Generalized Matrix Factorizations

Pauli Miettinen 10 September 2015

Community detection

Rank-1 matrices

- (Bi-)cliques are rank-1 submatrices
 - Collection of rank-1 submatrices summarizes the graph using its cliques
- Matrix factorizations express the (complex) input as a sum of rank-1 matrices

$$\bullet \mathbf{A}\mathbf{B} = \mathbf{a}_1\mathbf{b}_1^T + \mathbf{a}_2\mathbf{b}_2^T + \cdots + \mathbf{a}_k\mathbf{b}_k^T$$

 Matrix factorizations summarize complex data using simple patterns

Beyond blocks

- Cliques are not the only (graph) patterns
- Biclique cores, stars, chains
 - Koutra et al., SDM '14.
- Nested graphs
 - e.g. Junttila '11, Kötter et al., WWW '15
- Hyperbolic communities
 - Araujo et al., ECML PKDD '14

Limitations of matrix factorization

- The matrix-factorization language is useful
 - Recycle ideas, approaches, and results
- But the other patterns are not rank-1 matrices
 - It is not easy to express a collection of nested matrices as a matrix factorization

Generalized outer products

Rank-1 matrix = outer product of two vectors

• $\mathbf{A} = \mathbf{x}\mathbf{y}^{\mathsf{T}}$

Define generalized outer product

•
$$o(\mathbf{x}, \mathbf{y}, \theta)_{ij} = x_i y_j$$
 or 0

Example: biclique core

Example: nested matrix

Generalized decompositions

- Recall, $\mathbf{X} \approx \mathbf{A}\mathbf{B} = \mathbf{a}_1 \mathbf{b}_1^T + \mathbf{a}_2 \mathbf{b}_2^T + \dots + \mathbf{a}_k \mathbf{b}_k^T$ is a decomposition of \mathbf{X}
- The generalized decomposition of X is

 $\boldsymbol{X} \approx \boldsymbol{F}_1 \boxplus \boldsymbol{F}_2 \boxplus \cdots \boxplus \boldsymbol{F}_k, \quad \boldsymbol{F}_i = o(\boldsymbol{x}_i, \boldsymbol{y}_i, \theta_i)$

- - sum, AND, OR, XOR, ...

o-induced rank

- The smallest k s.t. $X = F_1 \boxplus ... \boxplus F_k$ is the o-induced rank of X
 - Analogous to the standard (Schein) rank
- Can be infinite if the matrix cannot be expressed (exactly) with that kind of outer products
 - If the outer product can generate a matrix that has exactly one nonzero at arbitrary position, it's induced rank is always bounded

Decomposability

- Outer product o is **decomposable** (to f) if, for some f, $o(\mathbf{x}, \mathbf{y}, \theta)_{ij} = f(x_i, y_j, i, j, \theta)$
 - Then we have

$$x_{ij} = \bigoplus_{l=1}^{k} f(x_{il}, y_{lj}, i, j, \theta)$$

as in standard matrix multiplication

Nice work, but ... why?

- So, we can express complex patterns using some weird functions
- What's the advantage?
- Using the common language, it's easy to see how some results (and techniques) can be generalized as well

- ...to find the maximum-circumference pattern?
- I.e. given **A**, find **x**, **y**, and θ s.t. $o(\mathbf{x}, \mathbf{y}, \theta) \in \mathbf{A}$ and you maximize $|\mathbf{x}| + |\mathbf{y}|$
 - If o is hereditary and the pattern can have infinitely many distinct rows and columns, NP-hard
 - If there's only fixed number of distinct rows or columns, the problem is in P
 - If $\mathbf{x} = \mathbf{y}$ is required, then it's almost always NP-hard

- ...to select the smallest subset that gives an exact summarization?
- I.e. given a set $S = \{F_i : rank(F_i) = 1\}$, $\boxplus_{F \in S} F = X$, find the the smallest $C \subseteq S$ s.t. $\boxplus_{F \in C} F = X$
 - NP-hard for $\blacksquare \in \{AND, OR, XOR\}$
 - hard to approximate within ln(n) for OR and within superpolylogarithmic for XOR

- ...to compute the rank?
- Well, that depends... (on the underlying algebra)
- Doesn't depend (only) on the outer product
 - E.g. normal outer product is NP-hard for OR but in P for XOR

- ...to find the decomposition of fixed size that minimizes the error?
- NP-hard if computing the rank is
- NP-hard to approximate to within superpolylogarithmic factors for OR and XOR

Conclusions

- Matrix factorizations are sort-of mixture models
 - Present complex data as an aggregate of simpler parts
- Generalized outer products let us represent more than just cliques as "rank-1" matrices
 - And allow to generalize many results from cliques

Future

- More work is needed to see what is the correct level of generality for the outer products
- Results for numerical data?
- Framework with no users isn't very useful...

Questions?