MATHEMATICAL ACTIVITIES IN CAEN, FRANCE

Université de Caen Basse-Normandie
Unité de Formation et de Recherche (UFR)
Département de Mathématiques et Mécanique

March 8. - 15, 2012

For mathematics & computer science students
Tutored by Martti E. Pesonen (Joensuu, Finland, Erasmus teacher exchange)
University of Eastern Finland, Department of Physics and Mathematics
and the helpful local teachers
Link to exercises in 2011
Link to exercises in 2010
Link to exercises in 2009
Link to exercises in 2007
Link to exercises in 2006
Link to exercises in 2005
Link to exercises in 2004
Link to exercises in 2003
Link to exercises in 2002

Test your system for Javasketchpad  applets

(Linear) Algebra for 1st year, 2nd semester (10 h)

Thursday 8 March
08:00-10:00 computer lab S1-128
with P. Casevitz
Linear Space and Basis in R2 (www-form - approximately 90 min)
1. Span of a vector set = espace engendré par un ensemble des vecteurs 
2. Linear independence (libre) 
3. Basis 
4. Towards change of basis
Thursday 8 March
10:15-12:15 computer lab S1-128
with R. Vergnioux
Linear Space and Basis in R2 (www-form - approximately 90 min)
1. Span of a vector set = espace engendré par un ensemble des vecteurs 
2. Linear independence (libre) 
3. Basis 
4. Towards change of basis
Friday 9 March
08:00-10:00 computer lab S1-127
with Ph. Satgé
Linear Space and Basis in R2 (www-form - approximately 90 min)
1. Span of a vector set = espace engendré par un ensemble des vecteurs 
2. Linear independence (libre) 
3. Basis 
4. Towards change of basis
Wednesday 14 March
08:30-11:00 computer lab S1-128
with F. Lambert
Linear Space and Basis in R2 (www-form - approximately 90 min)
1. Span of a vector set = espace engendré par un ensemble des vecteurs 
2. Linear independence (libre) 
3. Basis 
4. Towards change of basis
Thursday 15 March
09:30-11:30 computer lab S1-128
with C. Laurey
Linear Space and Basis in R2 (www-form - approximately 90 min)
1. Span of a vector set = espace engendré par un ensemble des vecteurs 
2. Linear independence (libre) 
3. Basis 
4. Towards change of basis
If time left:
Linear Functions (www-form - approximately 90 min)
Projections, reflections etc.
Identification and puzzles

If time left, or later or voluntarily:
Lines in the plane - Gauss elimination visualized (www-form - 30 min)
A series of 4 dynamic figures with questions 
(suggested to do only 3 first figure questions, the fourth does not bring any essential avail) 

Updated March 5, 2012 (MEP)