2.1.
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The ALS Algorithm

The ALS algorithm uses the alternating least squares method
often employed in NMF algorithms.

ALS
1 initialize C̃ randomly
2 while reconstruction error decreases

1 find nonnegative X to minimize ‖A − C̃X‖F
2 find nonnegative C̃ to minimize ‖A − C̃X‖F

3 match columns of C̃ to their nearest columns in A

4 let C be those columns, compute X and return C and X

C̃ does not contain A’s columns.

Matching can be done in polynomial time.
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How to Use Columns: Convex Quadratic Programming

Given C, we can find nonnegative X minimizing ‖A − CX‖F in
polynomial time

convex quadratic programming

quasi-Newton methods (L-BFGS)

also convex optimization methods are possible

But these methods can take quite some time.

Local needs to solve X k(n − k) times for a single local
swap.

When final C is selected, they can be used as a
post-processing step.
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How to Use Columns: Projection Method

We employ a simple projection method:
1 let X = C†A (Moore–Penrose pseudo-inverse)
2 for xij < 0 let xij = 0

This method is fast in practice and is often used in NMF algorithms.
However, no guarantees on its performance can be given.

In experiments, we used only this method for a fair comparison.
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Algorithms for NNCUR Decomposition

Let Alg be an algorithm for NNCX.
Algorithm for NNCUR:

1 C = Alg(A)

2 R = Alg(AT )

3 find nonnegative U s.t. ‖A − CUR‖F is minimized

For 3 we can use U = C†AR† and use the projection method.
Same method is used also for standard CUR.
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Algorithms Used

Local
ALS
844 by Berry, Pulatova, and Stewart (ACM Trans. Math.
Softw. 2005)
DMM by Drineas, Mahoney, and Muthukrishnan (ESA,
APPROX, and arXiv 2006–07)

based on sampling, approximates SVD within 1 + ε w.h.p., but
needs lots of columns in C.

K-means, which selects C using k-means
NMF

theoretical lower bound for NNCX and NNCUR
SVD

lower bound for all methods
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Synthetic Data

To Find Optimal X or Not

We used convex optimization
(CVX) to solve optimal X.

SVD’s distance to optimal
CX decomposition (OPT
CVX)

ALS is optimal even
without CVX (ALS, ALS
CVX, and OPT CVX
coincide everywhere)

Local benefits
somewhat from convex
optimization
post-processing
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Synthetic Data

Noise and Decomposition Size
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SVD).
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Real Data

CUR and NNCUR Decompositions of the Newsgroup
Data

Newsgroup data with CUR
and NNCUR decompositions.
Local and ALS are the two
best methods.
Only very small increase in
reconstruction error when
nonnegativity is required

∴ data has latent NNCUR
structure.

DMM is not included due to its
bad performance.
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Real Data

The Dialect Data

Dialect data with NNCUR
decomposition using ALS.

Symbols show the spread
of the features (rows)
selected.

Solid dots mark the
representative
municipalities (columns)
selected.

Spread of features
coincides well with current
understanding of
Finland’s dialects.
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Real Data

How Many Columns Are Needed to Beat SVD?
Relative error against SVD:

error/SVD(5)

Jester joke dataset, similar
experiment done in Drineas et
al. (arXiv), [NN]CX
decomposition

Local is mostly best –
better than DMM without
nonnegativity

It takes k = 16 for
Local to be better than
SVD with k = 5.
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Conclusions

We studied nonnegative variants of CX and CUR
decompositions.

Several real-world datasets seem to have such structure.
Very simple algorithms were able to find good
decompositions.

Our algorithms can be better than general CX and CUR
algorithms.

Better algorithms are sought.
Perhaps the convex cone interpretation helps.

Model-selection issue: how big C and R should be?

CX and CUR decompositions are still relatively little studied in
CS (esp. data mining) community.
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Thank You!
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