
Detecting a wrong direction

1. rate criterion

userBestDist = userDist + userToGo

rate = bestDist / userBestDist

If rate < VARIATION_OF_PATH_ACCEPTED, then the rate criterion will be set to true.

2. negative user movement criterion

euclidean distance

bestDist distance user moved since the last location

userDist

euclidean distance between user and next location

userToGo

euclidean distance

userLastDistanceNextTspLocation

euclidean distance

userCurrentDistanceNextTspLocation

progress

(in this case negative)

progress =

userLastDistanceNextTspLocation - userCurrentDistanceNextTspLocation

Initially, the negativeUserMovement is zero (and it is always clamped to zero if it is

greater than zero). If progress < 0 or negativeUserMovement < 0, then the value of

progress is added to the negativeUserMovement:

negativeUserMovement += progress

Thus, as soon as the user’s distance to the next location increases, we keep track of this

increase until

- either the user reaches his original distance, then negativeUserMovement = 0

- or the increase reaches a threshold:

negativeUserMovement < -NEGATIVE_USER_MOVEMENT_THRESHOLD,

then the negative user movement criterion is set to true.

Combine the criterions

If either the rate criterion or the negative user movement criterion is set to true,

wrongDirection is set and the following path segments are drawn in red color. If both

criterions are false again, the following path segments are drawn in dark blue again.

Details

These are the basic thoughts. We added a few more rules to make the color changing more

intuitive for the user.

a) If the rate criterion is set to true and the user does not react to it immediately, the user

might need to go a long distance in the direction of the location until the path turns blue

again.

It would be easier for the user if the path turns blue again as soon as he moves in the

direction of the next location. Therefore, we trigger the negative user movement criterion

artificially as soon as the rate criterion is set to true by defining

negativeUserMovement = -NEGATIVE_USER_MOVEMENT_THRESHOLD – 1

and “ignore” the rate criterion while wrongDirection is set. This has the consequence that

only the negative user movement criterion can set the color to blue again. If this happens,

we set the rate criterion to false by setting the current user location as the initial point for

the following rate computations (in the code this is done via the variables

startUserPosition for the location and userPathLengthSegment for the

distance the user moved since this location).

b) A similar problem appears considering the negative user movement criterion. If it is set

to true, the user has to move NEGATIVE_USER_MOVEMENT_THRESHOLD meters in

the direction of the next location until the path turns blue again.

It would again be easier for the user if the path turns blue earlier, for example if the user

moves just 10 meters in the direction of the next location. For this reason, we added another

threshold, namely POSITIVE_USER_MOVEMENT_THRESHOLD. If wrongDirection is set,

we clamp the negativeUserMovement to the negative value of this threshold, thus it

always holds that

negativeUserMovement >= -POSITIVE_USER_MOVEMENT_THRESHOLD.

