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USERS AND WEBPAGES

• Users “like” webpages

• A bipartite graph

•We want to know 
(approximate) bicliques of users 
who like similar webpages 
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DYNAMIC FACTORIZATIONS

• Users keep on liking new webpages

•New users, new webpages, and old users liking old pages

•We want our factorization to adapt to new data

• Problem. Given a binary matrix A, its Boolean factorization 
(B, C), and a series of added 1s to A, update B and C so that 
they define a good approximation of A after any addition



NOTES

•We’re only adding 1s to the data

• You can’t dislike a page

•We’re not doing prediction, we’re adapting

• Being good at predicting helps adapting, though



FIRST ATTEMPT

•We can re-compute the factorization after every addition

• Too slow

• Too much effort given the minimal change



SECOND ATTEMPT

•We can fold-in the new data: if we add a new column to A, 
we keep B fixed and add a new column to C

• Common in IR when new terms/documents appear

• But we’re not necessarily adding new rows or columns

•We could still do alternating updates to B and C, except 
that the problem is NP-hard to even approximate well  



THIRD ATTEMPT

• An online algorithm

•Will never remove any 1s it has added to factor matrices

•We consider three cases when a new 1 arrives
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MAKING UPDATES FAST

• Recognizing the case is O(k) with proper index structure

• Selecting the factor in Case 3 is worst-case O(|B| + |C|)

• Extending the factor can be very costly

• Computing the fit for every row/column

• We store the historical fits and take an optimistic approach on how much 
it could have improved
⇒We only need to consider those rows/columns where the factor could 
give a good fit



NON-ONLINE ALGORITHM

• Iteratively update B and C to remove 1s from them

• Fix B, update C; fix C, update B; etc.

• The problem is (still) NP-hard – we use a heuristic

• Computationally expensive



     

















 














ERROR OVER TIME
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TIME COMPLEXITY

Online?

Sequence lengthSequence lengthSequence length

561K 420K 281K All

Yes

No

95 64 33 97

1045 1111 1097



FUTURE WORK

• Adjusting the rank

• Better data structures and analysis

• Paralellization

• Tweaking the base algorithm for better prediction



CONCLUSIONS

•Dynamically updating a Boolean matrix factorization is possible

• Simple idea performs very well and is reasonably fast

• Can be better and faster than running the off-line algorithm
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