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Abstract. We consider the problem of finding planted bicliques in ran-
dom matrices over GF [q]. That is, our input matrix is a GF [q]-sum of
an unknown biclique (rank-1 matrix) and a random matrix. We study
different models for the random graphs and characterize the conditions
when the planted biclique can be recovered. We also empirically show
that a simple heuristic can reliably recover the planted bicliques when
our theory predicts that they are recoverable.
Existing methods can detect bicliques of O(

√
N), while it is NP-hard to

find the largest such clique. Real graphs, however, are typically extremely
sparse and seldom contain such large bicliques. Further, the noise can
destroy parts of the planted biclique. We investigate the practical problem
of how small a biclique can be and how much noise there can be such that
we can still approximately correctly identify the biclique. Our derivations
show that with high probability planted bicliques of size logarithmic in
the network size can be detected in data following the Erdős-Rényi model
and two bipartite variants of the Barabási-Albert model.

1 Introduction

In this paper we study under what conditions we can recover a planted biclique
from a graph that has been distorted with a noise. We consider the general
setting of matrices under GF [q], where the problem can be restated as finding
the planted rank-1 matrix after noise has been applied. In addition to standard
additive noise, we also allow destructive noise, that is, the noise can remove edges
from the planted biclique. Therefore, we consider the planted biclique recoverable
if it is the best rank-1 approximation of the noised matrix under GF [q].

As tabular data essentially forms a bipartite graph, bicliques are meaningful
for a wide variety of real data. Identifying bicliques, such as through factorization
and bi-clustering, is an important topic in many fields, including machine learning,
data mining, and social network analysis—each of these subfields naming bicliques
differently, such as ‘tiles’, ‘clusters’, or ‘communities’.

One of the main current challenges is the discovery of overlapping bicliques
under noise. In particular, there is need for techniques that can model interactions
where bicliques overlap. For example, say in our data we have records of male



conservatives, as well as of long-haired males, but none of long-haired male
conservatives. Under GF [2], where every subsequent factor can be seen to XOR
the corresponding entries of a binary matrix, we only need two factors—one for
conservatives, one for liberals, which corresponds to intuition. Methods unable
to model interaction will need 3 factors, or have high errors. In bio-informatics,
there are many examples of such complex interactions, such as inhibition and
excitation in gene regulation as well as in protein-protein interaction [14, 13]. By
factorizing matrices in GF [q] we can model arbitrary levels of interaction.

An important step towards factorizing data under GF [q]—i.e. discovering
all important cliques in the data—is the reliable detection of individual planted
bicliques. To this end, in this paper we study bounds on the dimensions of
planted bicliques such that we can still reliably approximately identify these in
quasi-polynomial time under different noise models. As many adversarial attacks
exist that render exact solutions exponential, we focus on approximations—also,
in practice, data analysts often do not require optimal results, but rather obtain
good approximations in much less time.

Existing approaches aim at finding complete bicliques of size O(
√
N) [2], and

it has been shown to be NP-hard to find the largest such biclique [6, 11]. While
most real-world graphs have very large number of vertices, they are, however,
typically only very sparsely connected. Graphs that follow the popular Barabási-
Albert model, for instance, only have a constant number of vertices with degrees
of O(

√
N). Hence, finding a clique of size O(

√
N) can be trivially achieved by

collecting those vertices with degree at least O(
√
N). As such, it is an interesting

open question what the smallest size of a biclique and the largest amount of
destructive noise are such that the biclique can still be approximately correctly
discovered. In particular, we study Erdős-Rényi and Barabási-Albert background
distributions for bipartite graphs.

Due to lack of space, we discuss the most fine-grained details of the proof of
Lemma 6, i.e. Lemma 9, and Eq. 14, in the Appendix.4

2 Related Work

Finding large bicliques has many applications, and hence has received a lot
of attention. Most research aims at finding exact bicliques, that is, complete
bipartite subgraphs. One way of finding these is to remove edges from the graph
until what is left is a complete bipartite subgraph. Hochbaum [6] showed that
minimizing the number of edges to remove is NP-hard, though she also gave
a 2-approximation algorithm for the problem. Later, Peeters [11] showed that
finding the largest biclique is NP-hard in general.

Despite that finding the largest biclique is NP-hard, it is possible to recover a
single planted biclique [2]. In particular, if the bipartite graph contains a biclique
of N +M nodes and an adversary adds up to O(NM) edges, the planted biclique
can still be recovered using nuclear norm minimization, provided that the added

4 http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/appendix.pdf



edges do not have too many neighbors. Similarly, the random process can be
characterized to add edges such that the biclique can still be found.

Our problem, however, is different as we do not aim to recover exact bicliques,
but approximate quasi-bicliques (i.e. dense but not necessarily complete bipartite
subgraphs). Compared to Ames et al. [2], we allow the noise to both add new
edges as well as to remove edges from the planted bicliques.

An alternative approach is to consider the problem as rank-1 matrix fac-
torization. If we work in GF [2], any method discovering binary factor matrices
works, including Boolean matrix factorization algorithms [10], binary matrix
factorization algorithms [15], and PROXIMUS [7].

The problem of finding dense quasi-bicliques has been approached from
different directions. In graph mining, a typical goal is to find all maximal quasi-
bicliques satisfying a density condition. For example, Sim et al. [12] give an
algorithm to mine all maximal quasi-bicliques where each vertex is connected
to all but ε ∈ N vertices in the other side (for other algorithms, see [8]). Such
algorithms can be used to find the quasi-biclique that best represents the data
(in terms of error), but only by exhaustively iterating over density values.

There is existing research on finding rank-k approximations of given matrices
under GF [2]. In fact, finding the rank of a matrix under GF [2] is easy. This can be
seen by noting that the problem is equivalent to the rank of the biadjacency matrix
of the bipartite graph under the GF [2], and therefore solvable in polynomial time
using standard techniques. Finding the best GF [2] rank-k factorization, however,
is not so easy. In the Nearest Codeword Problem, we are given an N -by-M binary
data matrix A and a binary N -by-k left factor matrix B, with the task to find
the right factor matrix C such that we minimize |A−B ⊕ C|. This problem
is NP-hard to approximate within any constant factor, and there exists no
polynomial-time algorithm for approximation within a factor of 2log

0.8−εN , unless
NP ⊆ DTIME(npoly(logN)) [3]. There does exist, however, a polynomial-time
randomized approximation algorithm with O(k/ logN) approximation factor [4],
and a deterministic approximation algorithm with the same factor and NO(log∗N)

running time [1].

3 Identifying Single Bicliques

We investigate bounds on discovering a single planted biclique under a given
background distribution. As models for background noise we study resp. Erdős-
Rényi graphs and the scale-free Barabási-Albert model.

3.1 A generic strategy

In the next sections, we will consider random graph models. In each of these
cases, we assume that a ‘planted biclique’ is combined with ‘noise’ generated
by the random graph model, and will consider the question of how easy it is to
recognize the planted biclique. In the current section we present aspects common
to the derivations for these random graph models.



In this section, we will denote the dimensions of the matrices by N ×M .
We will use ⊕ and 	 to denote addition and subtraction in GF [q] for vectors
or matrices over GF [q]. Further, x ≡ y denotes congruency in GF [q], i.e. x ≡ y
(mod q). We also adopt the common notation [n] for the set of all integers from
1 until n, i.e. [n] = {i ∈ N | 1 ≤ i ≤ n}. We will use the indicator function
I(true) = 1 and I(false) = 0.

We will often use vectors (Boolean or over GF [q]) to select a set of rows or
columns, non-zero elements indicating a selected row or column, and similarly
matrices to select a set of cells. Therefore, we define for two vectors a and b of the
same dimensions that a\b is the vector for which (a\b)i = I(ai 6= 0∧bi = 0), and
similarly a∩b and a∪b as the binary vectors for which (a∩b)i = I(ai 6= 0∧bi 6= 0)
and (a ∪ b)i = I(ai 6= 0 ∨ bi 6= 0). We define the same operations for matrices,
e.g. (A \B)i,j = I(Ai,j 6= 0 ∧Bi,j = 0). We will denoted with |X| the number of
non-zero elements of a vector or matrix X. We will denote the planted clique
with uv where u ∈ GF [q]N×1 and v ∈ GF [q]1×M . We assume u and v fixed but
unknown. We will denote approximations of u and v with x and y and express
the quality of the approximation using a loss function

L(u, v, x, y) = max(|u− x|, |v − y|) . (1)

For sparse graphs, adding a planted clique to the graph usually increases
the number of nonzero elements. We therefore adopt the following notations.
Let A be a random graph according to some distribution M. Let B = A⊕ uv
be the addition of the planted clique defined by u and v to this matrix. Let
x ∈ GF [q]m×1 and y ∈ GF [q]1×n be two vectors defining a biclique xy. We define
the error of x and y wrt. identifying the biclique planted in B and characterized
by u and v as

W ′(x, y) = |B 	 xy| = |{(i, j) | Bi,j 6≡ xiyj}| = |{(i, j) | Ai,j ⊕ ujvj 6≡ xiyj}| ,

that is, W ′(x, y) counts the matrix cells which are nonzero after removing
the hypothesized biclique xy (which we expect to be minimal if xy = uv).
Furthermore, W (x, y) = W ′(x, y) − W ′(u, v) characterizes whether xy yields
better representation of B than uv (W (x, y) < 0) or vice versa (W (x, y) > 0).
Clearly, W (u, v) = 0.

The set of elements where the approximated biclique xy differ from the planted
biclique uv is denoted by C 6≡(x, y), i.e.

C6≡(x, y) = {(i, j) ∈ [N ]× [M ] | xiyj 6= uivj} .

If B is the matrix received on input, i.e. the matrix resulting from adding to
a random graph a planted biclique, then we will denote with û and v̂ the vectors
minimizing W ′(û, v̂) = |B 	 ûv̂|.

For each random graph model, our aim is to show that with reasonably
high probability the planted biclique uv is well approximated by the biclique ûv̂
minimizing W ′(û, v̂). We will first show that the probability that W (x, y) < 0,
with xy 6= uv, decreases exponentially with |C 6≡(x, y)|. Then, by the following



lemma from such result we can derive that maximizing the objective function on
the input will yield a good approximation of (u, v).

Lemma 1. Let M be a distribution over GF [q]N×M , i.e. N ×M matrices over
GF [q]. Assume that there is an integer ζ and a constant c such that for any fixed
u ∈ GF [q]N×1 and v ∈ GF [q]1×M with |u| ≥ ζ and |v| ≥ ζ, with probability at
least 1−δ1 for a matrix A randomly drawn fromM, it holds for all x ∈ GF [q]N×1

and y ∈ GF [q]1×M that

P (W (x, y) ≤ 0) ≤ exp(−|C6≡(x, y)|c) . (2)

Then, for all ε > 0, u and v such that |u| ≥ ζ and |v| ≥ ζ,

PA∼M(L(u, v, û, v̂) ≤ ε) ≥ 1− δ1 − δ2

where (û, v̂) = arg min
(x,y)
|A⊕ uv 	 xy| and

δ2 = T (ε, |u|, |v|, |u|, |v|)T (ε,N,M, |u|, |v|) (3)

where

T (ε, a, b, c, d) =
exp (ε (log (a+ 1) + log (b+ 1)−min (c, d)) cp,q)

1− exp ((log(a+ 1) + log(b+ 1)−min(c, d))cp,q)
.

Proof. Equation (2) is a bound on the probability that for a given x and y,
W (x, y) < 0. Several choices for x and y are possible. We will bound the proba-
bility that ∃x, y : W (x, y) < 0 by

P (∃x, y : W (x, y) < 0) ≤
∑
x,y

P (W (x, y) < 0)

For a given x and y we now bound |C6≡(x, y)|. First, we define

Cuv\xy = {(i, j) | (uv \ xy)i,j = 1} (4)

and
Cxy\uv = {(i, j) | (xy \ uv)i,j = 1} , (5)

such that |C 6≡(x, y)| =
∣∣Cuv\xy∣∣+

∣∣Cxy\uv∣∣ .
As we have both

∣∣Cuv\xy∣∣ ≥ |u \ x| |v| and
∣∣Cuv\xy∣∣ ≥ |v \ y| |u| it follows that∣∣Cuv\xy(x, y)

∣∣ ≥ max(|v \ y| , |u \ x|) min(|u| , |v|) . (6)

There are
∑t
i=1

(|u|
i

)
≤ (|u|+ 1)t ways for choosing at most t rows out of the

|u| nonzero rows of u. Similarly, we have
∑t
i=1

(|v|
i

)
≤ (|v|+ 1)t ways to choose at

most t columns out of the |v| nonzero columns of v. Hence, the number of ways to
choose u \ x and v \ y such that both |u \ x| ≤ t and |v \ y| ≤ t hold is bounded

by (|u|+ 1)t(|v|+ 1)t. Now, let us use C
(t)
uv\· = {(x, y) | max(|u \ x| , |v \ y|) = t}



for the set of (x, y)’s such that for each the largest intersection with the rows or
columns of (u, v) is t elements. We can now write

max(|u|,|v|)∑
t=s

∑
(x,y)∈C(s)

uv\·

exp
(
−
∣∣Cuv\xy∣∣ c)

≤
max(|u|,|v|)∑

t=s

(|u|+ 1)t(|v|+ 1)t exp (−tmin(|u| , |v|)c)

≤
max(|u|,|v|)∑

t=s

exp (t(log(|u|+ 1) + log(|v|+ 1)−min(|u| , |v|)c))

=
exp (s(log(|u|+ 1) + log(|v|+ 1)−min(|u| , |v|)c))

1− exp ((log(|u|+ 1) + log(|v|+ 1)−min(|u| , |v|)c))
= T (s, |u| , |v| , |u| , |v|)

Here, in the one-but last step we use the fact that
∑∞
i=0 x

i = 1/(1−x). Similarly,

we define C
(t)
·\uv = {(x, y) | max(|x \ u| , |y \ v|) = t} by which we have

max(N,M)∑
t=s

∑
(x,y)∈C(s)

·\uv

exp
(
−
∣∣Cxy\uv∣∣ c) ≤ T (s,N,M, |x| , |y|)

Note that as u and v are fixed, we have only sets of size |u| and |v| to choose
u \ x and v \ y from. Here however, x and y can be chosen from N − |u|
remaining rows and M − |v| remaining columns, resp. Still, however, when
log(N + 1) + log(M + 1) < min(|u| , |v|), T (s,N,M, |u| , |v|) ≤ 1.

Finally, this allows us to combine these two inequalities into

P (W (x, y) < 0 | max(|u− x| , |v − y|) ≥ ε) ≤ T (ε, |u| , |v| , |u| , |v|)T (ε,N,M, |u| , |v|) .

This proves the lemma. ut

According to the above, if we know the dimensions of a biclique, we have
a clear bound on its detectability. Further, it follows that when |u| � |v| or
|x| � |y| the problem becomes much harder. This follows intuition as under an
independence assumption large square blocks are much less probable than thin
bicliques—as these could just as well be the result of few very high degree nodes.

3.2 Erdős-Rényi

The Erdős-Rényi (ER) model is one of the most well-studied models for graph
generation. The general idea is that every edge is equally probable, regardless of
other edges in the graph. That is, graphs of the same number of nodes and same
total number of edges are all equally likely. For the case of factorizing data under
GF [q] with noise distributed according to ER, we have the following definition.



Definition 1. With MER(p, q,N ×M) we will denote the model of sparse ran-
dom matrices in GF [q]N×M according to the Erdős-Rényi model, in particular if
A ∈MER(p, q,N ×M), for each (i, j) ∈ [N ]× [M ], Aij is zero with probability
1− p and non-zero with probability p. Non-zero elements are chosen randomly
from GF [q], i.e. each non-zero element of GF [q] has probability 1/(q − 1).

We will now show that the probability that some biclique yields lower error
(i.e. residual) than the planted biclique uv decays exponentially with the difference
between that biclique and the planted one.

Lemma 2. Let p < 1/2. Let N , M and q be integers, u, x ∈ GF [q]N×1 and
v, y ∈ GF [q]1×M . Then, there is a constant cp,q depending on p and q such that

PA∼MER(p,q,N×M)(W (x, y) < 0) ≤ exp(cp,q|C 6=|) .

Proof. Let A be randomly drawn from MER(p, q,N ×M). As above, let B =
A⊕ uv be the matrix obtained by adding to A the biclique uv.

Let Ci,j = uivj 	 xiyj be the difference between uv and xy, and let

Di,j = I(Ai,j ⊕ Ci,j 6≡ 0)− I(Ai,j 6≡ 0) ,

where I(·) is the indicator function. Now, W (x, y) =
∑
i,j Di,j . If Cij ≡ 0, then

Dij = 0, so let C 6≡(x, y) = {(i, j) ∈ [n] × [m] | Cij 6≡ 0} such that we have
W (x, y) =

∑
(i,j)∈C 6≡ Di,j .

Following Section 3.1, we bound the probability that xy gives better represen-
tation of B than uv. That is, we bound P (W (x, y) < 0). To that end, we define,
for z ∈ {−1, 0,+1}, Wz(x, y) = {(i, j) ∈ C6≡ | Di,j = z}, so we have

W (x, y) = |W+1(x, y)| − |W−1(x, y)| .

The three sets Wz(x, y), z ∈ {−1, 0, 1}, partition the set C6≡(x, y). Let Xi,j

be a random variable defined as Xi,j = I
(
(i, j) ∈ W−1(x, y) ∪ W0(x, y)

)
, so

that P (Xi,j = 1) = 1 − P
(
(i, j) ∈ W1(x, y)

)
for all (i, j) ∈ C 6≡(x, y), and∑

i,j Xi,j = |W−1(x, y)|+ |W0(x, y)|. We have for all (i, j) ∈ C6≡(x, y) that

P
(
(i, j) ∈W−1(x, y)

)
=

p

q − 1
and P

(
(i, j) ∈W0(x, y)

)
=
p(q − 2)

q − 1
,

where on the second equation we use the fact that Ci,j 6≡ 0. Therefore

P (Xi,j = 1) = P
(
(i, j) ∈W−1(x, y)

)
+P
(
(i, j) ∈W0(x, y)

)
=

p

q − 1
+
p(q − 2)

q − 1
= p

for (i, j) ∈ C 6≡(x, y). Then, due to Chernoff’s inequality, for any ε > 0, we have

P

(
|W−1(x, y)|+ |W0(x, y)|

|C 6≡(x, y)|
≥ p+ ε

)
≤ exp [−|C6≡(x, y)|DKL(p+ ε ‖ p)] ,



where

DKL(p+ ε ‖ p) = (p+ ε) log

(
p+ ε

p

)
+ (1− p− ε) log

(
1− p− ε

1− p

)
. (7)

In order for W (x, y) < 0 to be possible, we need to have |W−1(x, y)| +
|W0(x, y)| ≥ |C 6≡(x, y)| − |W1(x, y)|. Hence,

P

(
|W−1(x, y)|+ |W0(x, y)|

|C 6≡(x, y)|
≥ 1− |W1(x, y)|

|C6≡(x, y)|

)
≤ exp

(
−|C6≡(x, y)|DKL

(
1− |W1(x, y)|
|C 6≡(x, y)|

∥∥∥∥ p)) .

To have a chance to have W (x, y) < 0, we need at least |W−1(x, y)| +
|W0(x, y)| ≥ |C 6=(x, y)|/2. Therefore, let ε = 1

2 − p to get

P

(
|W−1(x, y)|+ |W0(x, y)|

|C6≡(x, y)|
≥ 1

2

)
≤ exp

(
−|C 6=(x, y)|DKL(1/2 ‖ p)

)
, (8)

where

DKL

(
1

2

∥∥∥∥ p) =
1

2
log

(
1

2p

)
+

1

2
log

(
1

2(1− p)

)
.

This already gives us a bound on P (W (x, y) < 0):

P (W (x, y) < 0) ≤ P (|W1(x, y)| < |C6≡(x, y)| /2) ≤ exp
(
−|C6≡(x, y)|DKL(1/2 ‖ p)

)
.

In case q > 2, we can do better as we expect more (i, j)’s to land in W0(x, y)
instead of W−1(x, y).

Suppose now q > 2. For a fixed value of |W−1(x, y)| + |W0(x, y)|, using
W−1(x, y) ≤ |C 6=(x, y)|/2 and Chernoff’s inequality, we obtain

P

(
|W−1(x, y)|

|C6=(x, y)| − |W1(x, y)|
>

1

q − 1
+

(
|W1(x, y)|

|C6=(x, y)| − |W1(x, y)|
− 1

q − 1

))
≤ exp

(
−(|C6=(x, y)| − |W1(x, y)|)DKL

(
|W1(x, y)|

|C 6=(x, y)| − |W1(x, y)|

∥∥∥∥ 1

q − 1

))
≤ exp

(
−|C 6=(x, y)|

2
DKL

(
|W1(x, y)|

|C 6=(x, y)| − |W1(x, y)|

∥∥∥∥ 1

q − 1

))
.

The above equations imply that there exists some constant cp,q depending on
p and q such that

P (W (x, y) < 0) ≤ exp(−|C6=(x, y)|cp,q) . (9)

This proves the lemma. ut

The above lemma can be combined with Lemma 1 (substituting ζ with
log(NM) and c with cp,q) to show that one can retrieve a planted clique with



high confidence and small error (according to the trade-off given by Equation 3),
and in time quasipolynomial in N and M .

It should be noted that for clarity of explanation and space limitations we
keep our derivation simple, but a constant factor can be gained by calculating
more precise expressions for cp,q and performing less rough estimations in Lemma
1. Moreover, Lemma 1 does not properly take the value of q into account and
doing so would yield another q-dependent factor.

3.3 Graphs constructed by the Barabási-Albert process

Next, we consider the background noise distributed according to the well-known
Barabási-Albert (BA) model, of which the main intuition is also known as
‘preferential attachment’. Nodes are added one at a time, and while edges are
still selected independently, their probability depends on the degree of the target
node. Instead of the ER model’s Gaussian degree distribution, for BA we see a
powerlaw—as we see for many real-world graphs [5].

For simplicity of the derivations, below we will assume that q = 2. If q > 2, a
similar but more involved derivation is possible.

Definition 2 (bipartite Barabási-Albert graph). Let G(0) be a small graph

on a vertex set V (0) = V
(0)
row ∪ V (0)

col consisting of row vertices V
(0)
row and column

vertices V
(0)
col . Let N and M be integers. A bipartite Barabási-Albert N ×M graph

is generated from seed G(0) with density parameter s by following Algorithm 1.
We denote the obtained probability distribution over N ×M adjacency matrices
with MBA-gen(s,N ×M).

Lemma 3. Let G = (V,E) be a bipartite Barabási-Albert N×M graph generated
according to Definition 2, let Vrow be its row vertices and Vcol its column vertices.
Let Xrow ⊆ Vrow and Xcol ⊆ Vcol . Then,

|E ∩Xrow ×Xcol | ≤ s(|Xcol |+ |Xrow | − (s+ 1)/2) .

Proof. The proof is straightforward from Definition 2: each vertex connects with
s vertices when added, but can only connect to vertices added before. ut

Notice that analogue one can prove that a ‘normal’ (non-bipartite) Barabási-
Albert graph can not contain an (s + 2)-clique. The probability distribution
over graphs induced by the Barabási-Albert generative process is rather hard to
analyse in detail, but we can provide the following non-probabilistic result:

Lemma 4. Let A be drawn from MBA-gen(s,N ×M). Let B = A⊕uv for some
fixed u and v with |u| > 4s and |v| > 4s. Then, |B ∩ uv| > |u||v|/2.

Proof. We know from Lemma 3 that in the area covered by uv in B, uv made
all cells except at most s(|u|+ |v| − (s+ 1)/2) nonzero: |B ∩ uv| ≥ |u||v| − s|u| −
s|v|+ s(s+ 1)/2. If |u| ≥ 4s and |v| ≥ 4s we have |u||v|/2− s|u| − s|v| ≥ 0 from
which |B ∩ uv| > |u||v|/2 follows. ut



Algorithm 1 Generating a bipartite Barabási-Albert graph

Require: density parameter s; seed G(0); M,N ∈ N
Ensure: an N ×M bipartite Barabási-Albert graph G sampled from MBA-gen .
1: for i = 1 . . . NM do
2: V

(i)
row ← V

(i−1)
row ; V

(i)
col ← V

(i−1)
col ; E(i) ← E(i−1)

3: if |V (i)
row |M < i then

4: vnew ← NewVertex ()

5: V
(i)
row ← V

(i)
row ∪ {vnew}

6: Select a set A of s vertices from V
(i−1)
col with probability proportional to their

degree in G(i−1).
7: E(i) ← E(i) ∪ ({vnew} ×A)

8: if |V (i)
col |N < i then

9: vnew ← NewVertex ()

10: V
(i)
col ← V

(i)
col ∪ {vnew}

11: Select a set A of s vertices from V
(i−1)
row with probability proportional to their

degree in G(i−1).
12: E(i) ← E(i) ∪ (A× {vnew})
13: V (i) ← V

(i)
row ∪ V

(i)
col ; G(i) ← (V (i), E(i))

Lemma 5. Let A be drawn from MBA-gen(s,N ×M). Let B = A⊕uv for some
fixed u and v. Then, for any x and y such that |C 6≡(x, y)| > 2s|x|+ 2s|y| − s(s+
1) + |u||v|, it holds that |B ∩ xy| ≤ |x||y|/2.

Proof. We know from Lemma 3 that in the area covered by xy, at most s(|x|+
|y| − (s + 1)/2) cells are nonzero in A ∩ xy. For B ∩ xy, at most the area
(|x||y|+ |u||v| − |C 6≡|)/2 from overlap between xy and uv can be added. We get
|B∩xy| ≤ s|x|+ s|y|− s(s+ 1)/2 + (|x||y|+ |u||v|− |C 6≡|)/2. From 2s|x|+ 2s|y|−
s(s+ 1) + |u||v| < |C6≡| we can derive that |B ∩ xy| ≤ |x||y|/2. ut

Hence, to detect a planted biclique in Barabási-Albert data, one only needs
to search for bicliques of size 4s and expand greedily.

3.4 Graphs with Barabási-Albert degree distribution

Here we consider random graphs with the same degree distribution as Barabási-
Albert model but without following the generative process, of which we showed
in the previous section that it prohibits the creation of large bicliques.

For simplicity, w.l.o.g. we assume N = M .

Definition 3. With MBA-deg(s, q,N ×M) we will denote the model of sparse
random matrices in GF [q]N×M according to the Barabási-Albert degree distribu-
tion, in particular if A ∈MBA-deg(s, q,N ×M), it is the result of the following
random construction procedure:

– Consider the probability distribution Pdeg over the set {s, s+ 1, . . . , N} such

that Pdeg(i) = i−3/Z with Z =
∑N−1
j=s j−3



– For all i ∈ [N ], choose drowi according to distribution Pdeg . For all j ∈ [N ],

choose dcolj according to Pdeg . Repeat this step until
∑N
i=1 d

row
i =

∑M
j=1 d

col
j .

– Draw X uniformly from the set of all matrices of GF [q]N×M such that for
all i ∈ [N ], the number of nonzero elements of row i equals drowi and for all
j ∈ [M ], the number of nonzero elements of column i equals drowj .

In order to say something on the discernibility of cliques we need access to
the connectivity within rows and columns in the form of degree lists.

Definition 4. For an adjacency matrix A ∈ GF [q]N×M , let f row(A) ∈ ZN and
fcol(A) ∈ ZM such that

f
row(A)
i =

N∑
j=1

I(Ai,j 6= 0) , and f
col(A)
j =

M∑
i=1

I(Ai,j 6= 0) .

It is well-known that in Barabási-Albert graphs, the expected frequency of
vertices with degree k is proportional to k−3. Therefore, for sufficiently large N
we can estimate the number of rows of with at least c

√
N non-zero elements by

N

∑N
k=cN1/2 k−3∑N

k=s

≈ N
∫∞
k=cN1/2 k

−3dk∫∞
k=s

k−3dk
= N

(
cN1/2

)−2
/2

s−2/2
=
s2

c2

which is a constant, not depending on N . The same holds for columns.

Lemma 6. Let s be an integer. Let N and q be integers, u, x ∈ GF [q]N×1 and
v, y ∈ GF [q]1×M with log(N)� |u| and log(N)� |v|. Then, there is a constant
cBA
q depending on q and δ1 such that with probability at least 1− δ1

PA∼MBA-deg(s,q,N×N)(W (x, y) < 0) ≤ exp(cBA
q |C 6=|)

Proof. We will use notations similar to those used for the Erdős-Rényi case:

Ci,j = uivj 	 xiyj
Di,j = I(Ai,j ⊕ Ci,j 6= 0)− I(Ai,j 6= 0)

W ′(x) = |B 	 x>x| = |A⊕ uv 	 xy|
W (x) = W ′(x)−W ′(u) =

∑
i,j

Di,j

We have W (u) = 0. Given a fixed degree list pair (f row , fcol), we have (approxi-
mately, for sufficiently large N)

µi,j = E[Di,j ] = 1− pi,jq/(q − 1)

where pi,j = f rowi fcolj

(∑N
l=1 f

row
l

)−1 (∑N
l=1 f

row
l

)−1
, and

σ2
i,j = E[(I(x⊕ Ci,j 6= 0)− I(x 6= 0)− µi,j)2]

≤ pi,j (1− pi,j)
q + 2

q − 1

≤ pi,j
q + 2

q − 1
.



We again define C 6=(x) = {(i, j) ∈ [n]× [m] | uivj 6= xiyj} and for v ∈ {−1, 0,+1}
we have Wv(x) = {(i, j) | Di,j = v} . Moreover, let

µ = E[W (x)] =
∑

(i,j)∈C 6=(x)

µi,j ,

and

σ2 =
∑

(i,j)∈C6=(x)

σ2
i,j .

From (14) we can see5 that

E[µ] ≤ |C 6=|2(s− 1/2)2/N(s− 1) .

By applying Chernoff’s inequality, we then arrive at

P (W (x, y) < 0) = P (µ−W (x, y) > µ) ≤ exp

(
− µ2

2(σ2 + |C6=|)

)
. (10)

Let t = dΓ−1(2/δ1)e − 1 be such that 1/t! ≤ δ1/2. From Lemma 9 we know5

that with probability 1− δ1/2 there is at most one i s.t. f rowi ≥ s/
√
N and with

probability 1− δ1/2 there is at most one j such that fcolj ≥ s/
√
N . Then, with

probability at least 1− δ1,∑
(i,j)∈C6=

pi,j ≤
∑
i∈u\x

∑
j∈v

pi,j +
∑
i∈x\u

∑
j∈y

pi,j +
∑
j∈v\y

∑
i∈u

pi,j +
∑
j∈y\v

∑
i∈x

pi,j

≤ R(|u \ x|, |v|, t) +R(|x \ u|, |y|, t) +R(|v \ y|, |u|, t) +R(|y \ v|, |x|, t)

with

R(a, b, t) = R′(min(a, t),min(b, t),max(a− t, 0),max(b− t, 0))

and

R′(aH , bH , aL, bL) = R1(aH , aL)R1(bH , bL)

with R1(H,L) = H + s√
N
L. For b ≥ η ≥ t, R(a, b, t) = R∗(min(a, t), t,max(a−

t, 0), b− t) with

R∗(aH , t, cL, b− t) = R1(aH , aL)

(
t+

s√
N

(b− t)
)

≤ R1(aH , aL)b

(
s√
N

+ (1− s√
N

)
t

b

)
≤ R1(aH , aL)bRC

5 See appendix: http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/appendix.pdf



with RC =
(

s√
N

+ t
η

)
. Hence, as we assume |u| ≥ η, |v| ≥ η, |x| ≥ η and |y| ≥ η,

with probability at least 1− δ1/2 we have for every u, v, x and y∑
(i,j)∈C6=

pi,j ≤ (R1(|u \ x|)|v|+R1(|v \ y|)|u|+R1(|x \ u|)|y|+R1(|y \ v|)|x|)RC

As
|C 6=| ≤ |u \ x||v|+ |x \ u||y|+ |v \ y||u|+ |y \ v||x| ≤ 2|C 6=|

and R1(a) ≤ a, ∑
(i,j)∈C 6=

pi,j ≤ 2RC |C6=| (11)

and µ ≥ |C6=|(1− 2RC). Combining Eq. (11) with the definition of σ2 gives that
σ2 ≤ 2RC |C6=| q+2

q−1 . Combining this with Eq. (10) results in

P (W (x, y) < 0) ≤ exp

(
− |C6=|(1− 2RC)2

2(1 + 2RC(q + 2)/(q − 1))

)
. (12)

Setting cBAq = (1− 2RC)2/(2(1 + 2RC(q + 2)/(q − 1))), we get

P (W (x, y) < 0) ≤ exp(−|C 6=|cBAq ) .

This proves the lemma. ut

In practice, this means that as long as noise levels are not overly high, i.e.
s � N , and the dimensions of the planted biclique are not overly small, i.e.
logN � |u| � N−1/2, we can reliably identify the planted bicluster. We note
that these assumptions are quite realistic under the BA model. More to the point,
we find that a biclique uv is still discernible if |u| > logN and |v| > logN .

4 Algorithm

In this section we describe a simple heuristic algorithm to recover the planted
bicliques under GF [2]. We have already shown that the best biclique is the planted
one (with high probability), and therefore we ‘only’ need to find the best biclique.
Unfortunately, this problem is NP-hard (as finding the largest exact biclique is
NP-hard [11]). Luckily, it seems that in practice a simple heuristic—which we
present below—is able to recover the planted biclique very well.

Recall, that finding the best biclique in GF [2] is equivalent to finding rank-1
binary matrix factorization that minimizes the Hamming distance. To compute
find it, we used the Asso algorithm [10]. We note that our aim is not to perform
a comparative study of different algorithms but to show that we can achieve the
predicted performance using relatively simple, non-exhaustive method.

The crux of Asso is the use of pairwise association confidences for finding can-
didate column factors. Consider the N -by-M input matrix B. Asso will compute
the association confidence between each row of B. The association confidence



from row bi to row bj is defined as conf(bi → bj) = (
∑m
k=1 bikbjk)/(

∑m
k=1 bik)

and can be interpret as the (empirical) conditional probability that bjk = 1 given
that bik = 1. The intuition is that if rows i and j belong in the planted biclique,
they should have relatively high confidence (each column of the biclique is 1 in
both rows and each column not in the biclique is 0, save the effects of noise) and
otherwise the confidence should be low. The Asso algorithm builds an N -by-N
matrix D where dij = conf (bi → bj).

Matrix D is then round to binary matrix D̃ from some threshold τ . The
columns of the binary matrix D̃ constitute the candidate columns of the biclique.
The algorithm will then construct the optimum row for each of these columns,
and select the best row-column pair (x, y) (measured by A	 xy). Computing the
association accuracy takes O(N2M) time (where we assume N ≤M), there are
N candidate vectors, and testing each of them takes O(NM) time, giving the
overall complexity for fixed τ as O(N2M).

The last detail is how to select the rounding threshold τ . We can try every
value of D, but that adds N2 factor to the second term in the time complexity.
To avoid quadratic running times, we opt to evaluate a fixed set of thresholds.

5 Experiments

In this section we experimentally evaluate the above theory. As we need to
measure against a ground truth, we will experiment on synthetic data. For
practical reasons we focus on GF [2]: in order to evaluate our bounds we require
an algorithm to extract candidate bicliques from the data. While no polynomial
time (approximate) biclique discovery algorithm exists for GF [q] in general, we
have seen in Section 4 that Asso [10] is relatively easy to adapt to GF [2].

We implemented the GF [2] version of Asso in Matlab/C, and provide for
research purposes the source code together with the generators for bipartite
Erdős-Rényi and Barabási-Albert graphs.6

As synthetic data, we consider square matrices over GF [q] of dimensions
N = M = 1000, to which we add noise. We consider the ER model as discussed
in Section 3.2, and the probabilistic BA model from Section 3.4. We focus on
this BA variant, as by allowing larger bicliques to be generated it corresponds
to the hardest problem setting. In this matrix A we plant a square biclique uv
(i.e. |u| = |v|), such that we obtain B = A⊕ uv. We run Asso on B for all values
of τ ∈ {0, 0.01, . . . , 1.0}, and select the best candidate biclique. We report the
L(u, v, x, y) error between this candidate and the planted biclique.

We evaluate performance for different noise ratios, defined as |A|/(NM),
and for different biclique sizes. Figure 1 shows the results averaged over five
independent runs. For Erdős-Rényi, we see that bicliques of 10× 10 are easily
discerned even for high noise ratios, despite that Asso is uninformed of the shape
or size of the biclique. In accordance with theory, bicliques of 5× 5 can still be
detected reliably for lower noise levels, while those of 3× 3 only barely so.

6 http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/
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Fig. 1. Performance of Asso of finding a square planted biclique of dimensions (|u| = |v|),
under different ratios of noise, resp. generated by the Erdős-Rényi model (left), and the
Barabási-Albert model (right).

For Barabási-Albert (Figure 1, right), we also find that practice corresponds
to theory. Per Section 3.4 bicliques need too have |u| � logN to be discernible;
indeed, we here observe that for |u| ≥ 15 the clique is discovered without error,
while for smaller sized clusters error first rises and then stabilizes. By the scale-free
property of the graph the noise ratio does not influence detection much.

6 Conclusion

We consider the problem of finding planted bicliques in random matrices over
GF [q]. More in particular, we investigated the size of the smallest biclique
such that we can still approximately correctly identify it as the best rank-1
approximation against a background of either Erdős-Rényi or Barabási-Albert
distributed noise. Whereas existing methods can only detect bicliques of O(

√
N)

under non-destructive noise, we show that bicliques of resp. n ≥ 3, and n� logN
are discernible even under destructive noise. Experiments with the Asso algorithm
confirm that we can identify planted bicliques under GF [2] with high precision.

While the ER and BA models capture important graphs properties, they are
stark simplifications. Studying whether similar derivations are possible for more
realistic models, such as Kronecker Delta [9] will make for engaging future work.

The key extension of this work will be the development of theory for matrix
factorization in GF [q], by which we will be able to identify and analyse interactions
between bicliques such as found in proteomics data [13].
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