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Abstract. Proper testing of graph mining algorithms, for example, algorithms for
community detection, requires the capability of creating realistic random graphs.
As our understanding of real graph communities evolves, so should the random
graph generators evolve, too. In this work, we propose a random graph generator
called HYGEN that, unlike the existing random graph generators, is designed
to preserve the community structure of real networks, especially the commonly
observed hyperbolic intra-community connectivity structure. The generated graphs
will also preserve the total degree distributions and clustering coefficients of the
original graph without introducing too much determinism. In addition, we also
propose realistic distributions for the parameters controlling the hyperbolic shape
of the communities.

Keywords: random graphs, graph generators, community detection, hyperbolic
community structure

1 Introduction

Real-world networks often not only display a modular composition, but also
characteristic structures within the constituents. Previous work has established
that structure of communities is described well by a hyperbolic model [4, 18].
This model can express the particular core-tail structure which is frequently
observed in real-world networks and is suitably general to also represent clique-
like connectivity (see Fig. 1b). Especially communities in social networks show a
pronounced core-tail structure: a small fraction of the members have strong ties to
each other and form the core. The majority of members only have ties to the core
and not to each other [2, 19, 21, 23].
Understanding the organization of such networks is a primary goal of social
sciences and requires competent algorithms for detecting and describing the
structures. The algorithms have to be tested, though, and a thorough testing
requires significant amounts of reliably labelled test data – which is often not
available. Good random graph generators can be used to alleviate this problem.
There exist a variety of different graph generators: the Watts–Strogatz model [24],
the Barabási–Albert model [3], the stochastic block model [10], and so on. They
are designed with a focus on different features of (real-world) graphs, such as
small-world or scale-free properties. To the best of our knowledge, however,
no existing random graph generator is designed to model graphs consisting of
hyperbolic communities.
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(b) Examples of hyperbolic communities from [18]

Fig. 1: Visualization of parameters for the hyperbolic model, and real-world examples.
Models are shown on the degree-ordered adjacency matrix of each community.

As we believe that many real-world graphs actually follow a hyperbolic model,
we introduce a novel random graph generator to fill this gap. HYGEN gener-
ates modular networks with realistic intra-community structures using parameter
distributions derived from observations on real graphs.

2 Existing Random Graph Generators

The emphasis of our approach is to model the intra-community structure of graphs
realistically. Many existing random graph generators do not consider the concept
of community structure at all. The classical Erdős–Rényi [8] model is one of them,
as are the Barabási–Albert [3] model and the Forest fire model [16]. Approaches
for graph expansion [22, 25] typically focus on the global level of modelling real-
world graphs. Likewise do hyperbolic geometric graphs [13] whose construction
is based on hyperbolic geometry. Despite the related-sounding name, there is
no direct resemblance to our model. Kronecker graphs [15] permit community
structure, but due to their recursive construction using the Kronecker product,
communities consist of self-similar building blocks and do not vary in size.
Graph generators that permit community structure and that we consider most
relevant in comparison to our method are the stochastic block model (SBM) [10],
in particular the variation called degree-corrected SBM (DC-SBM) [11], the R-
MAT model [6], and the Lancichinetti–Fortunato–Radicchi (LFR) benchmark [14].
Notice that neither DC-SBM, nor R-MAT, nor LFR provide solutions to the
modelling task we aim to solve. We tested to what extent an ideal hyperbolic
structure could be captured by the different graph generators and found that none
of them captures it well (we omit the details). Some reasons for this are discussed
below.
The stochastic block model (SBM) is a popular random graph model that par-
titions vertices into blocks. The vertices within each block are stochastically
equivalent. But SBMs cannot model uneven degree distributions within communi-
ties. Degree-corrected SBMs (DC-SBM) [11] are a variation where an additional
degree parameter is incorporated for each vertex such that uneven edge probabili-
ties can be accounted for. A crucial detail of this approach is that the probability
of a node forming an edge is a global property. Degree-generated SBMs [26],
although they overcome the shortcoming of DC-SBMs to not separate vertices
based on degree even when that would be the correct partitioning, are similar in
that respect. We in contrast assume different probabilities for a node to form inter-
or intra-community edges.
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R-MAT [6] is based on the recursive construction of an adjacency matrix. The
proposed algorithm recursively subdivides this matrix into four equally sized parti-
tions and distributes the edges within according to partition-specific probabilities.
This special construction limits the shape of the communities that can be attained.
The Lancichinetti–Fortunato–Radicchi (LFR) benchmark [14] is a graph generator
proposed to test community detection algorithms. It can produce overlapping
community structures as well as weighted and directed networks. It extends the
Girvan–Newman benchmark [9] with emphasis on features of real-world graphs
such as heterogeneous distributions of the overall node degree and the community
size. Still we observe non-realistic intra-community structures showing a nearly
uniform degree distribution.

3 Hyperbolic Community

Given an undirected graph G = (V,E) with n nodes and m edges, we assign a
number from {0, . . . ,n− 1} to the vertices and use (i, j) to denote both a pair
of vertices and the (potential) undirected edge between them. We call a tuple
(VC,πC,ΘC) a community C. The set VC ⊆V contains the nodes of the community,
and we write nC = |VC|. The permutation πC : VC → {0, . . . ,nC− 1} orders the
nodes, and ΘC denotes a set of parameters. The hyperbolic community model
assumes the nodes to be ordered according to their degrees inside the community.
In the model, not every edge between the nodes in VC is necessarily part of the
community – otherwise all communities would be cliques.
Following [18], community models are defined using functions f : {0, . . . ,nC−
1}× {0, . . . ,nC − 1}×ΘC → {0,1} operating on a set of parameters ΘC and
deciding for any pair of vertices (i, j) ∈ {0, . . . ,nC − 1}×{0, . . . ,nC − 1} if an
edge between i and j is part of the community or not. Notice that the function f
only gets the indices relative to the subgraph, not to the full graph. Thus, to test a
pair (i, j) ∈VC×VC, we need to compute f (πC(i),πC( j),ΘC).
Metzler et al. [18] define multiple equivalent parameter sets Θ . We describe our
model using Θ = fixed(γ,H), which provides an immediate intuition about the
shape of the connectivity pattern of the community: γ defines the size of the core
(a clique) and H indicates how thick the tail3 is (see Fig. 1a). In the subsequent
analysis it is sometimes useful to consider Θ = hyperbolic(p,θ) instead. The
parameters then have an immediate geometric interpretation: p defines the centre
of an hyperbola at (−p,−p), and an edge (i, j) is in considered to be part of the
community if (i+ p)( j+ p)≤ θ (see also [18]).
Yet alternatively, the model can equivalently be expressed in terms of Θ =
mixture(x,Σ) [18]. With this formulation, the generality of the hyperbolic
model is most evident. The mixture parameter x ∈ [−1,1] indicates how much
the model looks like a line and how much like a hyperbola centered at the origin:
(1−|x|)(i · j)+ x(i+ j)≤ Σ . Controlling the boundary condition Σ while fixing
x = 0 will yield communities that strictly follow a power law connectivity pattern.

3More commonly, intra-communities structures are described as core and periphery [5]. We
use the notion of core and tail instead since the hyperbolic model allows for more shape variations
than the term periphery implies: Tails may get progressively thinner while nodes in the periphery
are assumed to be evenly connected to the core.
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Data: distributions Dsize, Dγ , DH , densities dinside, doutside, number of communities k
Result: random graph G
for i = 1 : k do

draw size s from Dsize, γ from Dγ , and H from DH
scale γ according to s, and H according to γ

make model fixed(γ , H)
select edges to discard uniformly at random to reach dinside
plant result into G

apply noise doutside to the outside community area of G
return G

Algorithm 1: HYGEN algorithm

4 Our Model

In this section, we propose HYGEN, the random graph generator that accounts
for specific intra-community connection patterns that are frequently observed in
real-world social networks [4, 18]. We first explain the construction of individual
communities and then describe how a graph of multiple such communities is
obtained.
To generate a single random hyperbolic community of size nC, we need to sample
its core size γ , and its tail height H from predefined distributions. Based on
observations in real-world data sets, we assume that γ (relative to nC) can be well
modelled through a Normal distribution with mean µ and variance σ2, and H (as
a fraction of γ) follows an Exponential distribution with a decay rate of λ . (More
on the distribution functions in Section 6.) Assuming µ , σ2, and λ are given, the
resulting community C of size nC then perfectly follows the model defined by the
sampled parameter set fixed(γ , H). Real communities however are typically
inexact. We apply a uniform noise model with separate parameters dinside and
doutside for edges inside and outside the community. This means that every edge
from inside C is retained with probability dinside, and with probability doutside,
edges are introduced outside the community.
With individual hyperbolic communities as building blocks HYGEN generates
graphs of k communities, obtained sampling their sizes from the distribution of
community sizes Dsize and drawing the parameters γ and H for every community
(see Algorithm 1). While our experiments suggest to draw from a Generalized
extreme value distribution, a power law function as used in [14] is a considerable
alternative.
Notice that we make the following assumptions: Noise is not only constant within
each community but also the same among all communities. We model the area
outside communities with a uniform density. We assume the size and shape of the
communities to be uncorrelated. Communities are assumed to be non-overlapping.
The time complexity of Algorithm 1 is as follows. For a community C, let E p

C
be the edges a “perfect” community (i.e. one with no noise) would have and let
E p be that for the full graph. Let En be the set of edges noise adds to the graph
(inter and intra community). Then, drawing the parameters and adjusting them is
O(1) operation, making the model takes O(nC), and sampling the edges to discard
from the community can be done in O(

∣∣E p
C

∣∣) [12, p. 137]. Repeated k times this
becomes O

(
k(nc +

∣∣E p
C

∣∣))= O(|V |+ |E p|). This leaves the part to add the noise;
to that end, we need to do sampling without replacement over a population of
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O(|V |2−
∣∣Ep
∣∣) edges, taking essentially linear time. When

∣∣Ep
∣∣ and |En| are small

compared to |V |2 (i.e. the graph is sparse), we can sample with replacement to
obtain practically the same result, taking O(|En|) time. In total, the full running
time of Algorithm 1 is O(|V |+ |E p|+ |En|) which is only slightly more than
O(|V |+ |E|).
Finally, it is worth noticing that our model can also be generalized as a graphon [20].
The division to communities works the same way as when modelling the stochastic
block models as graphons; only the edge probability inside the communities is
not uniform but rather depends on the model for the community. The modelling
as a graphon facilitates the analysis of infinitely large random graphs and the
convergence and concentration features of our model, but these are beyond the
scope of this manuscript.

5 Properties of HYGEN Random Graphs

HYGEN preserves important measures of network connectivity. The degree distri-
bution and the clustering coefficient are frequently used to describe the connectivity
patterns of networks [1]. In this section, we show that these measures are retained
when generating a new graph from the parameters observed in an existing network.
For a graph G, consisting of disjoint communities C that perfectly follow the
hyperbolic models hyperbolic(p, θ ) we have:

Lemma 1. The degree distribution d : VC→{1, . . . ,nc} of C is determined through
the parameters p and θ .

Proof. The model defines that an edge (i, j) ∈ hyperbolic(p,θ) if (i+ p)( j+
p)≤ θ . This inequality can be reformulated such that

j ≤ θ/(i+ p)− p . (1)

For every i ∈ VC, the highest integer j that fulfils (1) is equal to the degree of
node i, and hence d(i) = max{ j ∈ NC : j ≤ θ/(i+ p)− p} defines the degree
distribution. ut

The more intuitive integer parameters H and γ that indicate the size of the core
and the tail can alternatively be used in this derivation:

Corollary 1. The degree distribution of C is determined through H and γ .

This follows directly from Eqs. (7) and (8) in [18].
We show that the same also holds for the entire graph G.

Lemma 2. The degree distribution of G is determined by the parameters of its
hyperbolic communities.

Proof. Lemma 1 applies for every community in G. As the communities are
disjoint, we obtain the overall degree distribution choosing p and θ according to
the respective community and evaluating the inequality for index πC(i) referencing
the node within that community (see Section 3),

d(i) = ∑
C∈G

max{πC( j) ∈VC : πC( j)≤ θC/(πC(i)+ pC)− pC} . ut (2)
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In real-world data sets, the assumption of perfect hyperbolic models we made
for the above result is typically not met. Although the hyperbolic model covers
a variety of connectivity patterns, such as the classic power law-like structure,
as well as the extremes of a star and a clique, real-world data is often noisy and
the hyperbolic models only approximately describe the data. We now assess how
much the error in the modelling affects the resulting degree distribution.
Suppose q ∈ [0,1] is the average noise of graph G. That is, a fraction of q edges
are missing from inside the communities of G and the outside-community area
has a fraction of q surplus edges, i.e. doutside = q, dinside = 1−q. Then, for node i
with a unperturbed degree of d(i), the expected degree d̄(i) is

d̄(i) = d(i)−qd(i)+q(n−d(i)) = d(i)+q(n−2d(i)) . (3)

The relative degree of a node i is the fraction α(i) of all nodes of G to which i is
connected. Hence, the relative expected degree is d̄(i)/n = α(i)+q(1−2α(i)).
Noise has the strongest effect on a node if the degree d(i) is near its limits, i.e. if
α ≈ 1 or α ≈ 0. For a node with α = 0.5, the presence of noise on expectation
will not affect the degree at all. The star pattern is an example of a graph where
the degree distribution is heavily impaired when the noise factor q is high.
The clustering coefficient is also determined through the parameters of the hy-
perbolic models that constitute a graph G. Two well-known variations of the
clustering coefficient exist: the global and the local [1]. While the former is the
overall ratio of triangles to wedges in a graph, the latter is computed per node and
denotes the fraction of triangles around a node.
Suppose C is a perfect hyperbolic community hyperbolic(p,θ ).

Lemma 3. The local clustering coefficient CCi of the nodes of C is determined
through p and θ .

Proof. The local clustering coefficient for node i of C is given by

CCi =
2
∣∣{( j,h) : j,h ∈ Γ (i),( j,h) ∈ E

}∣∣
d(i)(d(i)−1)

, (4)

where Γ (i) denotes the set of nodes directly connected to i. The nominator counts
twice the edges between nodes j and h that are both connected to i. As C perfectly
follows hyperbolic(p, θ ) we may use (1) to express Γ (i) as Γ (i) =

{
h ∈VC :

h≤ θ/(i+ p)− p
}

. The set of edges, E, is E =
{

i, j ∈VC : j≤ θ/(i+ p)− p
}

. For
the degree d(i), used in the denominator to indicate the size of the neighbourhood,
Lemma 1 applies. ut

To make a similar statement about the global clustering coefficient CC, we first
need some definitions. Define the indicator function χ(i, j) as

χ(i, j) =

{
1 j ≤ θ/(i+ p)− p
0 otherwise .

(5)

This function returns for every pair of nodes i and j of community C whether there
exists an edge between them according to hyperbolic(p, θ ).
To count the number of triangles in C, we define T (i, j,h) : N3

≥0→{0,1} as

T (i, j,h) = χ(i, j) ·χ(i,h) ·χ( j,h) . (6)
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T (i, j,h) decides on the basis of the hyperbolic model whether a triangle exists
between i, j, and h by checking the presence of the three possible edges.
For the existence of wedges in C, we define W (i, j,h) : N3

≥0→{0,1} as

W (i, j,h) = (1−χ(i, j)) ·χ(i,h) ·χ( j,h)+χ(i, j) · (1−χ(i,h)) ·χ( j,h)

+χ(i, j) ·χ(i,h) · (1−χ( j,h)) . (7)

This function checks the presence of exactly two out of the three possible edges
between i, j, and h within C. With these functions defined, we now show the
dependency between the clustering coefficient and the hyperbolic model.

Lemma 4. The global clustering coefficient CC of a community C is determined
through p and θ .

Proof. The global clustering coefficient of a graph is three times the number of
triangles divided by the number of wedges. If C perfectly follows the hyperbolic
model hyperbolic(p,θ ), we can use (6) to check for the presence of a triangle
for every node triple (i, j,h) and (7) to check for the presence of a wedge. Thus,
we compute

CC =
3∑

n−1
i=0 ∑

n−1
j=i+1 ∑

n−1
h= j+1 T (i, j,h)

∑
n−1
i=0 ∑

n−1
j=i+1 ∑

n−1
h= j+1 W (i, j,h)

. ut (8)

We could compute the number of triangles with only a single sweep over the nodes:
there are

(
γ+1

3
)

triangles in the core, and every i with d(i) ≥ 2 adds
(d(i)

2

)
more

triangles because it only has connections to the core. To the best of our knowledge,
there is no similar expression to determine the number of wedges.

Lemma 5. The local and global clustering coefficient of G are determined through
the parameters of the hyperbolic communities of G.

Proof. For a graph G consisting of multiple disjoint hyperbolic communities,
the clustering coefficients behave analogously. T (i, j,h) and W (i, j,h) need to
be evaluated with respect to the community of the nodes. They must yield 0 in
case i, j, and h belong to different communities and use the community specific
parameters pC and θC to evaluate 1C otherwise. ut

It is not trivial to analyse the effects of noise to the clustering coefficient. Triangles
or wedges from the inside-community area disappear, and new ones get introduced
involving the outside-community area. Given the overall density of a graph, the
expected number of triangles or wedges is derivable, but integrating the specific
intra-community structure into this expectation remains an open problem.

6 Empirical Parameter Distributions for HYGEN

In this section we detail how we obtained the suggested parameter distributions.
We use four networks with community information from the Stanford Large
Network Dataset collection [17]: Amazon, DBLP, Friendster, and YouTube. We
draw a sample of 500 communities of size between 100 and 1000 nodes and
compute the hyperbolic models for each community individually. This yields
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Fig. 2: Fitting quality of the tested distribution functions compared to that of the chosen
distribution for each observed parameter in each dataset.

empirical distributions of γ , H, and the (truncated) community size nC. Note that
the YouTube network has only 129 communities of the respective size.
For each of the empirical distributions for γ , H, and nC, we fit a variety of distribu-
tion functions (Generalized extreme value, Inverse Gaussian, Birnbaum–Saunders,
Exponential, log-Normal, log-Logistic, Gamma, Rayleigh, Weibull, Nakagami,
Rician, Normal, Logistic, Extreme value, t-location-scale). Not every distribution
is applicable for each of the parameters. While the observed γs look normally dis-
tributed, H and the community size show an exponential behaviour. Nevertheless,
we evaluate the fitting quality in terms of negative log-likelihood (LL) for each
possible distribution.
As we optimize the parameters of the distribution functions to explain the empirical
observations, we notice that many of the compared distribution functions yield a
similar shape. We compare the fit quality of the distribution we choose to that of
every other possible distribution function. To do so, we subtract the negative LL of
the chosen distribution from the negative LL of the remaining distributions. The
results are summarized as boxplots in Fig. 2 for each data set. A value of 0 indicates
similar quality. Higher values indicate that the chosen distribution function is a
better fit, and lower values that another distribution fits the observations better.
For the empirical distributions of γ , we decide to propose the Normal distribution
as a good description across the studied datasets. In terms of fit quality compared
to the other distribution functions, this seems to be a favourable choice for the four
datasets. The empirical distributions of the parameter H show more variation in
their shape, their clear commonality is that thin tails are much more frequent than
thick ones. Deriving the exact shape of the parameter distributions given these
samples appears challenging. As Fig. 2b indicates, the distribution functions fit the
data with varying quality. We choose to represent H by an Exponential function,
but dependent on the data set there might be better options. For the community
size, the Generalized extreme value distribution (GEV) yields the best fit in terms
of LL for every dataset (see Fig. 2c).

7 HYGEN Graphs from Known Distributions

While graphs modelled after empirical observations are potentially more realistic,
HYGEN can also be used to construct random graphs from pre-defined parameter
distributions.
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Suppose we aim to generate random graphs where the communities show a power
law connectivity. This task might not seem not easily expressible in terms of γ

and H, in particular because they are modelled independently. Recall that the
hyperbolic model can be expressed with several equivalent formulations (see
Section 3). If we express the model in terms of mixture(x,Σ) an immediate
solution is obvious: x becomes fixed to constantly 0 and only the distribution of
the boundary condition Σ needs to be supplied, for instance in form of a Normal
distribution.
Generating clique-like connectivity within the communities is as easy as setting
γ and H constantly to their maximum, i.e. 100 % of the size of the community.
Notice that the same result could however be achieved with less modelling effort.

8 Stability of the Graph Generation

With our analysis on real-world data, we demonstrate two contrasting aspects:
here, we show how well HYGEN-generated graphs adapt to the characteristic
distributions of these networks; in Section 9, we show that the graph generation
procedure introduces enough randomness such that the resulting graph differs
from its template.
To test HYGEN on real-world data sets4, we fit distributions to the observed
parameter distributions from every data set described in Section 6. With the
obtained distribution functions we use HYGEN to generate new random graphs.
On these new graphs, we compute the best hyperbolic model of each community.
For comparison, we also evaluate the performance of LFR and DC-SBM on the
task of generating graphs with hyperbolic communities. While LFR-generated
graphs, like graphs from HYGEN, are equipped with ground-truth community
information, the DC-SBM implementation5 only derives the information about
communities in the model fitting step. Hence, for this comparison we assume that
DC-SBM correctly recovers communities in the graphs it has generated.
Fig. 3 shows boxplots of the empirical distributions of γ , H, and the community
size in comparison to the distributions obtained after computing hyperbolic models
on the results of HYGEN, LFR, and DC-SBM. Notice that 100 times as many
random communities where drawn than what was in the input data, i.e. 12900
communities for YouTube and 50000 for the other datasets. For performance
reasons, DC-SBM generated only one graph with 100 communities for every data
set.
We observe a good resemblance of the median γs between the original and the
HYGEN-generated graphs. For H, we observe mostly similar-looking distributions
for the original communities and the HYGEN-generated ones. HYGEN however
shows a tendency to produce communities with exceptionally thick tails. For the
community size, Fig. 3c indicates, that although the medians of the generated
graphs match the original, we have slightly less of the larger communities in
the HYGEN-generated graphs. This is likely a result of the way we interpret the
empirically observed distributions.
In the median, the shape of the communities LFR generates is quite accurate for
the core size γ , however more communities with exceptionally large cores can be

4Our code: http://cs.uef.fi/∼pauli/hybobo/rgg
5https://github.com/ntamas/blockmodel
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Fig. 3: Distributions of parameters in generated graphs compared to original data. H and
γ are obtained after fitting hyperbolic models.

observed than in the original data.The height H of the tails is often overestimated.
Community sizes are much smaller than in the empirical observation.
DC-SBM produces communities with thicker cores than originally observed, while
the tail heights are underestimated, except in YouTube. Conversely, apart from
YouTube, communities get much larger than originally observed, indicating that
our assumption that DC-SBM correctly recovers communities in the graphs it
generated may not hold. (Results for Friendster did not compute within a week.)

9 Randomness of the Generated Graphs

From the comparison of the parameter distributions of the original graphs and the
generated graphs, we can conclude that their hyperbolic structure is similar. This
however would also hold for an identical copy of the original graph. To assess
whether the structurally similar graphs are also reasonably different to the original,
we study their conditional entropy.
The conditional entropy H (Y |X) quantifies the amount of information needed to
describe the outcome of a discrete random variable Y provided the discrete random
variable X is known. The result is H (Y |X) = 0 if Y is completely determined by
X , and H (Y |X) = H (Y ) if and only if Y and X are independent [7]. As we are
interested in the relative amount of dependency of Y given X , we scale H (Y |X)
by H (Y ) to obtain a value within [0,1]. We define the relative conditional entropy
as Hrel(Y |X) = H (Y |X)/H (Y ). Since the graphs to compare are binary, X =
Y = {0,1}. To interpret them as random variables X and Y , we vectorize the
upper triangular of the adjacency matrices after ordering the nodes by their degree.
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To compute Hrel(Y |X), we generate 100 random graphs from the observed param-
eters of each dataset keeping the distribution of community sizes identical to the
original graph to ensure that the resulting sample is of the same size. We compute
Hrel(Y |X) per community rather than for each entire generated graph for two
reasons: First, the sizes of the communities are fixed for this experiment, which
introduces an artificial amount of determinism that could bias the measurement.
Second, from the original graphs, we sampled communities but their context is
not maintained (in particular because we assume non-overlapping communities).
Thus we would compare the inter-community structure of the original graph to
uniformly at random distributed edges in the generated graphs. As our modelling
focuses entirely on the intra-community structure, this comparison seems futile.
We obtain the following average relative conditional entropies over all the commu-
nities and all the samples: Amazon 0.996, DBLP 0.996, Friendster 0.990, YouTube
0.963 (standard deviations are within the displayed precision). This result indicates
that the amount of determinism of the generated communities given the original is
very small. Thus, we conclude that HYGEN generates structurally similar random
graphs that still exhibit non-determinism compared to their template.

10 Conclusions

We have introduced the random graph generator HYGEN. Our results indicate
that this generator is able to produce realistic intra-community structure, un-
like the state-of-the-art methods. Despite simplifying assumptions, such as non-
overlapping communities and a uniform noise model, HYGEN is a step towards
more realistic random graph generators.
To further improve the modelling, important future work encompasses to handle
overlapping communities as well as to offer more realistic noise models. While
our current noise model assumes the average of the observed noise evenly for
all communities, the examined data sets show evidence that noise is correlated
with community size. Hence modelling noise in a more adjusted way could
result in even more accurate models. In addition, while we estimate core sizes
of communities precisely, covering in particular thin tails of them with higher
accuracy could yield further improvement.
HYGEN has its obvious use for testing community detection algorithms. It can
generate realistic graphs equipped with reliable labelling of the communities.
Besides this, HYGEN might serve as an anonymization tool to study the structure
of social networks without revealing the participants identities.
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