Generalized Matrix Factorizations

as a
Unifying Framework
Pattern Set Mining
Complexity Beyond Blocks

Pauli Miettinen
10 September 2015

Community detection

Rank-1 matrices

- (Bi-)cliques are rank-1 submatrices
- Collection of rank-1 submatrices summarizes the graph using its cliques
- Matrix factorizations express the (complex) input as a sum of rank-1 matrices
$\cdot \boldsymbol{A B}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}^{T}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}^{T}+\cdots+\boldsymbol{a}_{k} \boldsymbol{b}_{k}^{T}$
- Matrix factorizations summarize complex data using simple patterns

Beyond blocks

- Cliques are not the only (graph) patterns
- Biclique cores, stars, chains
- Koutra et al., SDM '14.

- Nested graphs
- e.g. Junttila '11, Kötter et al., WWW '15
- Hyperbolic communities
- Araujo et al., ECML PKDD '14

Limitations of matrix

factorization

- The matrix-factorization language is useful
- Recycle ideas, approaches, and results
- But the other patterns are not rank-1 matrices
- It is not easy to express a collection of nested matrices as a matrix factorization

Generalized outer products

- Rank-1 matrix = outer product of two vectors
- $\boldsymbol{A}=\boldsymbol{x} \boldsymbol{y}^{\top}$
- Define generalized outer product

- $o(\boldsymbol{x}, \boldsymbol{y}, \theta)_{i j}=x_{i} y_{j}$ or 0

Example: biclique core

Example: nested matrix

$$
O\left(\left[\begin{array}{c}
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1
\end{array}\right],\left[\begin{array}{lllll}
1 & 2 & 2 & 5 & 6
\end{array}\right]\right)=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Generalized decompositions

－Recall， $\boldsymbol{X} \approx \boldsymbol{A B}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}^{T}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}^{T}+\cdots+\boldsymbol{a}_{k} \boldsymbol{b}_{k}^{T}$ is a decomposition of \boldsymbol{X}
－The generalized decomposition of \boldsymbol{X} is

$$
\boldsymbol{X} \approx \boldsymbol{F}_{1} \boxplus \boldsymbol{F}_{2} \boxplus \cdots \boxplus \boldsymbol{F}_{k}, \quad \boldsymbol{F}_{i}=o\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}, \theta_{i}\right)
$$

－$⿴ 囗 十$ is the addition in the underlying algebra
－sum，AND，OR，XOR，．．．

o-induced rank

- The smallest k s.t. $\boldsymbol{X}=\boldsymbol{F}_{1}$ 田.. 田 \boldsymbol{F}_{k} is the o-induced rank of \boldsymbol{X}
- Analogous to the standard (Schein) rank
- Can be infinite if the matrix cannot be expressed (exactly) with that kind of outer products
- If the outer product can generate a matrix that has exactly one nonzero at arbitrary position, it's induced rank is always bounded

Decomposability

- Outer product o is decomposable (to f) if, for some f, o(x, $\boldsymbol{y}, \theta)_{i j}=f\left(x_{i}, y_{j}, i, j, \theta\right)$
- Then we have

$$
x_{i j}=\bigoplus_{l=1}^{k} f\left(x_{i l}, y_{l j}, i, j, \theta\right)
$$

as in standard matrix multiplication

Nice work, but ... why?

- So, we can express complex patterns using some weird functions
- What's the advantage?
- Using the common language, it's easy to see how some results (and techniques) can be generalized as well

How hard can it be...

- ...to find the maximum-circumference pattern?
- l.e. given \boldsymbol{A}, find $\boldsymbol{x}, \boldsymbol{y}$, and θ s.t. $o(\boldsymbol{x}, \boldsymbol{y}, \theta) \in \boldsymbol{A}$ and you maximize $|\boldsymbol{x}|+|\boldsymbol{y}|$
- If o is hereditary and the pattern can have infinitely many distinct rows and columns, NP-hard
- If there's only fixed number of distinct rows or columns, the problem is in P
- If $\boldsymbol{x}=\boldsymbol{y}$ is required, then it's almost always NP-hard

How hard can it be．．．

－．．．to select the smallest subset that gives an exact summarization？
－I．e．given a set $S=\left\{\boldsymbol{F}_{i}: \operatorname{rank}\left(\boldsymbol{F}_{i}\right)=1\right\}$ ， $\boxplus_{\boldsymbol{F} \in S} \boldsymbol{F}=\boldsymbol{X}$ ，find the the smallest $C \subseteq S$ s．t． $\mathbb{T}_{F \in C} \boldsymbol{F}=\boldsymbol{X}$
－NP－hard for $⿴ 囗 十$ \｛AND，OR，XOR $\}$
－hard to approximate within $\ln (n)$ for OR and within superpolylogarithmic for XOR

How hard can it be...

- ...to compute the rank?
- Well, that depends... (on the underlying algebra)
- Doesn't depend (only) on the outer product
- E.g. normal outer product is NP-hard for OR but in P for XOR

How hard can it be...

- ...to find the decomposition of fixed size that minimizes the error?
- NP-hard if computing the rank is
- NP-hard to approximate to within superpolylogarithmic factors for OR and XOR

Conclusions

- Matrix factorizations are sort-of mixture models
- Present complex data as an aggregate of simpler parts
- Generalized outer products let us represent more than just cliques as "rank-1" matrices
- And allow to generalize many results from cliques

Future

- More work is needed to see what is the correct level of generality for the outer products
- Results for numerical data?
- Framework with no users isn't very useful...

Lhank You!
Questions?

