

Pauli Miettinen

16 September 2008

Pauli Miettinen

This Talk

- Background.
- Propose new decompositions combining two previusly-proposed ideas.
- Study the computational complexity of the problems.
 - Relate the results to other, known ones.
- Propose simple algorithms for the problems.
- Some experimental evaluation.

Outline

Background

- Problem Definitions
- 3 Computational Complexity
- 4 Algorithms
- 5 Experiments
- 6 Conclusions

Pauli Miettinen

Given a matrix A, represent it using

- linear combinations of a subset of its columns, i.e. $A\approx CX$ (CX decomposition)
 - Finding columns of C is known as the Column Subset Selection problem.
 - Resembles feature selection.
- combinations of a subset of its columns and a subset of its rows, i.e. $A\approx CUR$ (CUR decomposition)

Lot-studied in math, recently gained interest in CS

• 1 + 1 papers in KDD'08, 2 papers in SODA'09 ...

Pauli Miettinen

イロト イロト イヨト イヨト

Background: Boolean Matrix Decompositions

Given a binary matrix A, represent it as $A \approx X \circ Y$, where X and Y are binary.

- Matrix multiplication is done over the Boolean semiring.
 - i.e. addition defined as 1 + 1 = 1
- Can yield increased interpretability and decreased reconstruction error.
- Combinatorial problem, results from numerical linear algebra do not apply.
- Studied in combinatorics (Boolean or Schein rank), and in data mining
 - discrete basis problem (PKDD'06), role mining problem (ICDE'08), KDD'08 workshop on data mining using matrices and tensors, ...

Pauli Miettinen

Outline

- Problem Definitions
- 3 Computational Complexity
- 4 Algorithms
- 5 Experiments
- 6 Conclusions

Pauli Miettinen

Algorithms

Boolean CX and CUR Decompositions

Problem (Boolean CX Decomposition, BCX)

Given a matrix $A \in \{0, 1\}^{m \times n}$ and an integer k, find an $m \times k$ binary matrix C of k columns of A and a matrix $X \in \{0, 1\}^{k \times n}$ minimizing $d_1(A, C \circ X) = \sum_{i,j} |(A)_{ij} - (C \circ X)_{ij}|$.

Problem (Boolean CUR Decomposition, BCUR)

Given a matrix $A \in \{0, 1\}^{m \times n}$ and integers k and r, find an $m \times k$ binary matrix C of k columns of A, an $r \times n$ binary matrix R of r rows of A, and a matrix $U \in \{0, 1\}^{k \times r}$ minimizing $d_1(A, C \circ U \circ R) = \sum_{i,j} |(A)_{ij} - (C \circ U \circ R)_{ij}|.$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ──○へ⊙

Pauli Miettinen

Background	Problem Definitions	Computational Complexity	Algorithms	Experiments	Conclusions

• Columns of A represent corners in Boolean 2 hypercube 1.5-Ν 1 0.5 0 0 0.5 y 2 1.5 Λ 1 1 UNIVERSITY OF HELSINK

2

X

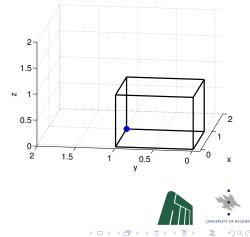
イロト イロト イヨト イヨト

Pauli Miettinen

Background	Problem Definitions	Computational Complexity	Algorithms	Experiments	Conclusions

 Columns of A represent corners in Boolean hypercube

0



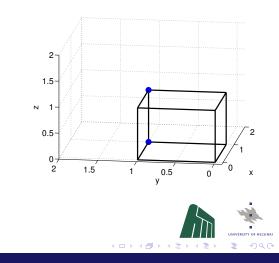
Pauli Miettinen

The Boolean Column and Column-Row Matrix Decompositions

1 1

Background	Problem Definitions	Computational Complexity	Algorithms	Experiments	Conclusions

• Columns of A represent corners in Boolean hypercube



Pauli Miettinen

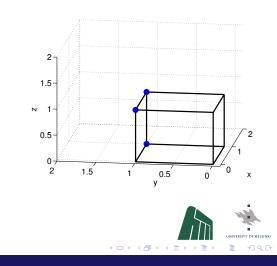
The Boolean Column and Column-Row Matrix Decompositions

0

1

Background	Problem Definitions	Computational Complexity	Algorithms	Experiments	Conclusions

• Columns of A represent corners in Boolean hypercube

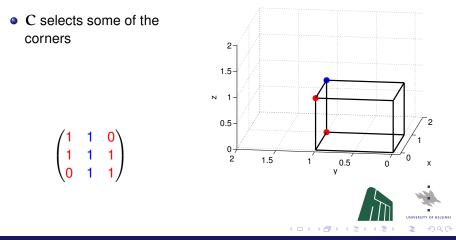


Pauli Miettinen

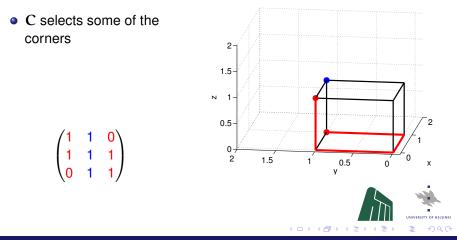
The Boolean Column and Column-Row Matrix Decompositions

1

1 1

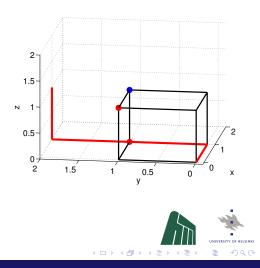


Pauli Miettinen



Pauli Miettinen

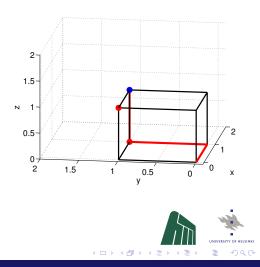
 The remaining corner is presented as a sum of the selected corners.



$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} \approx \begin{pmatrix} 1&0\\1&1\\0&1 \end{pmatrix} \times \begin{pmatrix} 1\\1 \end{pmatrix}$$

Pauli Miettinen

 The remaining corner is presented as a Boolean sum of the selected corners.

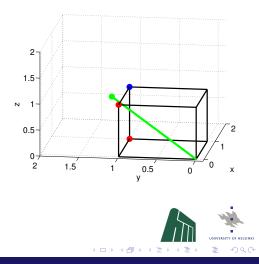


$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\1 & 1\\0 & 1 \end{pmatrix} \circ \begin{pmatrix} 1\\1 \end{pmatrix}$$

Pauli Miettinen

- The remaining corner is presented as a **Boolean** sum of the selected corners.
- Green line represents rank-2 SVD approximation of the blue corner.

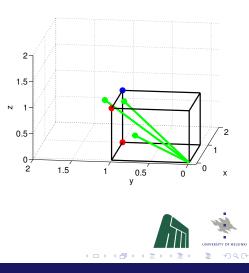
$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \approx \begin{pmatrix} 0.8536 \\ 1.2071 \\ 0.8536 \end{pmatrix}$$



Pauli Miettinen

Background	Problem Definitions	Computational Complexity	Algorithms	Experiments	Conclusions

• The whole rank-2 SVD approximation is the following.



$\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathsf{T}} =$

(1.1036	0.8536	0.1036\
0.8536	1.2071	0.8536
\0.1036	0.8536	1.1036/

Pauli Miettinen

Two Subproblems To Solve 1: Basis Usage

Problem (Basis Usage, BU)

Given matrices $A \in \{0, 1\}^{n \times m}$ and $C \in \{0, 1\}^{n \times k}$, find a matrix $X \in \{0, 1\}^{k \times m}$ minimizing $d_1(A, C \circ X) = \sum_{i,j} |(A)_{ij} - (C \circ X)_{ij}|$.

Few notes:

- General definition: C does not have to have A's columns.
- 2 Each column of X is independent!

Thus, an equivalent problem is:

Problem

Given a vector $\mathbf{a} \in \{0, 1\}^n$ and a matrix $\mathbf{C} \in \{0, 1\}^{n \times k}$, find a vector $\mathbf{x} \in \{0, 1\}^k$ minimizing $\sum_i |a_i - (\mathbf{C} \circ \mathbf{x})_i|$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

Pauli Miettinen

Two Subproblems To Solve 2: Mixing Matrix

Problem (Mixing Matrix, MM)

Given matrices $\mathbf{A} \in \{0, 1\}^{n \times m}$, \mathbf{C} of k columns of \mathbf{A} , and \mathbf{R} of r rows of \mathbf{A} , find a matrix $\mathbf{U} \in \{0, 1\}^{k \times r}$ minimizing $d_1(\mathbf{A}, \mathbf{C} \circ \mathbf{U} \circ \mathbf{R}) = \sum_{i,j} |(\mathbf{A})_{ij} - (\mathbf{C} \circ \mathbf{U} \circ \mathbf{R})_{ij}|.$

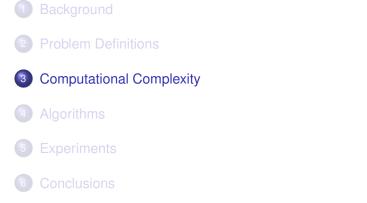
- Now C and R are restricted to column and row subsets.
- No element of **U** is independent.

$$(\mathbf{C} \circ \mathbf{U} \circ \mathbf{R})_{ij} = \bigvee_{h=1}^{k} \bigvee_{l=1}^{r} c_{ih} \wedge u_{hl} \wedge r_{lj}.$$

$$\Rightarrow \ \ \text{Element } u_{hl} \text{ can change } (C \circ U \circ R)_{ij} \text{ only when } c_{ih} = r_{lj} = 1.$$

Pauli Miettinen

Outline



Pauli Miettinen

Complexity of the BU Problem (1/3): Background

The Positive–Negative Partial Set Cover problem (\pm PSC):

• Cover as many of the positive elements as possible while minimizing the number of covered negative elements.

BU and $\pm \text{PSC}$ problems are essentially the same.

- BU with A having only 1 column is no easier than other instances.
- C = incidence matrix of the set system; a = positive (a_i = 1) and negative (a_i = 0) elements; x selects the sets to the cover.

Complexity of the BU Problem (2/3): The Negative Side

Theorem

Unless P = NP, then for any ε > 0 there exists no poly-time approximation algorithm for BU with ratio

$$\Omega\left(2^{\log^{1-\varepsilon}(k^4)}\right).$$

O Unless NP ⊆ DTIME(n^{polylog(n)}), then for any ε > 0 there exists no poly-time approximation algorithm for BU with ratio

$$\Omega\left(2^{\log^{1-\varepsilon}f}\right),$$

where f is the maximum number of 1s in A's columns.

• **N.B.** $2^{\log^{1-\varepsilon} n}$ is superpolylogarithmic and subpolynomial.

Pauli Miettinen

Complexity of the BU Problem (3/3): The Positive Side

Theorem

There is a poly-time approximation algorithm with ratio $2\sqrt{(k+f)\log f}$.

The algorithm needs to solve the classical Set Cover multiple times with inflated input instances.

Pauli Miettinen

Complexity of the MM Problem

Theorem

The MM problem can be reduced to the $\pm \text{PSC}$ problem in an approximation-preserving way.

Theorem

The \pm PSC problem can be reduced to the MM problem preserving the approximability up to constant factors.

- The results for the BU problem hold for the MM problem.
- Caveat! The parameters have changed
 - no meaningful counterpart to f
 - k becomes to $max\{k, r\}/2$.

Pauli Miettinen

Complexity of the BCX Problem

- The hardness of BU does not automatically mean that BCX is hard.
- Nevertheless, via a reduction from BU we get that (the decision version of) BCX is NP-complete.
 - This reduction is **not** approximation-preserving.
- The complexity of the BCUR problem is an open question.

Algorithms

Linear and Boolean Worlds: A Comparison

Linear world

- Finding x to minimize
 ||Cx a|| (i.e. least-squares fitting) is poly-time.
- Finding U to minimize $\|CUR A\|$ is poly-time.
- Complexity of the Column Subset Selection problem is unknown.

Boolean world

- Finding U to minimize $\|C \circ U \circ R A\|$ (i.e. the MM problem) is hard even to approximate.
- The BCX problem is NP-hard.

Pauli Miettinen

Outline

- Problem Definitions
- 3 Computational Complexity
- 4 Algorithms
- 5 Experiments
- 6 Conclusions

Pauli Miettinen

Local-search heuristic Loc:

- start with random columns in C
- While reconstruction error decreases do
 - swap a column of C with a column of A not in C if this reduces the reconstruction error most
- return C
 - Find **R** by running Loc to \mathbf{A}^{T} .
 - We need to know **some** X to know how good a swap is.
 - ⇒ Use greedy *cover* function: column c^i is used to cover column a^j (i.e. $x_{ij} = 1$) if c^i covers more **yet uncovered** 1s of a^j than it covers **uncovered** 0s.

A D F A B F A B F A B

- Loc & $\pm PSC$: Use the $\pm PSC$ algorithm to find X.
 - Practically infeasible to U.
- Loc & IterX: Iteratively update rows of X using the *cover*-function.
- Loc & IterU: Start with empty U and flip u_{hl} if it decreases the error; iterate untill convergence.
- Loc & Maj: For each a_{ij} mark which u_{hl} should be set to 1 or 0, and select u_{hl} to be the (weighted) majority of the opinions.
 - Recall: \mathfrak{u}_{hl} can change the value of $(C \circ U \circ R)_{ij}$ only if

$$c_{ih} = r_{lj} = 1.$$

Pauli Miettinen

Outline

- Problem Definitions
- 3 Computational Complexity
- 4 Algorithms
- 5 Experiments
- 6 Conclusions

Pauli Miettinen

For general CX and CUR decompositions:

- 844 by Berry, Pulatova, and Stewart (ACM Trans. Math. Softw. 2005)
- DMM by Drineas, Mahoney, and Muthukrishnan (ESA, APPROX, and arXiv 2006–07)
 - based on sampling, approximates SVD within $1 + \varepsilon$ w.h.p., but needs lots of columns in C.
- For general decompositions:
 - SVD
 - lower bound for linear methods; in practice also a lower bound to all methods

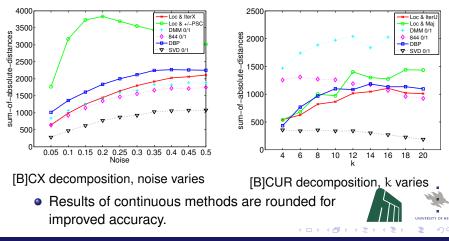
For general Boolean matrix decompositions:

- DBP by Miettinen et al.
 - theoretical lower bound for Boolean methods

Pauli Miettinen

Algorithms

Synthetic Data



Pauli Miettinen

Outline

- Background
- Problem Definitions
- 3 Computational Complexity
- 4 Algorithms
- 5 Experiments
- 6 Conclusions

Pauli Miettinen

- Boolean CX and CUR decompositions are potential tools for data mining.
- The problems are hard even to approximate, somewhat contrast to linear decompositions.
- Open questions: approximability of BCX, complexity of BCUR.
- Simple algorithms work up to some level, better ones are sought.

- Boolean CX and CUR decompositions are potential tools for data mining.
- The problems are hard even to approximate, somewhat contrast to linear decompositions.
- Open questions: approximability of BCX, complexity of BCUR.
- Simple algorithms work up to some level, better ones are sought.

Thank You!

イロト イヨト イヨト イ

Pauli Miettinen