
Fully Dynamic Quasi-Biclique Edge Covers
via Boolean Matrix Factorizations

Pauli Miettinen
Max-Planck-Institut für Informatik

Saarbrücken, Germany
pauli.miettinen@mpi-inf.mpg.de

ABSTRACT
An important way of summarizing a bipartite graph is to give
a set of (quasi-) bicliques that contain (almost) all of its edges.
These quasi-bicliques are somewhat similar to clustering of
the nodes, giving sets of similar nodes. Unlike clustering,
however, the quasi-bicliques are not required to partition the
nodes, allowing greater flexibility when creating them. When
we identify the bipartite graph with its bi-adjacency matrix,
the problem of finding these quasi-bicliques turns into the
problem of finding the Boolean matrix factorization of the
bi-adjacency matrix – a problem that has received increasing
research interest in data mining in recent years. But many
real-world graphs are dynamic and evolve over time. How
can we update our bicliques without having to re-compute
them from the scratch?

An algorithm was recently proposed for this task (Mietti-
nen, ICMD 2012). The algorithm, however, is only able to
handle the case where the new 1s are added to the matrix – it
cannot handle the removal of existing 1s. Furthermore, the
algorithm cannot adjust the rank of the factorization.

This paper extends said algorithm with the capability
of working in fully dynamic setting (with both additions
and deletions) and with capability of adjusting its rank dy-
namically, as well. The behaviour and performance of the
algorithm is studied in experiments conducted with both
real-world and synthetic data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

1. INTRODUCTION
A binary matrix can always be identified with a bipartite

graph by considering it as a bi-adjacency matrix. If the
binary matrix is square, it can also be identified with a
directed graph; if it is symmetric, it can be identified with
an undirected graph. Many graph mining problems can
then be represented as problems on the corresponding binary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DyNetMM’13, June 23, 2013, New York, New York, USA
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

matrices. This paper focuses on bipartite graphs (i.e. general
binary matrices), and in there, on the special problem on
quasi-biclique edge covers. Informally, given a bipartite graph
G, the goal is to find a set of quasi-bicliques that contain
almost all of the edges of G and are not too sparse (a quasi-
biclique is an almost-complete bipartite graph; the sparser it
is, the further it is from being complete).

Why quasi-biclique coverings? In short, a quasi-biclique
edge cover is a powerful method to summarize and analyse
the graph based on the shared neighbours of nodes. Consider,
for example, a bipartite graph of users and web pages, with
an edge between a user and web page if the user has ‘liked’
the web page. A quasi-biclique in such a graph gives us a set
of users that like similar web pages, and a set of web pages
that are liked by similar people.

The above example also highlights an important feature of
many such real-world graphs: they are constantly evolving as
users ‘like’ new web pages, new users and web pages get added
to the system, and old users and web pages are removed.
The problem considered in this paper is how to dynamically
update given quasi-biclique edge covering when edges or
nodes are added or removed. We will also consider the
problem of how to adjust the size of the cover (i.e. the number
of quasi-bicliques) dynamically. It should be emphasized
that the goal is not to predict which edges will appear in the
future (the link prediction problem); rather, the goal is to
have a good cover at any given point of time. Therefore, say,
overfitting is not a problem per se, as long as the algorithm
is able to adjust the cover when it sees new edges.

We will consider the quasi-biclique covering problem using
its equivalent representation as Boolean matrix factorization
(BMF) problem for the bi-adjacency matrix. The algorithm
presented in this paper is an extension of a recent algorithm
for dynamic Boolean matrix factorizations [10]. The algo-
rithm of [10] has two shortcomings: 1) edges and nodes can
only be added, never removed and 2) it cannot dynamically
adjust the size of the covering (rank of the factorization).
This paper will address both of these shortcomings.

The next section will give the formal definitions of the
problems this paper considers. Section 3 gives a brief in-
troduction to the existing algorithm before explaining the
extensions. The experiments are reported in Section 4, fol-
lowed by related work and conclusions.

2. BACKGROUND AND DEFINITIONS
Before defining the dynamic problems studied in this paper,

we will first explain the notation and define the offline versions
of the dynamic problems.

2.1 Notation
We identify bipartite graphs as binary matrices. Matrices

are denoted by upper-case bold letters (A). Vectors are
lower-case bold letters (a). If A is an n-by-m binary matrix,
|A| denotes the number of 1s in it, i.e. |A| =

∑
i,j aij . We

extend the same notation to binary vectors.
Let X and Y be n-by-m binary matrices. We have the

following element-wise matrix operations: The Boolean sum
X ∨ Y is the normal matrix sum with addition defined as
1 + 1 = 1. The Boolean subtraction X 	 Y is the normal
element-wise subtraction with 0 − 1 = 0. Notice that this
does not define an inverse of Boolean sum, as 1 + 1− 1 = 0.
The Boolean element-wise product X∧Y is defined as normal
element-wise matrix product. The exclusive or X ⊕ Y is
the normal matrix sum with addition defined as 1 + 1 = 0
(i.e. addition is done over the field Z2). Furthermore, if
Z ∈ {−1, 0, 1}n×m, we define X � Z to be the normal
element-wise addition except that 1 + 1 = 1 and 0− 1 = 0.
The complement of X is denoted by X̄.

Let X be n-by-k and Y be k-by-m binary matrices. Their
Boolean matrix product, X ◦ Y , is the binary matrix Z with
zij =

∨k
l=1 xilylj , that is, Boolean matrix product is the

normal matrix product using the Boolean addition.
The Boolean rank of an n-by-m binary matrix A, rankB(A),

is the least integer k such that there exists an n-by-k binary
matrix B and a k-by-m binary matrix C for which A = B◦C.
Matrices B and C are the factor matrices of A, and the
pair (B,C) is the (exact) Boolean factorization of A. If
A 6= B ◦C, the factorization is approximate. The columns
of B and rows of C are the factor vectors (factors for short);
the fth pair of factor vectors (fth column of B and fth row
of C) is denoted bf and cf .

If p = (i, j) is a pair of nonnegative integers and A = (aij)
is an n-by-m binary matrix (with i ≤ n and j ≤ m), we
write p ∈ A if aij = 1 and p /∈ A otherwise. If p ∈ A, we say
that A covers element p.

Let s = (s1, s2, . . .) be an ordered sequence of arbitrary
items. We use the following slice notation: s(1 : n) stands for
the first n elements of s while s(n :) stands for the elements
of s from element n onwards, including n.

Now let s be an ordered sequence of k tuples from N×N×
{+,−}, s =

(
(i1, j1,±), (i2, j2,±), . . . , (ik, jk,±)

)
. We define

operatorMn×m(s) to produce an n-by-m matrix M = (mij)
such that

mij =


1 if (i, j,+) ∈ s

−1 if (i, j,−) ∈ s

0 otherwise.

We omit the subscript ofM when it is clear from the context.

2.2 Background on Quasi-Biclique Covers and
Boolean Matrix Factorizations

Before discussing the dynamic problems, let us consider
the standard offline problems. The problem of finding a
quasi-biclique cover of size k is formally as follows.

Problem 2.1. Given a bipartite graph G = (U ∪ V,E)
and an integer k, find k pairs (Bi, Ci), where Bi ⊆ U and
Ci ⊆ V for all i = 1, . . . , k, such that the pairs minimize∣∣∣∣∣E 4

(
k⋃

i=1

Ẽi

)∣∣∣∣∣ , (1)

where 4 is the symmetric difference between two sets (i.e.

A 4 B = (A \ B) ∪ (B \ A)) and Ẽi = {e = {b, c} : b ∈
Bi and c ∈ Ci}, that is, Ẽi contains the edges of the complete
bipartite subgraph between Bi and Ci.

As explained in the introduction, this paper mainly works
with an alternative formulation of Problem 2.1, namely, the
problem of Boolean matrix factorization, defined as follows:

Problem 2.2 (BMF). Given an n-by-m binary matrix
A and integer k, find an n-by-k binary matrix B and a
k-by-m binary matrix C such that B and C minimize

|A⊕ (B ◦C)| . (2)

That Problems 2.1 and 2.2 are equivalent is easy to see. We
can identify the bipartite graph G with its bi-adjacency ma-
trix A (a bi-adjacency matrix has |U | rows and |V | columns
and has 1 in position (i, j) if E contains an edge between
ui and vj). The ith column of B and ith row of C give the
incidence vectors for sets Bi and Ci, respectively, and their
outer product gives the bi-adjacency matrix of the biclique
Ẽi. The Boolean matrix product B ◦C gives the incidence
matrix of the graph

⋃k
i=1 Ẽi, and finally, the modulo-2 sum-

mation A⊕ (B ◦C) is equivalent to the symmetric difference

between E and
⋃k

i=1 Ẽi.
This change of context from graphs to matrices furnishes

us with a good number of existing research. For example,
it is known that finding the matrices B and C is NP-hard
even to approximate [11] and that given matrices A and
B, finding C that minimizes (2) is also NP-hard even to
approximate well [7].

2.3 The Problems
Informally, the Fully Dynamic Boolean Matrix Factoriza-

tion problem (FDBMF) asks us to keep up a factorization
of changing data that provides a good approximation at any
time. Equivalently, we are asked to keep up a collection
of bicliques that approximate well the set of edges in our
bipartite matrix. Formally, FDBMF is defined as follows:

Problem 2.3 (FDBMF). Given an n-by-m binary ma-
trix A, its (approximate) rank-k Boolean factorization (B,C),
and, for any given time t, a prefix s(1 : t) of an unknown
sequence s ∈ N× N× {+,−}, find a rank-k Boolean factor-
ization (Bt,Ct) that minimizes∣∣(A�M(s(1 : t))

)
⊕ (Bt ◦Ct)

∣∣ . (3)

It is worth to emphasize again that in FDBMF, the goal is
not to predict where the 1s will appear, but to have a good
factorization at any given time t.

In the definition of Problem 2.4, both the size of the data
matrix and the rank of the factorization are fixed. Both
constraints can be relaxed, though. Adding or removing new
rows and columns to the data matrix is straight forward,
and all algorithms we are going to present can handle that.
Allowing the rank of the decomposition to change, however,
is a more complex issue. Given that we do not try to predict
anything (and thence do not have overfitting issues), if the
algorithm is allowed to adjust the rank, it can represent any
given matrix exactly using min{n,m} factors. Therefore,
minimizing the error (3) cannot be our goal if we let the rank
undefined.

This problem can be solved by using the minimum de-
scription length (MDL) principle [16]: instead of minimizing
the error, the goal is to minimize the number of bits it
takes to represent the matrix A �M(s(1 : t)) using the
factorization (Bt,Ct). To this end, we need to encode three
binary matrices, Bt, Ct (the factorization), and

(
A�M(s(1 :

t))
)
⊕(Bt ◦Ct) (the error). Denote the total encoding length

of these three matrices by Lt(A, s(1 : t),Bt,Ct). Actual
encoding schemes for BMF have been studied earlier [12,13],
and we will use the method that was considered the best:
the Typed XOR Data-to-Model encoding [13]. Taking Lt to
refer to that encoding model, we can define the problem of
Dynamic-Rank Boolean Matrix Factorization (DRBMF) as:

Problem 2.4 (DRBMF). Given an n-by-m binary ma-
trix A, its (approximate) rank-k Boolean factorization (B,C),
and, for any given time t, a prefix s(1 : t) of an unknown
sequence s, find a Boolean factorization (Bt,Ct) of any rank
that minimizes

Lt(A, s(1 : t),Bt,Ct) . (4)

3. ALGORITHMS
This section will present the extensions to allow the earlier

algorithm of [10] to handle the removal of 1s and dynamic
adjustments of the rank. We will start by presenting the
algorithm of [10] before explaining how to extend it.

3.1 Algorithm for Additive DBMF
The algorithm of [10] works only in the additive dynamic

BMF setting, i.e. when it is only possible to add 1s, rows and
columns. Here we will give a brief outline of the algorithm;
for more information, see [10].

The basic algorithm in [10] is online, that is, it can only
add 1s in the factor matrices, and can never remove them.
When a 1 is added that is not yet covered by the factorization,
the algorithm tries to find a factor to extend to cover the
added 1. If no factor can be extended without increasing
the error, the 1 is left uncovered. Otherwise, the factor that
decreases the reconstruction error the most is extended to
cover it. If a factor is extended, the algorithm tries to extend
it into other rows and columns iteratively, until it cannot be
extended anymore.

Whether the factor can be extended is defined by the func-
tion cover. If A is the data matrix, (B,C) the factorization
before the extension, and (B′,C′) the factorization after the
extension, the cover function is defined as

cover(A,B,C,B′,C′) =∣∣A ∧ ((B′ ◦C′)	 (B ◦C)
)∣∣

−
∣∣(Ā	 (B ◦C)

)
∧
(
B′ ◦C′

)∣∣ . (5)

That is, cover measures how many not-yet-covered 1s the
extended factor would cover, minus the number of uncovered
0s that are covered by the extended factor.

To allow the removal of unnecessary 1s from the factors,
it is proposed in [10] to use iterative updates on the fac-
tor matrices: B′ is set to B and C′ is find such that it
minimizes (5). The updated C is then held fixed and B′

minimizing (5) is found. This is continued until there is no
improvement on the error.

3.2 Extension to Removals
In case a 1 is removed from the matrix, there are three

different cases we need to consider. Let (i, j) be the element
that is turned from 1 to 0. The first case is that (i, j) /∈ B◦C.
In this case, we do not need to do anything, as the error can
only decrease. The second case is when row i and column
j become empty after the deletion. In this case, we remove
all 1s in the corresponding row and column in the factor
matrices. If only either a row or a column becomes empty,
we remove all 1s in the corresponding row/column from the
factor matrices, respectively, but continue to the next case.

The third case is the one where all the work is. In this
case we need to decide if we can remove row i or column
j from any factor currently containing it. If (i, j) is only
covered by single factor f , this is easy: we first try to set
bif = 0 and see if that improves the error, and then to set
cfj = 0 and see if that improves the error (with bif = 1). We
do either (or both) of the changes if they reduce the error.
But it can be that (i, j) is covered by multiple factors. To
properly test which factors should be changed, we should
try every possible combination of them. But obviously, that
quickly becomes infeasible. Rather, we will check for every
factor independently whether we can remove the rows or
columns from it (keeping all other factors unchanged). Then
we will edit those factors for which the change yield smaller
reconstruction error.

After we have edited a factor (by removing a row or a
column), we will see if we can extend it to new rows or
columns. Assume we removed row it from the factor f . We
now see if this smaller f can be used in a new column. For
this, we study all columns that are not yet included in f
(i.e. columns j for which cfj = 0) and see if including some
column would yield non-negative change in the cover function.
After that, we use similar technique to check if we can extend
the (possibly extended) factor to new rows. We continue
to alternatively extending the factor to new columns and
rows until there are no new columns or rows that would give
non-negative cover value. The process is guaranteed to end
as in each iteration we reduce the error by at least 1.

A pseudo-code for the extension is presented as Algo-
rithm 1. This algorithm is called for every removal of index
pair (it, jt) and the result is used as the input for the next
call. In case the edit is an addition, Algorithm 1 from [10] is
used.

3.3 Dynamically Adjusting the Rank
To adjust the rank, we have two options: we can either

remove existing factors or add new ones. We will try to do
them both, finding what would be the best factor to remove,
and what would be the best factor to add. We then commit
the better of these two actions, provided that it reduces the
description length, and re-compute the best addition and
deletion. This is repeated until neither the addition of a new
factor nor the deletion of an old one improves the description
length anymore.

Computing what would be the description length after
removing factor f is straight forward: we just remove the
factor and re-compute the description length (taking into
account the new factorization and new error). We try this
for every factor, and select the best as a candidate factor to
be deleted.

But how to decide what factor to add? Unlike with dele-
tions, we cannot just look into some existing list of factors,

Algorithm 1 Removing elements in FDBMF

Input: A binary matrix A, its rank-k Boolean factorization
(B,C), and index pair (it, jt).

Output: Updated factorization (Bt,Ct).
1: function UpdateAfterRemoval(A,B,C, (it, jt))
2: if (it, jt) /∈ B ◦C then
3: return B and C
4: end if
5: if aitj = 0 for all j 6= jt then
6: set bitf = 0 for all f
7: end if
8: if aijt = 0 for all i 6= it then
9: set cfjt = 0 for all f

10: end if
11: for all factors f s.t. bitf cfjt = 1 do
12: if cover improves after setting bitf or cfjt to 0 then
13: add f to the list of factors to be edited
14: end if
15: end for
16: for all factors f to be edited do
17: edit f so as to maximize the cover
18: end for
19: for all factors f that were edited do
20: repeat
21: try to extend f to new rows and columns
22: until no new extensions are possible
23: end for
24: return Bt and Ct

25: end function

but we have to generate a new factor from the scratch. We do
that using the following heuristic: We consider each column
of A 	 (B ◦ C), that is, columns of 1s that we have not
yet covered. Each of them is a candidate to be added to B.
To compute the corresponding row of C, we see in which
columns of A the candidate column has a positive cover
value, and include those columns. This gives us m candidate
factors (with possible repetitions). To select from these, we
could re-compute the description length for each candidate.
This, however, is expensive, as we need to compute the new
error for each of the candidates. Rather, we select the factor
with the largest area (|b| · |c|) as our candidate factor to add,
and only compute the description length for that.

There are some decisions in this heuristic that need to be
discussed. First, why use the columns of A	 (B ◦C)? The
motivation is that we want to cover uncovered 1s: any part
of the new factor that overlaps with existing factors will not
reduce the description length. The new factor can overlap
with the existing ones, though, as we select the columns in
which it appears based on the original data, not the reduced
one. The other question is, why consider only the largest-
area factor? The way how the new factors are build (using
A	 (B ◦C) and cover) ensures that they will never increase
the error. So the factor with the largest area covers the
largest number of 1s, which we consider a desirable feature.

As updating the rank is rarely meaningful after every
edit, we only check the description length after user-defined
number of changes. Further, we can heuristically decide that
if the description length is going down, we do not need to
do anything to the rank; we only see if we can make any
changes if the description length has increased.

3.4 Time Complexity
There are some implementation details that greatly affect

the (practical) time and space complexity of the algorithm.
The first is how the matrices are stored. Most (or all) real-

world applications to FDBMF use very sparse data, so the
matrices (data and factor) should be stored using some sparse
representation. But due to the nature of the dynamic algo-
rithms, all matrices will be changed during the computation,
and the sparse representation should make the updates rea-
sonably effective. For our implementation, we selected a
hybrid of list-of-lists and dictionary-of-keys: each column
is represented by a set of indices, and the sets are stored
in a list. The sets of indices can be implement using stan-
dard techniques, for example, cuckoo hashing [15] giving
amortized constant addition and deletion times and constant
query time.

Assuming we store the product B ◦ C, we can handle
the first three if-clauses of Algorithm 1 in O(k) time. The
for-loop of line 11 takes at most k iterations, each iteration
requiring to re-compute the cover for the factor. But we
only need to compute the cover for the rows and columns
the factor contains, taking time O(|bf |+ |cf |) for factor f ,
and thus the overall time of the for-loop is O(|B|+ |C|).

Extending the factors can be very costly, though. For
n-by-m data matrix, computing the cover-values for factor
f and each data column can take O

(
m |bf |

)
time. As this

computation might need to be done after (almost) each
edition, and for rows too, we need to find a way to make it
faster. To that end, we do some more clever bookkeeping.
When initializing the algorithm, we compute and store the
cover values for each factor and each row and column of the
data not included in the factor. Along these values, we store
the timestamp when we computed the value and we order
them in decreasing order by the cover value.

At each time step the cover value can change by at most
1 for the rows and columns that were not included in or
excluded from some factor. When considering a factor, we
traverse the list of pre-computed cover values, starting from
the largest one. If c is the value stored and ∆t is the difference
in time between when the value was computed and the current
time, we consider this column (or row) only if c + ∆t ≥ 0. If
the condition holds, we compute the actual cover value: if it
is non-negative, the column (or row) is added into the factor;
if it is negative, the value along with the updated timestamp
is put back to the list. After we see the first column (or row)
for which c + ∆t < 0, we know that no more columns (rows)
can have non-negative cover value. After the first iteration,
the list is kept sorted by c + ∆t.

The only complication for this scheme comes from those
rows and columns that were included in or excluded from
a factor. We keep a list of those, and when considering a
factor, first check if we need to re-compute the cover value
for some of those rows and columns. If so, we do that first,
and return the updated values back to the list with updated
timestamps.

At first glance it might look like keeping the list sorted is
going to be very expensive (O(m logm) for columns). Note,
however, that we only need to move the elements for which
we re-compute the cover. As moving these elements in a
pre-ordered list is (in practice) much faster than O(m) (they
rarely move to the very end of the list), this bookkeeping
actually saves us considerable time. The list of cover-values
is re-computed after every change in the rank and every
iterative update of the factor matrices.

Updating the rank is more expensive operation. Comput-
ing the description length takes time

O(|B|+ |C|+ max{|A| , |B ◦C|}) ,

which is the same time considering the removal and addition
of a factor takes. The slowest part here, then, is the re-
computation of the cover-values.

Finally, it should be noted that many parts of the algorithm
are embarrassingly parallel. For example, whenever the cover-
values need to be computed for multiple rows or columns
(generally the slowest part of the algorithm), it can be done
in parallel.

4. EXPERIMENTAL EVALUATION
We tested our algorithm using both synthetic and real-

world data. Before going to the results, we present the
algorithms and error measures we used in the experiments.

4.1 Algorithms and Error Measures
The experiments were conducted using the algorithm of [10]

extended in the aforementioned ways. This algorithm is
called Dynamic. For some experiments, the factors were
iteratively updated after a fixed number of edits (see [10]
for details); this method is called ‘Dynamic w/ iter’. To
compute the initial solution, the Asso algorithm [11] was
used, as it generally was the best-performing algorithm in
the experiments of [10]. With synthetic data we also know
the factor matrices used to create the initial matrix A. In
these cases, Opt refers to the method that uses these factors
as the initial solution. The dynamic rank adjustment was
only used when specifically mentioned.

To measure the quality of the factorizations we used the
simple reconstruction error (3) at the end of the input se-
quence. In addition, we also computed the relative error :
if ei is the error caused by the initialization, ef is the final
error, and |s| the length of the input sequence, the relative
error is defined as (ef − ei)/ |s|. That is, the relative error
explains how much error we do, on average, per each edit.

We also computed the offline factorization, that is, the
factorization of the data after the full sequence of additions
has been applied. We used this to compute the empirical
competitive factor : the reconstruction error of the dynamic
method divided by the reconstruction error of the offline
method. Note that we cannot compute the true competitive
factor as even the offline version of the problem is NP-hard.

The presented algorithms were implemented using Matlab
and Python and the source code together with the synthetic
data generators is freely available for research purposes.1

4.2 Synthetic Data
The purpose of these experiments is to test the effects vari-

ous data characteristics have on the algorithms in a controlled
manner. We studied three characteristics: the Boolean rank
of the factorization, the density of the data, and the amount
of data revealed at the initialization phase. All synthetic
matrices were 500-by-700 and for each data point, we gener-
ated 10 random binary matrices with identical parameters.
In figures, we report the mean over these 10 matrices as well
as the standard deviation. The rank parameter was set to
the correct rank of the synthetic data.

Rank. The rank of the matrices varied from 5 to 25 in
steps of 5. The data was generated so that the expected
density of the data matrix was 10% and the edit sequence
had 50 additions followed by 50 removals. The results are in
Figure 1(a).

1http://www.mpi-inf.mpg.de/~pmiettin/dbmf/

Generally speaking, the higher the rank, the better the al-
gorithm does. This is contrary to normal BMF (see, e.g., [11]),
where synthetic data with higher rank usually yields to worse
results. Here the reason for improvement with higher rank is
probably that the larger number of factors lets the algorithm
adjust itself better.

In the relative error (results omitted due to space con-
straints), the method based on Asso initialization always
gave smaller error than the Opt initialization, meaning that
with Asso, the error did not increase that much. Further, the
relative error was mostly negative for the Asso initialization,
indicating that the dynamic method in fact improved the
reconstruction accuracy compared to the initial solution.

Density. This data had rank 20 and the edit sequence
had 50 additions followed by 50 deletions. The density of the
data is varied, from 1% to 30%. In the results (Figure 1(b)),
the behaviour is similar, albeit reversed, of Figure 1(a): Opt

is somewhat better than Dynamic, and both method’s results
decrease with increased density.

Sequence length. Here all matrices had rank 20 and
expected density of 10%. The edit sequence contained either
25, 50, or 75 additions followed by the same number of
deletions. The results (Figure 1(c)) mirror the other results:
Opt is better than Dynamic, but both behave similarly.

4.3 Real-World Data

4.3.1 Data Sets
For real-world experiments, we used three timestamped

data sets from the HetRec 2011 collection.2

I. The Delicious data3 contains information about which
bookmarks users have tagged. As each user can tag a book-
mark with multiple tags, we only considered the first tag
each user gave to each bookmark. After removing all book-
marks with less than five tags and all users with less than 3
bookmarks tagged, we were left with a 1053-by-1203 binary
matrix with 7 717 ones (density 0.6%).

II. The LastFM data4 contains information about which
artist which user has tagged. We again removed repeated
tags and artists with less than five tags and users with less
than five tagged artists. This left us with a 1348-by-3708
binary matrix with 53 676 ones (density 1%).

III. The Movielens data5 contains information about which
user has rated which movie. We removed movies with less
than ten reviews and users with less than five movies reviewed
to get a 2113-by-6829 matrix with 841 910 ones (density
5.8%).

All elements in these data sets come with a timestamp.
To generate the initial matrix, we took the first two-thirds
of the elements. The edit sequence contained the deletion of
the oldest one-third of the elements randomly mixed with
the addition of the youngest one-third of the elements. This
data generation process was used in oder to simulate the
‘decay’, where the older ratings/likings are ignored while new
ones are being added.

When iterative update of the factors was used (see [10]), it
was triggered after every 1 000 (for Delicious), 10 000 (for
LastFM), or 100 000 (for Movielens) edits.

2http://www.grouplens.org/node/462
3http://www.delicious.com
4http://www.lastfm.com
5www.grouplens.org, www.imdb.com, and http://www.
rottentomatoes.com

5 10 15 20 25
1000

2000

3000

4000

5000

6000

7000

8000

9000

 k

A
b

s
o

lu
te

 e
rr

o
r

Dynamic

Opt

0.01 0.05 0.1 0.2 0.3
500

1000

1500

2000

2500

3000

3500

4000

4500

Data density

A
b

s
o

lu
te

 e
rr

o
r

Dynamic

Opt

25 50 75
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Relative sequence length

A
b

s
o

lu
te

 e
rr

o
r

Dynamic

Opt

(a) (b) (c)

Figure 1: Results for synthetic data using absolute errors and two different methods for finding the initial factorization. (a)
Using different rank k. (b) Using different data density. (c) Using different length of online sequence. The markers show the
mean over ten random samples and the width of the error bars is twice the standard deviation.

0 1 2 3 4 5 6

x 10
5

4.4

4.5

4.6

4.7

4.8

4.9

5
x 10

5

Time

A
b

s
o

lu
te

 E
rr

o
r

Figure 2: The behaviour of the error in each iteration for
Movielens data. The initial factorization is computed using
Asso and the factors are iteratively updated in every 100 000
additions.

4.3.2 Behaviour of the Error over Time
We start by examining how the reconstruction error be-

haves as the data is changed over time. For this, we report
the results with Movielens data using Asso as the initializa-
tion method and updating the factors iteratively after every
100 000 edits. The results are in Figure 2.

The sharp drops in Figure 2 are due to the iterative updates.
The other improvements are a combination of the algorithm
adapting better to the data and the changes removing the
1s that were not covered with the algorithm. Overall, even
at its peak, the error is no more than about 10% higher
than the initial error, signaling that the algorithm is able to
adjust well to the changing data. The reasons for the hill-
shape of the curve are not obvious, but it is possible that the
underlying latent factors change over time: at the first half of
the updates the algorithm is still adapting the factorization,
and after about 300 000 updates, the factorization is properly
adapted, and the subsequent updates fit well on the found
factorization.

4.3.3 Reconstruction Error and Time
The main result here is the reconstruction error with the

real-world data sets, presented in Table 1. Three methods
were used: the first was the standard FDBMF algorithm
(Dynamic), the second used iterative updates to update the

Table 1: Results for real-wold data sets, absolute error. Dy-

namic is the FDBMF algorithm presented here, ‘w/ iter’
means it uses the iterative updates presented in [10]. Offline
uses Asso to solve the BMF in the final matrix and ‘Initial’
refers to using the initial factors as the factorization of the
final matrix.

Data set

Algorithm Delicious LastFM Movielens

Dynamic 4 792 30 488 467 729
w/ iter 4 755 29 829 456 777
Offline 4 601 27 252 472 611
Initial 5 414 37 123 685 765

factors in regular intervals, and the third was the compari-
son point, the offline BMF algorithm. In addition, we also
compared how well the initial factors represented the final
matrix. Both the initial solution and the offline solution were
computed using the Asso algorithm.

The Table 1 shows clearly that even without the iterative
updates, the dynamic algorithm is competitive with the
offline algorithm (the competitive factor is never more than
12%). With the Movielens data the dynamic algorithm is
in fact better than the offline algorithm. Unsurprisingly, the
iterative updates always improve the reconstruction error,
but the effect is mostly very minor.

The iterative updates do have a major effect in one measure:
the running time. (The timing information is in Table 2.)
The iterative method is always at least an order of magnitude
slower than the normal version (a similar observation was
also made in [10]). But the running times of the standard
FDBMF algorithm (Dynamic) and the offline algorithm (here,
Asso) are roughly equal (this does not include the time it
takes to compute the initial factorization).

4.3.4 Adjusting the Rank
We end with the results concerning the DRBMF algorithm.

We computed the results using the Delicious data, and
testing the change in the description length after every 100
changes. If the description length had increased by more
than 0.1%, the procedure to update the rank was initiated.
We also computed the offline rank and description lengths,

Table 2: Running times in seconds with different real-world
data sets

Data set

Algorithm Delicious LastFM Movielens

Dynamic 4 213 4 452
w/iter 585 1 504 11 295
Offline 43 200 4 210

0 1000 2000 3000 4000 5000 6000

1

2

3

4

5

Time

R
a

n
k

Dynamic

Offline

Figure 3: The ranks of dynamic and offline factorizations for
the Delicious data computed after every 100 changes.

taking the matrix after every 100 changes and computing
the MDL-optimal factorization using the algorithm from [13].
The ranks of the factorizations can be seen in Figure 3.

The two algorithms do not constantly agree with each
other. Over time, the dynamic algorithm reduces the rank
while the offline algorithm changes it more often. That the
dynamic algorithm behaves more smoothly is to be expected,
as it cannot compute the factorization from the scratch.
After about 2 000 edits, the offline algorithm agrees with the
dynamic algorithm that the data has Boolean rank 1, and
the two agree almost until the end.

The data, then, has extremely low rank. Why is that?
Looking at the factorization it seems obvious that the al-
gorithms (both online and offline) consider the data having
only very little structure. Such low ranks are not universal,
though. The MDL-optimal rank of the LastFM data, for
example, is over 300.

The ranks alone do not tell the whole story, however. Per
the MDL principle, the factorization of the data that obtains
the smaller description length is the optimal. The description
lengths for the algorithms are presented in Figure 4.

From Figure 4 we see that while the offline algorithm
starts with much lower encoding length, it quickly increases
to the same level as the dynamic algorithm, with the dynamic
algorithm typically being slightly better. This is again an
interesting behaviour. The offline algorithm from [13] is a
heuristic, so it is not guaranteed to give optimal results. Yet,
as it can compute its factorization from the scratch, it should
be able to obtain at least as good results as the dynamic
method. In this light, the dynamic method’s performance
seems very strong.

In experiments done with the other data sets (results
omitted), the algorithm mostly kept the rank untouched.

4.3.5 Conclusions
Overall, the results with real-world data are very good.

The absolute reconstruction errors might look high, but com-

0 1000 2000 3000 4000 5000 6000
4.76

4.78

4.8

4.82

4.84

4.86

4.88
x 10

4

Time

D
e
s
c
ri
p
ti
o
n
 l
e
n
g
th

Dynamic

Offline

Figure 4: Description lengths of the dynamic and offline
factorizations of the Delicious data.

pared to the error caused by the offline method – the only
reasonable comparison point – they are very competitive.
That a dynamic method is better than the comparable offline
method is rather surprising, but as we have seen, with the
heuristics involved here, it sometimes is the case.6 The algo-
rithm also behaves very well when the it is allowed to adjust
the rank. Furthermore, its running time is essentially equiva-
lent to that of the offline algorithm for a single factorization.
Given that the initial factors clearly do not work well in the
dynamic setting, the proposed algorithm is the fastest (and
sometimes the most accurate) method for having constantly
a good factorization.

5. RELATED WORK
Boolean matrix factorizations have gained interest in data

mining community during the past few years. The use of
Boolean matrix factorizations in data mining was proposed
in [11], although related concepts, such as tiles and formal
concepts, were studied much earlier. Tiling a database [6]
refers to the task of covering all 1s of a binary matrix using
few7 itemsets. The Boolean matrix factorization can be seen
as a generalization of this task, each rank-1 binary matrix
defining a ‘tile’. The difference is that tiling does not allow
any 0s to be represented as 1s, whereas the Boolean matrix
factorization allows this type of errors. Before that, Boolean
matrix factorizations were mostly studied by combinatorics;
see [14] and references therein. For some applications and
variations of Boolean matrix factorizations, see [8].

Boolean matrix factorization is not the only type of ma-
trix factorization dealing with binary matrices. Methods
using normal algebra [19] or probabilistic modeling [2, 18],
for example, have been proposed. The characteristics and
behaviour of such methods are very different to Boolean
matrix factorization, though.

Extending a matrix factorization is a common problem in
Information Retrieval (IR) when latent factor models, such
as Latent Semantic Indexing [3], are used. These models
represent the given corpus as a (non-negative) matrix, and

6Obviously, we can use the dynamic algorithm in offline
setting to obtain better offline algorithm. But as it requires
the initial factorization, the benefits are less obvious in purely
offline situation.
7When the goal is to cover all 1s and minimize the number
of tiles, it is equivalent to computing the Boolean rank [9];
when the number of tiles is given and the goal is to minimize
the number of uncovered 1s, the problem is more akin to
standard Boolean matrix factorization.

apply a factorization on it. When a new document arrives to
the corpus, it has to be fold in. The folding-in is performed
by projecting the document vector into the lower-dimensional
latent factor space (e.g. by multiplying it with the inverse of
one of the factor matrices). As noted earlier, this folding-in is
an NP-hard problem with the Boolean matrix factorization.

Recently Saha and Sindhwani [17] proposed an algorithm
for dynamic non-negative matrix factorization. Their method,
as most of those in IR, allows adding new rows and columns
(typically, terms and documents), but not changing the
already-observed values. This restriction makes sense in
the framework of IR, as the contents of the documents rarely
gets changed. Our setup, however, asks specifically for han-
dling the changes in the already-factored part of the matrix.

Boolean matrix factorization can be seen as a type of re-
laxed (bi-) clustering under the Boolean algebra (see [11]),
and previous methods have been proposed for dynamic clus-
tering (see, for example, [4] and citations therein). The
relaxation BMF does, however, seems so fundamental that
the methods proposed in that line of work do not seem to
be applicable in dynamic BMF.

Link prediction is the problem of predicting which edges
are added to the graph in the future. As we have emphasized,
our setting differs from that of link prediction as we do not
aim at predicting anything. Moreover, a typical link predic-
tion algorithm works with undirected graphs (i.e. symmetric
binary matrices), though methods for handling bipartite
graphs do also exist (e.g. [1, 5]).

Finally, the work most related to the present one is of
course [10].

6. CONCLUSIONS
We have presented algorithms for doing fully dynamic

Boolean matrix factorizations with dynamic ranks. This
problem is equivalent to finding a quasi-biclique edge covering
a bipartite graph, and can be used in many graph analysis
tasks. As already the offline version of the BMF problem is
NP-hard even to approximate well, our algorithm is naturally
a heuristic. Yet, our tests with real-world data show that the
dynamic and online algorithms are, not only as fast as, but
in some cases more accurate than their offline counterparts.
The ability to dynamically adjust the rank allows the fast
dynamic algorithm to be used longer before the factorization
has to be re-computed from the scratch.

In terms of binary matrices, we have considered the most
general case, corresponding to bipartite graphs. If the orig-
inal graph is undirected, however, the adjacency matrix is
more restricted. Could this fact be used to improve the
presented algorithm’s performance with undirected graphs is
an interesting question for future research.

The algorithm presented here is fully sequential. This will
naturally reduce its scalability to large graphs. As mentioned
above, many parts of the algorithm are embarrassingly par-
allel, though, so a shared-memory parallel implementation
is straight forward. Whether this or similar algorithm can
be efficiently implemented in a distributed setting is again a
problem for future work.

7. REFERENCES
[1] N. Benchettara, R. Kanawati, and C. Rouveirol.

Supervised machine learning applied to link prediction
in bipartite social networks. In ASONAM ’10, pages
326–330. IEEE, 2010.

[2] E. Bingham, A. Kabán, and M. Fortelius. The aspect
Bernoulli model: multiple causes of presences and
absences. Pattern Anal. Appl., 12(1):55–78, 2009.

[3] S. C. Deerwester et al. Indexing by latent semantic
analysis. J. Am. Soc. Inform. Sci., 41(6):391–407, 1990.

[4] D. Duan, Y. Li, R. Li, and Z. Lu. Incremental K-clique
clustering in dynamic social networks. Artif. Intell.
Rev., May 2011.

[5] D. Dunlavy, T. G. Kolda, and E. Acar. Temporal Link
Prediction Using Matrix and Tensor Factorizations.
ACM TKDD, 5(2), 2011.

[6] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling
databases. In DS ’04, pages 77–122, 2004.

[7] P. Miettinen. On the positive-negative partial set cover
problem. Information Processing Letters,
108(4):219–221, 2008.

[8] P. Miettinen. Matrix Decomposition Methods for Data
Mining: Computational Complexity and Algorithms.
PhD thesis, Department of Computer Science,
University of Helsinki, 2009.

[9] P. Miettinen. Sparse Boolean Matrix Factorizations. In
ICDM ’10, pages 935–940, 2010.

[10] P. Miettinen. Dynamic Boolean Matrix Factorizations.
In ICDM ’12, pages 519–528, Dec. 2012.

[11] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and
H. Mannila. The Discrete Basis Problem. IEEE TKDE,
20(10):1348–1362, Oct. 2008.

[12] P. Miettinen and J. Vreeken. Model Order Selection for
Boolean Matrix Factorization. In KDD ’11, pages
51–59, 2011.

[13] P. Miettinen and J. Vreeken. MDL4BMF: Minimum
Description Length for Boolean Matrix Factorization.
Technical Report MPI-I-2012-5-001,
Max-Planck-Institut für Informatik, June 2012.

[14] S. D. Monson, N. J. Pullman, and R. Rees. A Survey of
Clique and Biclique Coverings and Factorizations of
(0, 1)-Matrices. Bull. ICA, 14:17–86, 1995.

[15] R. Pagh and F. F. Rodler. Cuckoo hashing. J.
Algorithm, 51(2):122–144, 2004.

[16] J. Rissanen. Modeling by shortest data description.
Automatica, 14(5):465–471, Sept. 1978.

[17] A. Saha and V. Sindhwani. Learning evolving and
emerging topics in social media: A dynamic NMF
approach with temporal regularization. In WSDM ’12,
pages 693–702, 2012.

[18] A. Streich, M. Frank, D. Basin, and J. M. Buhmann.
Multi-assignment clustering for Boolean data. In ICML
’09, 2009.

[19] Z.-Y. Zhang, T. Li, C. Ding, X.-W. Ren, and X.-S.
Zhang. Binary matrix factorization for analyzing gene
expression data. Data Min. Knowl. Discov.,
20(1):28–52, 2010.

