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This Talk

1 Background.
2 Propose new decompositions combining two

previusly-proposed ideas.
3 Study the computational complexity of the problems.

Relate the results to other, known ones.
4 Propose simple algorithms for the problems.
5 Some experimental evaluation.
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Background: Column and Column–Row Decompositions

Given a matrix A, represent it using
linear combinations of a subset of its columns, i.e. A ≈ CX
(CX decomposition)

Finding columns of C is known as the Column Subset
Selection problem.
Resembles feature selection.

combinations of a subset of its columns and a subset of its
rows, i.e. A ≈ CUR (CUR decomposition)

Lot-studied in math, recently gained interest in CS

1 + 1 papers in KDD’08, 2 papers in SODA’09 . . .
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Background: Boolean Matrix Decompositions

Given a binary matrix A, represent it as A ≈ X ◦ Y , where X and
Y are binary.

Matrix multiplication is done over the Boolean semiring.
i.e. addition defined as 1 + 1 = 1

Can yield increased interpretability and decreased
reconstruction error.

Combinatorial problem, results from numerical linear algebra
do not apply.
Studied in combinatorics (Boolean or Schein rank), and in
data mining

discrete basis problem (PKDD’06), role mining problem
(ICDE’08), KDD’08 workshop on data mining using
matrices and tensors, . . .
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Boolean CX and CUR Decompositions

Problem (Boolean CX Decomposition, BCX)

Given a matrix A ∈ {0, 1}m×n and an integer k, find an m× k
binary matrix C of k columns of A and a matrix X ∈ {0, 1}k×n

minimizing d1(A,C ◦ X) =
∑

i,j

∣∣(A)ij − (C ◦ X)ij

∣∣.
Problem (Boolean CUR Decomposition, BCUR)

Given a matrix A ∈ {0, 1}m×n and integers k and r, find an m× k
binary matrix C of k columns of A, an r× n binary matrix R of r
rows of A, and a matrix U ∈ {0, 1}k×r minimizing
d1(A,C ◦U ◦ R) =

∑
i,j

∣∣(A)ij − (C ◦U ◦ R)ij

∣∣.
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BCX Visualized

Columns of A represent
corners in Boolean
hypercube

Green line represents
rank-2 SVD
approximation of the blue
corner.
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BCX Visualized

The remaining corner is
presented as a

Boolean

sum of the selected
corners.

Green line represents
rank-2 SVD
approximation of the blue
corner.
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BCX Visualized

The remaining corner is
presented as a Boolean
sum of the selected
corners.

Green line represents
rank-2 SVD
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BCX Visualized

The whole rank-2 SVD
approximation is the
following.

Green line represents
rank-2 SVD
approximation of the blue
corner.
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Two Subproblems To Solve 1: Basis Usage

Problem (Basis Usage, BU)

Given matrices A ∈ {0, 1}n×m and C ∈ {0, 1}n×k, find a matrix
X ∈ {0, 1}k×m minimizing d1(A,C ◦X) =

∑
i,j

∣∣(A)ij − (C ◦X)ij

∣∣.
Few notes:

1 General definition: C does not have to have A’s columns.
2 Each column of X is independent!

Thus, an equivalent problem is:

Problem

Given a vector a ∈ {0, 1}n and a matrix C ∈ {0, 1}n×k, find a
vector x ∈ {0, 1}k minimizing

∑
i

∣∣ai − (C ◦ x)i

∣∣.
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Two Subproblems To Solve 2: Mixing Matrix

Problem (Mixing Matrix, MM)

Given matrices A ∈ {0, 1}n×m, C of k columns of A, and R of r
rows of A, find a matrix U ∈ {0, 1}k×r minimizing
d1(A,C ◦U ◦ R) =

∑
i,j

∣∣(A)ij − (C ◦U ◦ R)ij

∣∣.
Now C and R are restricted to column and row subsets.

No element of U is independent.

(C ◦U ◦ R)ij =

k∨
h=1

r∨
l=1

cih ∧ uhl ∧ rlj.

⇒ Element uhl can change (C ◦U ◦ R)ij only when
cih = rlj = 1.
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Complexity of the BU Problem (1/3): Background

The Positive–Negative Partial Set Cover problem (±PSC):

Cover as many of the positive elements as possible while
minimizing the number of covered negative elements.

BU and ±PSC problems are essentially the same.
1 BU with A having only 1 column is no easier than other

instances.
2 C = incidence matrix of the set system; a = positive (ai = 1)

and negative (ai = 0) elements; x selects the sets to the
cover.
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Complexity of the BU Problem (2/3): The Negative Side

Theorem
1 Unless P = NP, then for any ε > 0 there exists no poly-time

approximation algorithm for BU with ratio

Ω
(

2log1−ε(k4)
)

.

2 Unless NP ⊆ DTIME(npolylog(n)), then for any ε > 0 there
exists no poly-time approximation algorithm for BU with ratio

Ω
(

2log1−ε f
)

,

where f is the maximum number of 1s in A’s columns.

N.B. 2log1−ε n is superpolylogarithmic and subpolynomial.
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Complexity of the BU Problem (3/3): The Positive Side

Theorem
There is a poly-time approximation algorithm with ratio
2
√

(k+ f) log f.

The algorithm needs to solve the classical Set Cover multiple times
with inflated input instances.
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Complexity of the MM Problem

Theorem
The MM problem can be reduced to the ±PSC problem in an
approximation-preserving way.

Theorem
The ±PSC problem can be reduced to the MM problem preserving
the approximability up to constant factors.

The results for the BU problem hold for the MM problem.
Caveat! The parameters have changed

no meaningful counterpart to f
k becomes to max{k, r}/2.
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Complexity of the BCX Problem

The hardness of BU does not automatically mean that BCX is
hard.
Nevertheless, via a reduction from BU we get that (the
decision version of) BCX is NP-complete.

This reduction is not approximation-preserving.

The complexity of the BCUR problem is an open question.
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Linear and Boolean Worlds: A Comparison

Linear world

Finding x to minimize
‖Cx− a‖ (i.e. least-squares
fitting) is poly-time.

Finding U to minimize
‖CUR−A‖ is poly-time.

Complexity of the Column
Subset Selection problem is
unknown.

Boolean world

Finding x to minimize
‖C ◦ x− a‖ (i.e. the BU
problem) is hard even to
approximate.

Finding U to minimize
‖C ◦U ◦ R−A‖ (i.e. the
MM problem) is hard even to
approximate.

The BCX problem is
NP-hard.
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Finding C and R

Local-search heuristic Loc:
1 start with random columns in C
2 while reconstruction error decreases do

1 swap a column of C with a column of A not in C if this reduces
the reconstruction error most

3 return C

Find R by running Loc to AT .
We need to know some X to know how good a swap is.
⇒ Use greedy cover function: column ci is used to cover column
aj (i.e. xij = 1) if ci covers more yet uncovered 1s
of aj than it covers uncovered 0s.
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Finding X and U

Loc & ±PSC: Use the ±PSC algorithm to find X.
Practically infeasible to U.

Loc & IterX: Iteratively update rows of X using the
cover -function.

Loc & IterU: Start with empty U and flip uhl if it
decreases the error; iterate untill convergence.
Loc & Maj: For each aij mark which uhl should be set
to 1 or 0, and select uhl to be the (weighted) majority of the
opinions.

Recall: uhl can change the value of (C ◦U ◦ R)ij only if
cih = rlj = 1.
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Other Algorithms

For general CX and CUR decompositions:
844 by Berry, Pulatova, and Stewart (ACM Trans. Math.
Softw. 2005)
DMM by Drineas, Mahoney, and Muthukrishnan (ESA,
APPROX, and arXiv 2006–07)

based on sampling, approximates SVD within 1 + ε w.h.p., but
needs lots of columns in C.

For general decompositions:
SVD

lower bound for linear methods; in practice also a lower bound
to all methods

For general Boolean matrix decompositions:
DBP by Miettinen et al.

theoretical lower bound for Boolean methods
Pauli Miettinen
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Synthetic Data
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[B]CX decomposition, noise varies

4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

k
s
u

m
−

o
f−

a
b

s
o

lu
te

−
d

is
ta

n
c
e

s

 

 

Loc & IterU

Loc & Maj

DMM 0/1

844 0/1

DBP

SVD 0/1

[B]CUR decomposition, k varies
Results of continuous methods are rounded for
improved accuracy.
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Conclusions

Boolean CX and CUR decompositions are potential tools for
data mining.

The problems are hard even to approximate, somewhat
contrast to linear decompositions.

Open questions: approximability of BCX, complexity of BCUR.

Simple algorithms work up to some level, better ones are
sought.

Thank You!
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