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Abstract. Detecting small sets of relevant patterns from a given dataset is a
central challenge in data mining. The relevance of a pattern is based on user-
provided criteria; typically, all patterns that satisfy certain criteria are considered
relevant. Rule-based languages like Answer Set Programming (ASP) seem well-
suited for specifying such criteria in a form of constraints. Although progress has
been made, on the one hand, on solving individual mining problems and, on the
other hand, developing generic mining systems, the existing methods either focus
on scalability or on generality. In this paper we make steps towards combining
local (frequency, size, cost) and global (various condensed representations like
maximal, closed, skyline) constraints in a generic and efficient way. We present a
hybrid approach for itemset and sequence mining which exploits dedicated highly
optimized mining systems to detect frequent patterns and then filters the results
using declarative ASP. Experiments on real-world datasets show the effectiveness
of the proposed method and computational gains both for itemset and sequence
mining.

1 Introduction

Motivation. Availability of vast amounts of data from different domains has led to an
increasing interest in the development of scalable and flexible methods for data analysis.
A key feature of flexible data analysis methods is their ability to incorporate users’
background knowledge and different criteria of interest. They are often provided in
the form of constraints to the valid set of answers, the most common of which is the
frequency threshold: a pattern is only considered interesting if it appears often enough.
Mining all frequent (and otherwise interesting) patterns is a very general problem in
data analysis, with applications in medical treatments, customer shopping sequences,
Weblog click streams and text analysis, to name but a few examples.

Most data analysis methods consider only one (or few) types of constraints, lim-
iting their applicability. Constraint Programming (CP) has been proposed as a general
approach for (sequential) mining of frequent patterns [1], and Answer Set Programming
(ASP) [6] has been proved to be well-suited for defining the constraints conveniently
thanks to its expressive and intuitive modelling language and the availability of opti-
mized ASP solvers (see e.g., [13,5,9] for existing approaches).

In general, all constraints can be classified into local constraints, that can be vali-
dated by the pattern candidate alone, and global constraints, that can only be validated
? This work is partially funded by the ERC AdG SYNTH (Synthesising inductive data models).



via an exhaustive comparison of the pattern candidate against all other candidates. Com-
bining local and global constraints in a generic way is an important and challenging
problem, which has been widely acknowledged in the constraint-based mining commu-
nity. Although progress has been made, on the one hand, on solving individual mining
problems and, on the other hand, on developing generic mining systems, the existing
methods either focus on scalability or on generality, but rarely address both of these
aspects. This naturally limits the practical applicability of the existing approaches.
State of the art and its limitations. Purely declarative ASP encodings for frequent
and maximal itemset mining were proposed in [13]. In this approach, first every item’s
inclusion into the candidate itemset is guessed, and the guessed candidate pattern is
checked against frequency and maximality constraints. While natural, this encoding is
not truly generic, as adding extra local constraints requires significant changes in it.
Indeed, for a database, where all available items form a frequent (and hence maximal)
itemset, the maximal ASP encoding has a single model. The latter is, however, elimi-
nated once restriction on the length of allowed itemsets is added to the program. This is
undesired, as being maximal is not a property of an itemset on its own, but rather in the
context of a collection of other itemsets [3]. Thus, ideally one would be willing to first
apply all local constraints and only afterwards construct a condensed representation of
them, which is not possible in [13].

This shortcoming has been addressed in the recent work [5] on ASP-based sequen-
tial pattern mining, which exploits ASP preference-handling capacities to extract pat-
terns of interest and supports the combination of local and global constraints. However,
both [5] and [13] present purely declarative encodings, which suffer from scalability
issues caused by the exhaustive exploration of the huge search space of candidate pat-
terns. The subsequence check amounts to testing whether an embedding exists (match-
ing of the individual symbols) between sequences. In sequence mining, a pattern of
size m can be embedded into a sequence of size n in O(nm) different ways, therefore,
clearly a direct pattern enumeration is unfeasible in practice.

While a number of individual methods tackling selective constraint-based mining
tasks exist (see Tab. 1 for comparison) there is no uniform ASP-based framework that
is capable of effectively combining constraints both on the global and local level and is
suitable for itemsets and sequences alike.
Contributions. The goal of our work is to make steps towards building a generic
framework that supports mining of condensed (sequential) patterns, which (1) effec-
tively combines dedicated algorithms and declarative means for pattern mining and (2)
is easily extendable to incorporation of various constraints. More specifically, the salient
contributions of our work can be summarized as follows:

– We present a general extensible pattern mining framework for mining patterns of
different types using ASP.

– We introduce a feature comparison, such as closedness under solutions, between
different ASP mining models and dominance programming, which is a generic
itemset mining language and solver.

– We demonstrate the feasibility of our approach with an experimental evaluation
across multiple itemset and sequence datasets.



Datatype Task [13] [5] [16] Our work

Itemset
frequent pattern mining X – X X

condensed (closed, max, etc) X∗ – X X
condensed under constraints – – X X

Sequence
frequent pattern mining – X – X

condensed (closed, max, etc) – X – X
condensed under constraints – X – X

Table 1: Feature comparison between various ASP mining models and dominance pro-
gramming (“–” : “not designed for this datatype”, X∗ : only maximal is supported)

2 Preliminaries

In this section we briefly recap the necessary background both from the fields of pattern
mining and Answer Set Programming (ASP).

Let D be a dataset, L a language for expressing pattern properties or defining sub-
groups of the data, and q a selection predicate. The task of pattern mining is to find
Th(L, D, q) = {φ ∈ L | q(D,φ) is true} (see the seminal work [14]).

Pattern mining has been mainly studied for itemsets, sequences and graphs. These
settings are determined by the language of L. We focus on the first two categories.

2.1 Patterns

Itemsets. Itemsets represent the most simple setting of frequent pattern mining. Let I
be a set of items {o1, o2, . . . , on}. Then a nonempty subset of I is called an itemset. A
transaction dataset D is a collection of itemsets, D = {t1, . . . , tm}, where ti ⊆ I. For
any itemset α, we denote the set of transactions that contain α asDα = {i | α ⊆ ti, ti ∈
D} and we refer to |Dα| as the support (frequency) of α in D, written sup(α). The
relative frequency of α inD refers to the ratio between sup(α) and |D |. The cardinality
(or size) |α| of an itemset α is the number of items contained in it.

Definition 1 (Frequent Itemset). For a transaction dataset D and a frequency thresh-
old σ ≥ 0, an itemset α is frequent in D if sup(α) ≥ σ.1

Example 1. Consider a transaction dataset D from Tab. 2. We have I = {a, b, c, d, e}
and |D| = 3. For σ = 2, the following itemsets are frequent: α1={a}, α2={b},
α3={e}, α4={a, e} and α5={b, e}. ut

Sequences. A sequence is an ordered set of items 〈s1, . . . , sn〉. The setting of sequence
mining includes two related yet different cases: frequent substrings and frequent subse-
quences. In this work we focus on the latter.

1 In frequent pattern mining, often, a relative threshold, i.e.,
σ

|D| is specified by the user.



ID a b c d e

1 X X X X
2 X X X
3 X X

Table 2: Transaction database

ID Sequence
1 〈a b c d a e b〉
2 〈b c e b〉
3 〈a a e〉

Table 3: Sequence database

Definition 2 (Embedding in a Sequence). Let S = 〈s1, . . . , sm〉 and S′ = 〈s′1, . . . , s′n〉
be two sequences of size m and n respectively with m ≤ n. The tuple of integers
e = (e1, . . . , em) is an embedding of S in S′ (denoted S ve S′) if and only if
e1 < . . . < em and for any i ∈ {1, . . . ,m} it holds that si = s′ei .

Example 2. For a dataset in Tab. 3 we have that 〈b c e b〉 @e1 〈a b c d a e b〉 for e1 =
(2, 3, 6, 7) and analogously, 〈a a e〉 @e2 〈a b c d a e b〉 with e2 = (1, 5, 6).

We are now ready to define an inclusion relation for sequences.

Definition 3 (Sequence Inclusion). Given two sequences S = 〈s1, . . . , sn〉 and S′ =
〈s′1, . . . , s′m〉, of size m and n resp. with n ≤ m, we say that S is included in S′ or S is
a subsequence of S′ denoted by S v S′ iff an embedding e of S in S′ exists, i.e.

S v S′ ↔ ∃e1 < . . . < em and ∀i ∈ 1 . . .m : si = s′ei . (1)

Example 3. In Ex. 2 we have 〈b c e b〉 @ 〈a b c d a e b〉 but 〈a a e〉 6@ 〈b c e b〉. ut

For a given sequence S and a sequential dataset D = {S1, . . . , Sn} we denote by
DS the subset of D s.t. S v S′ for all S′ ∈ DS . The support of S is sup(S) = |DS | .

Definition 4 (Frequent Sequence). For a sequential dataset D = {S1, . . . , Sn} and a
frequency threshold σ ≥ 0, a sequence S is frequent in D if sup(S) ≥ σ.

Example 4. For a dataset in Tab. 3 and σ = 2, it holds that 〈b c e b〉 and 〈a a e〉 are
frequent, while 〈b d b〉 is not. ut

Note thatv and⊆ are incomparable relations. Indeed, consider two sequences s1 =
〈a b〉 and s2 = 〈b a a〉. While s1 ⊂ s2, we clearly have that s1 6@ s2.

2.2 Condensed Pattern Representations under Constraints

In data mining, constraints are typically specified by the user to encode domain back-
ground knowledge. In [17] four types of constraints are distinguished: constraints 1)
over the pattern (e.g., restriction on its size), 2) over the cover set (e.g., minimal fre-
quency), 3) over the inclusion relation (e.g., maximal allowed gap in sequential pat-
terns) and 4) over the solution set (e.g., condensed representations).

Orthogonally, constraints can be classified into local and global ones. A constraint
is local if deciding whether a given pattern satisfies it is possible without looking at
other patterns. For example, minimal frequency or maximal pattern size are local con-
straints. On the contrary, deciding whether a pattern satisfies a global constraint requires



comparing it to other patterns. All constraints from the 4th group are global ones. We
are interested in global constraints related to condensed representations.

As argued in Sec. 1, the order in which constraints are applied influences the solu-
tion set [3]. As in [3] in this work we apply global constraints only after local ones.

We now present the notions required in our pattern mining framework. Here, the
definitions are given for itemsets; for sequences they are identical up to substitution of
⊂ with @ (subsequence relation). First, to rule out patterns that do not satisfy some of
the local constraints, we introduce the notion of validity.

Definition 5 (Valid pattern under constraints). Let C be a constraint function from
L to {>,⊥} and let p be a pattern in L, then the pattern p is called valid iff C(p) = >,
otherwise it is referred as invalid.

Example 5. Let C be a constraint function checking whether a given pattern is of size
at least 2. Then for Ex. 1, we have C(αi) = ⊥, i = 1..3 and C(αj) = >, j = 4..5. ut

For detecting patterns that satisfy a given global constraint, the notion of dominance
is of crucial importance. Intuitively, a dominance relation reflects pairwise preference
(<∗) between patterns and it is specific for each mining setting. In this work we primar-
ily focus on global constraints related to maximal, closed, free and skyline condensed
representations, for which <∗ is defined as follows:

(i) Maximal. For itemsets p, q, p <∗ q holds iff p ⊂ q
(ii) Closed. For itemsets p, q, p <∗ q holds iff p ⊂ q ∧ sup(p) = sup(q)
(iii) Free. For itemsets p, q, p <∗ q holds iff q ⊂ p ∧ sup(p) = sup(q)
(iv) Skyline. For itemsets p, q, p <∗ q holds iff

(a) sup(p) ≤ sup(q) and size(p) < size(q) or
(b) sup(p) < sup(q) and size(p) ≤ size(q)

Dominated patterns under constraints are now formally defined.

Definition 6 (Dominated pattern under constraints). Let C be a constraint function,
and let p be a pattern, then p is called dominated iff there exists a pattern p′ ∈ L such
that p <∗ p′ and p′ is valid under C.

Example 6. In Ex. 1 for the maximality constraint we have that α1 is dominated by α4,
α2 by α5, while α3 both by α4 and α5. ut

Exploiting the above definitions we obtain condensed patterns under constraints.

Definition 7 (Condensed pattern under constraints). Let p be a pattern from L, and
let C be a constraint function, then a pattern p is called condensed under constraints
iff it is valid and not dominated under C.

Example 7. For the constraint function selecting maximal itemsets of size at most 2 and
size at least 2, α4 and α5 from Ex. 1 are condensed patterns. ut



2.3 Answer Set Programming

Answer Set Programming (ASP) [6] is a declarative problem solving paradigm oriented
towards difficult search problems. ASP has its roots in Logic Programming and Non-
monotonic Reasoning. An ASP program Π is a set of rules of the form

a 0 :- b 1, ..., b k, not b k+1, ..., not b m, (2)

where 1 ≤ k ≤ m, and a 0, b 1, ..., b m are classical literals, and not is
default negation. The right-hand side of r is its body, Body(r), while the left-hand side
is the head, Head(r). Body+(r) and Body−(r) stand for the positive and negative parts
of Body(r) respectively. A rule r of the form (2) is a fact ifm = 0. We omit the symbol
:- when referring to facts. A rule without head literals is a constraint. A rule is positive
if k = m.

An ASP program Π is ground if it consists of only ground rules, i.e. rules without
variables. Ground instantiation Gr(Π) of a nonground program Π is obtained by sub-
stituting variables with constants in all possible ways. The Herbrand universe HU (Π )
(resp. Herbrand base HB(Π )) of Π , is the set of all constants occurring in Π , (resp.
the set of all possible ground atoms that can be formed with predicates and constants
occurring in Π). Any subset of HB(P) is a Herbrand interpretation. MM (Π ) denotes
the subset-minimal Herbrand interpretation (model) of a ground positive program Π .

The semantics of an ASP program is given in terms of its answer sets. An interpre-
tation A of Π is an answer set (or stable model) of Π iff A = MM (ΠA), where ΠA is
the Gelfond–Lifschitz (GL) reduct [6] ofΠ , obtained fromGr(Π) by removing (i) each
rule r such that Body−(r) ∩ A 6= ∅, and (ii) all the negative atoms from the remaining
rules. The set of answer sets of a program Π is denoted by AS(Π).

Example 8. Consider the program Π given as follows:

(1) pattern(1); (2) pattern(2); (3) item(1,a);

(4) item(1,b); (5) item(2,a);

(6) not subset(I,J):-pattern(I), item(I,V), I != J,

pattern(J), not item(J,V).

The grounding Gr(Π ) of Π is obtained from Π by substituting I,J with 1,2 and
V with b resp. The GL-reduct Π A′

(Π ) for the interpretation A′ containing facts of Π
and not subset(1,2) differs from Gr(Π ) only in that notitem(2,b) is not in
the body of the rule. A′ is the minimal model of Π A′

(Π ), and thus it is in AS(Π). ut

Other relevant language constructs include conditional literals and cardinality con-
straints [22]. The former are of the form a:b 1,...,b m, the latter can be written as
l{c 1,...,c n}t, where a and b i are possibly default negated literals and each
c j is a conditional literal; l and t provide lower and upper bounds on the number
of satisfied literals in a cardinality constraint. For instance, 1{a(X):b(X)}3 holds,
whenever between 1 and 3 instances of a(X) (subject to b(X)) are true. Furthermore,
aggregates are of the form #sum{K: cost(I,K)}>N. This atom is true, whenever
the sum of all K, such that cost(I,K) is true, exceeds N.



3 Hybrid ASP-based Mining Approach

In this section we present our hybrid method for frequent pattern mining. Unlike previ-
ous ASP-based mining methods, our approach combines highly optimized algorithms
for frequent pattern discovery with the declarative ASP means for their convenient post-
processing. Here, we focus on itemset and sequence mining; however our approach can
be also applied to subgraph discovery (details are left for future work).

Given a frequency threshold σ, a (sequential) dataset D and a set of constraints
C = Cl ∪ Cg , where Cl and Cg are respectively local and global constraints, we proceed
in two steps as follows.

Step 1. First, we launch a dedicated optimized algorithm to extract all (sequential)
frequent patterns from a given dataset, satisfying the minimal frequency threshold σ.
Here, any frequent pattern mining algorithm can be invoked. We use Eclat [24] for
itemsets and PPIC [2] for sequences.

Step 2. Second, the computed patterns are post-processed using the declarative means
to select a set of valid patterns (i.e., those satisfying constraints in Cl). For that the
frequent patterns obtained in Step 1 are encoded as facts item(i,j) for itemsets and
seq(i,j,p) for sequences where i is the pattern’s ID, j is an item contained in it and
p is its position. The local constraints in Cl are represented as ASP rules, which collect
IDs of patterns satisfying constraints from Cl into the dedicated predicate valid, while
the rest of the IDs are put into the not valid predicate.

Finally, from all valid patterns a desired condensed representation is constructed by
storing patterns i in the selected predicate if they are not dominated by other
valid patterns based on constraints from Cg . Following the principle of [13], in our
work every answer set represents a single desired pattern, which satisfies both local and
global constraints. The set of all such patterns forms a condensed representation. In
what follows we discuss our encodings of local and global constraints in details.

3.1 Encoding Local Constraints

In our declarative program we specify local constraints by the predicate valid, which
reflects the conditions given in Def. 5. For every constraint in Cl we have a set of ded-
icated rules, stating when a pattern is not valid. For instance, a constraint checking
whether the cost of items in a pattern exceeds a given threshold N is encoded as

not valid(I) :- #sum{C:item(I,J),cost(J,C)} > N, pattern(I).

A similar rule for sequences can be defined as follows:

not valid(I) :- #sum{C:seq(I,J,P),cost(J,C)} > N, pattern(I).

Analogously, one can specify arbitrary domain constraints on patterns.



� �
1 time(1..5).
2 % people born in Germany or France are Europeans
3 eu(I) :- seq(I,bG,P).
4 eu(I) :- seq(I,bF,P).
5 % collect those who moved to France before P
6 moved_before(X,P) :- seq(X,mF,P1), P>P1, time(P), time(P1).
7 % collect those who moved to France after P and before masters
8 moved_after(X,P) :- seq(X,mF,P1), seq(X,ma,P2), P<P1,
9 p1<P2, time(P), time(P1), time(P2).

10 % keep Europeans who moved to Germany straight before masters
11 keep(X) :- seq(X,ma,P+1), seq(X,mG,P), eu(X).
12 % keep Germans who did not move before masters
13 keep(X) :- seq(X,bG,P1), seq(X,ma,P), not moved_before(X,P).
14 % keep Europeans whose last move before masters was to Germany
15 keep(X) :- seq(X,mG,P1), seq(X,ma,P2), P1<P2,
16 eu(X), not moved_after(X,P1).
17 % a pattern is not valid, if it should not be kept
18 not_valid(X) :- pattern(X), not keep(X)
19� �

Listing 1.1: Moving habits of people during studies

Example 9. Consider a dataset storing moving habits of young people during their stud-
ies. Let the dedicated frequent sequence mining algorithm return the following patterns:
S1 = 〈bG mF ba mG ma〉; S2 = 〈bF mG ba mF ma〉; S3 = 〈bA ba ma〉, where bG ,
bF , bA stand for born in Germany, France and America, ba,ma stand for bachelors
and masters and the predicates mG ,mF reflect that a person moved to Germany and
France, respectively. Suppose, we are only interested in moving habits of Europeans,
who got their masters degree from a German university. The local domain constraint
expressing this would state that (1) bA should not be in the pattern, while (2) either
both bG and ma should be in it without any mF in between or mG should precede
ma . These constraints are encoded in the program in List. 1.1. From the answer set of
this program we get that both S2 and S3 are not valid, while S1 is. ut

To combine all local constraints from Cl we add to a program a generic rule speci-
fying that a pattern I is valid whenever not valid(I) cannot be inferred.

valid(I) :- pattern(I), not not valid(I)

Patterns i, for which valid(i) is deduced are then further analyzed to construct
a condensed representation based on global constraints from Cg .

3.2 Encoding Global Constraints

The key for encoding global constraints is the declarative formalization of the domi-
nance relation (Def. 6). For example, for itemsets the maximality constraint boils down



� �
1 % I is not a subset of J if I has items that are not in J
2 not_subset(J) :- selected(I), item(I,V), not item(J,V),
3 valid(J), I != J.
4 % derive dominated whenever I is subset of J
5 dominated :- selected(I), valid(J),
6 I != J, not not_subset(J).� �

Listing 1.2: Maximal itemsets encoding

to pairwise checking of subset inclusion between patterns. For sequences this requires
a check of embedding existence between sequences.

Regardless of a pattern type from L and a constraint from Cg every encoding pre-
sented in this section is supplied with a rule, which guesses (selected/1 predicate)
a single valid pattern to be a candidate for inclusion in the condensed representation,
and a constraint that rules out dominated patterns thus enforcing a different guess.

1 {selected(I) : valid(I)} 1.

:- dominated.

In what follows, we discuss concrete realizations of the dominance relation both
for itemsets and sequences for various global constraints, i.e., we present specific rules
related to the derivation of the dominated/0 predicate.

Itemset Mining. We first provide an encoding for maximal itemset mining in List 1.2.
To recall, a pattern is maximal if none of its supersets is frequent. An itemset I is
included in J iff for every item i ∈ I we have i ∈ J . We encode the violation of this
condition in lines (1)–(3). The second rule presents the dominance criteria.

For closed itemset mining a simple modification of List. 1.2 is required. An itemset
is closed if none of its supersets has the same support. Thus to both of the rules from
List. 1.2 we need to add atoms support(I,X), support(J,X), which store the
support sets of I and J respectively (extracted from the output of Step 1).

For free itemset mining the rules of the maximal encoding are changed as follows:� �
4 not_superset(J) :- selected(I), item(J,V), not item(I,V),
5 valid(J), I != J.
6 dominated :- selected(I), valid(J), support(I,X),
7 I != J, not not_superset(J), support(J,X).� �

Finally, the skyline itemset/sequence encoding is given in List. 1.3, where the first
two rules specify the conditions (a) and (b) for skyline itemsets as specified in Sec. 2.

Sequence Mining. The subpattern relation for sequences is slightly more involved,
than for itemsets, as it preserves the order of elements in a pattern. To recall, a sequence
S is included in S′ iff an embedding e exists, such that S ve S′.

In List. 1.4 we present the encoding for maximal sequence mining. A selected pat-
tern is not maximal if it has at least one valid superpattern. We rule out patterns that are



� �
1 % support and size comparison among patterns
2 g_size_geq_fr(J) :- selected(I), valid(J), support(I,X),
3 support(J,Y), size(I,Si), size(J, Sj),
4 Si < Sj, X <= Y.
5 geq_size_g_fr(J) :- selected(I), valid(J), support(I,X),
6 support(J,Y), size(I,Si), size(J, Sj),
7 Si <= Sj, X < Y.
8 % derivation of the domination condition
9 dominated :- valid(J), g_size_geq_fr(J).

10 dominated :- valid(J), geq_size_g_fr(J).� �
Listing 1.3: Skyline itemsets encoding

for sure not superpatterns of a selected sequence. First, obviously J is not a superpattern
of I if I is not a subset of J (lines (4)–(5)), i.e., if not subset(J) is derived, then J
does not dominate I. If J is a superset of I then to ensure that I is not dominated by J,
the embedding existence has to be checked (lines (6)–(9)). I is not dominated by J if
an item exists in I, which together with its sequential neighbor cannot be embedded in
J. This condition is checked in lines (10)–(13), where domcand(V,J,P) is derived
if for an item V at position P and its follower, embedding in J can be found.

The encoding for closed sequence mining is obtained from the maximal sequence
encoding analogously as it is done for itemsets. The rules for free sequence mining are
constructed by substituting lines (4)–(13) of List. 1.4 with the following ones:� �

4 not_superset(J) :- selected(I), in(V,J),
5 not in(V,I), I != J.
6 domcand(V,J) :- selected(I), seq(J,V,P), item(J,P+1,W),
7 item(I,V,Q), seq(I,W,Q’),Q’>Q, I != J.
8 not_dominated_by(J) :- selected(I), valid(J), I != J,
9 seq(J,V,P), seq(J,W,P+1),

10 not domcand(V,J).� �
Finally, the encoding for mining skyline sequences coincides with the skyline item-

sets encoding, which is provided in List. 1.3.

4 Evaluation

In this section we evaluate the proposed hybrid approach by comparing it to the existing
declarative pattern mining methods: ASP model for sequences from [5] and Dominance
Programming (DP) from [16]. We do not consider the itemset mining ASP model [13],
since it focuses only on frequent itemset mining and is not applicable to the construction
of condensed representations under constraints as in [16]. Moreover, we do not perform
comparison with dedicated algorithms designed for a specific problem type; these are
known to be more efficient than declarative mining approaches [17].

More specifically, we investigate the following experimental questions.



� �
1 % if V appears in a valid pattern I, derive in(V,I)
2 in(V,I) :- seq(I,V,P), valid(I).
3 % I is not a subset of J if I has V that J does not have
4 not_subset(J) :- selected(I), valid(J), I != J,
5 seq(I,V,P), not in(V,J).
6 % if for a subseq <V,W> in I there is V followed
7 % by W in J then deduce domcand(V,J)
8 domcand(V,J,P) :- selected(I), seq(I,V,P), seq(I,W,P+1), I != J
9 valid(J), seq(J,V,Q), seq(J,W,Q’), Q’>Q.

10 % if domcand(V,J) does not hold for some V in I
11 % and a pattern J then derive not dominated by(J)
12 not_dominated_by(J) :- selected(I), seq(I,V,P), seq(I,W,P+1),
13 I != J, valid(J), not domcand(V,P,J).
14 % if neither not dominated by(J) nor not subset of(J)
15 % are derived for some J, then I is dominated
16 dominated :- selected(I), valid(J), I != J,
17 not not_subset_of(J), not not_dominated_by(J).� �

Listing 1.4: Maximal sequence encoding

– Q1: how does the runtime of our method compare to the existing ASP-based se-
quence mining models?

– Q2: what is the runtime gap between the specialized mining languages such as
dominance programming and our method?

– Q3: what is the influence of local constraints on the runtime of our method?

In Q1 we compare our work with the ASP-based model from [5]. In Q2 we measure
the runtime difference between specialized itemset mining languages [16] and our ASP-
based model. Finally, in Q3 we estimate the runtime effect of adding local constraints.

We report evaluation on 2 transaction datasets,2 Mushrooms (8124 transactions/119
items) and Vote (435/48), and on 3 sequence datasets (full),3 JMLR (788 sequences/3847
distinct symbols), Unix Users (9099/4093), and iPRG (8628/21). All experiments have
been performed on a desktop with Ubuntu 14.04, 64-bit environment, Intel Core i5-3570
4xCPU 3.40GHz and 8GB memory using clingo 4.5.4 4 and C++14 for the wrapper.
The timeout was set to one hour. Free pattern mining demonstrates the same runtime
behavior as closed, due to the symmetric encoding, and is thus omitted.

To investigate Q1, in Fig. 1a, we compare the ASP model [5] with our method on
the default 200 sequence sample, generated by the tool5 from [5]. We performed the
comparison on the synthetic data, as the sequence-mining model [5] failed to compute
condensed representations on any of the standard sequence datasets for any support
threshold value within the timeout. One can observe that our method consistently out-

2 From https://dtai.cs.kuleuven.be/CP4IM/datasets/.
3 From https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html.
4 http://potassco.sourceforge.net
5 https://sites.google.com/site/aspseqmining

https://dtai.cs.kuleuven.be/CP4IM/datasets/
https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
http://potassco.sourceforge.net
https://sites.google.com/site/aspseqmining


(a) Comparing with ASP sequence model [5]
on the 200 generated sequences (closed)

(b) Maximal sequence patterns

(c) Closed sequence patterns (d) Skyline sequence patterns

Fig. 1: Investigating Q1: comparison with pure ASP model (1a) and maximal (1b),
closed (1c), and skyline (1d) sequence mining on JMLR, Unix Users, and iPRG
datasets.

performs the purely declarative approach [5] and the advantage naturally becomes more
apparent for smaller frequency threshold values.

In Figs. 1b, 1c and 1d (the point 0.05 for JMLR is a timeout), we present the run-
times of our method for maximal, closed and skyline sequential pattern mining settings
on JMRL, Unix Users and iPRG datasets. In contrast to [5], our method managed to
produce results on all of these datasets for reasonable threshold values within a couple
of minutes.

To investigate Q2, we compare out-of-the-box performance of DP [16] with our ap-
proach on maximal, closed and skyline itemset mining problems using standard datasets
Vote and Mushrooms. As we see in Figs. 2a and 2b, on average, DP is one-to-two or-
ders of magnitude faster; this gap is, however, diminishing as the minimum frequency
increases. Surprisingly, our approach is significantly faster than DP out-of-the-box for
skyline patterns (Fig. 2c); this holds also for the Mushrooms dataset, not presented here.

Fine-tuning parameters of DP by changing the order in which operators are applied
within the system (skyline+ option) allowed to close this gap. With this adaptation DP
demonstrates one-to-two orders of magnitude better performance, as can be seen in
Fig. 2c. However, fine-tuning such a system requires the understanding of its inner
mechanisms or exhaustive application of all available options.

To address Q3 we introduced three simple local constraints for the itemset mining
setting from Q2: two size constraints size(I) > 2 and size(I) < 7 and a cost constraint:



(a) Maximal itemset mining: comparing with
DP on Vote and Mushrooms

(b) Closed itemset mining: comparing with DP
on Vote and Mushrooms

(c) Skyline itemset mining: comparing with
out-of-the-box and fine-tuned DP on Vote

(d) Closed itemset mining: our method with
(w/o) local constraints on Vote and Mushrooms

Fig. 2: Investigating Q2: comparison with DP [16] (2b, 2a, 2c); and Q3: the effect of
local constraints on runtime (2d)

each item gets weight equal to its value with the maximal budget of n, which is set to
20 in the experiments.

In Fig. 2d, we present the results for closed itemset mining with and without local
constraints (experiments with other global constraints demonstrate a similar runtime
pattern and are not depicted here for space reasons). Local constraints ensure better
propagation and speed up the search. One of the key design features of our encoding
is the filtering technique used to select candidate patterns among only valid patterns.
Its effect can be clearly seen, e.g., for the Vote dataset in Fig. 2d, where for certain
frequencies the runtime gap is close to an order of magnitude.

In all experiments, Step 1 of our method contributes to less than 5% of runtime.
Overall, our approach can handle real world datasets for sequential pattern mining as
demonstrated in Q1. In many cases its performance is close to the specialized mining
languages, as shown in Q2. Finally, as demonstrated in Q3 various local constraints can
be effectively incorporated into our encoding bringing additional performance benefits.

5 Related Work

The problem of enhancing pattern mining by injecting various user-specified constraints
has recently gained increasing attention. On the one hand, optimized dedicated ap-
proaches exist, in which some of the constraints are deeply integrated into the min-



ing algorithm, e.g., [19]. On the other hand, declarative methods based on Constraint
Programming [21,17,15], SAT solving [12,11] and ASP [13,5,9] have been proposed.

Techniques from the last group are the closest to our work. However, in contrast to
our method, they typically focus only on one particular pattern type and consider local
constraints and condensed representations in isolation [20,23]. The works [16,7] fo-
cused on CP-based rather than ASP-based itemset mining and did not take into account
sequences unlike we do. The authors of [5] studied declarative sequence mining with
ASP, but in contrast to our approach, optimized algorithms for frequent pattern discov-
ery are not exploited in their method. A theoretical framework for structured pattern
mining was proposed in [8], whose main goal was to formally define the core com-
ponents of the main mining tasks and compare dedicated mining algorithms to their
declarative versions. While generic, this work did not take into account local and global
constraints and neither has it been implemented.

In [13,5], purely declarative ASP methods have been considered; unlike our ap-
proach, they do not admit integration of optimized mining algorithms and thus lack
practicality. In fact, the need for such an integration in the context of complex struc-
tured mining was even explicitly stated in [18] and in [10], which study formalizations
of graph mining problems using logical means.

6 Conclusion

We have presented a hybrid approach for condensed itemset and sequence mining,
which uses the optimized dedicated algorithms to determine the frequent patterns and
post-filters them using a declarative ASP program. The idea of exploiting ASP for pat-
tern mining is not new; it was studied for both itemsets and sequences. However, un-
like previous methods we made steps towards optimizing the declarative techniques by
making use of the existing specialized methods and also integrated the dominance pro-
gramming machinery in our implementation to allow for combining local and global
constraints on a generic level.

One of the possible future directions is to generalize the proposed approach into
an iterative technique, where dedicated data mining and declarative methods are inter-
linked and applied in an iterative fashion. More specifically, all constraints can be split
into two parts: those that can be effectively handled using declarative means and those
for which specialized algorithms are much more scalable. Answer set programs with
external computations [4] possibly could be exploited in this mining context.

Another promising but challenging research stream concerns the integration of data
decomposition techniques into our approach. Here, one can divide a given dataset into
several parts, such that the frequent patterns are identified in these parts separately, and
then the results are combined.

Orthogonal to this, materialization of the presented ideas on other pattern types
including graphs and sequences of itemsets instead of sequences of individual symbols
is an interesting future direction.
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